358 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2002-2012 Nikolaus Gebhardt
 | |
| // This file is part of the "Irrlicht Engine".
 | |
| // For conditions of distribution and use, see copyright notice in irrlicht.h
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "irrTypes.h"
 | |
| #include "vector2d.h"
 | |
| 
 | |
| namespace irr
 | |
| {
 | |
| namespace core
 | |
| {
 | |
| 
 | |
| //! 2D line between two points with intersection methods.
 | |
| template <class T>
 | |
| class line2d
 | |
| {
 | |
| 	public:
 | |
| 		//! Default constructor for line going from (0,0) to (1,1).
 | |
| 		line2d() : start(0,0), end(1,1) {}
 | |
| 		//! Constructor for line between the two points.
 | |
| 		line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {}
 | |
| 		//! Constructor for line between the two points given as vectors.
 | |
| 		line2d(const vector2d<T>& start, const vector2d<T>& end) : start(start), end(end) {}
 | |
| 
 | |
| 		// operators
 | |
| 
 | |
| 		line2d<T> operator+(const vector2d<T>& point) const { return line2d<T>(start + point, end + point); }
 | |
| 		line2d<T>& operator+=(const vector2d<T>& point) { start += point; end += point; return *this; }
 | |
| 
 | |
| 		line2d<T> operator-(const vector2d<T>& point) const { return line2d<T>(start - point, end - point); }
 | |
| 		line2d<T>& operator-=(const vector2d<T>& point) { start -= point; end -= point; return *this; }
 | |
| 
 | |
| 		bool operator==(const line2d<T>& other) const
 | |
| 		{ return (start==other.start && end==other.end) || (end==other.start && start==other.end);}
 | |
| 		bool operator!=(const line2d<T>& other) const
 | |
| 		{ return !(start==other.start && end==other.end) || (end==other.start && start==other.end);}
 | |
| 
 | |
| 		// functions
 | |
| 		//! Set this line to new line going through the two points.
 | |
| 		void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);}
 | |
| 		//! Set this line to new line going through the two points.
 | |
| 		void setLine(const vector2d<T>& nstart, const vector2d<T>& nend){start.set(nstart); end.set(nend);}
 | |
| 		//! Set this line to new line given as parameter.
 | |
| 		void setLine(const line2d<T>& line){start.set(line.start); end.set(line.end);}
 | |
| 
 | |
| 		//! Get length of line
 | |
| 		/** \return Length of the line. */
 | |
| 		T getLength() const { return start.getDistanceFrom(end); }
 | |
| 
 | |
| 		//! Get squared length of the line
 | |
| 		/** \return Squared length of line. */
 | |
| 		T getLengthSQ() const { return start.getDistanceFromSQ(end); }
 | |
| 
 | |
| 		//! Get middle of the line
 | |
| 		/** \return center of the line. */
 | |
| 		vector2d<T> getMiddle() const
 | |
| 		{
 | |
| 			return (start + end)/(T)2;
 | |
| 		}
 | |
| 
 | |
| 		//! Get the vector of the line.
 | |
| 		/** \return The vector of the line. */
 | |
| 		vector2d<T> getVector() const { return vector2d<T>( end.X - start.X, end.Y - start.Y); }
 | |
| 
 | |
| 		/*! Check if this segment intersects another segment,
 | |
| 			or if segments are coincident (colinear). */
 | |
| 		bool intersectAsSegments( const line2d<T>& other) const
 | |
| 		{
 | |
| 			// Taken from:
 | |
| 			// http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
 | |
| 
 | |
| 			// Find the four orientations needed for general and
 | |
| 			// special cases
 | |
| 			s32 o1 = start.checkOrientation( end, other.start);
 | |
| 			s32 o2 = start.checkOrientation( end, other.end);
 | |
| 			s32 o3 = other.start.checkOrientation( other.end, start);
 | |
| 			s32 o4 = other.start.checkOrientation( other.end, end);
 | |
| 
 | |
| 			// General case
 | |
| 			if (o1 != o2 && o3 != o4)
 | |
| 				return true;
 | |
| 
 | |
| 			// Special Cases to check if segments are colinear
 | |
| 			if (o1 == 0 && other.start.isBetweenPoints( start, end)) return true;
 | |
| 			if (o2 == 0 && other.end.isBetweenPoints( start, end)) return true;
 | |
| 			if (o3 == 0 && start.isBetweenPoints( other.start, other.end)) return true;
 | |
| 			if (o4 == 0 && end.isBetweenPoints( other.start, other.end)) return true;
 | |
| 
 | |
| 			return false; // Doesn't fall in any of the above cases
 | |
| 		}
 | |
| 
 | |
| 		/*! Check if 2 segments are incident (intersects in exactly 1 point).*/
 | |
| 		bool incidentSegments( const line2d<T>& other) const
 | |
| 		{
 | |
| 			return
 | |
| 				start.checkOrientation( end, other.start) != start.checkOrientation( end, other.end)
 | |
| 			&&  other.start.checkOrientation( other.end, start) != other.start.checkOrientation( other.end, end);
 | |
| 		}
 | |
| 
 | |
| 		/*! Check if 2 lines/segments are parallel or nearly parallel.*/
 | |
| 		bool nearlyParallel( const line2d<T>& line, const T factor = relativeErrorFactor<T>()) const
 | |
| 		{
 | |
| 			const vector2d<T> a = getVector();
 | |
| 			const vector2d<T> b = line.getVector();
 | |
| 
 | |
| 			return a.nearlyParallel( b, factor);
 | |
| 		}
 | |
| 
 | |
| 		/*! returns a intersection point of 2 lines (if lines are not parallel). Behaviour
 | |
| 		undefined if lines are parallel or coincident.
 | |
| 		It's on optimized intersectWith with checkOnlySegments=false and ignoreCoincidentLines=true
 | |
| 		*/
 | |
| 		vector2d<T> fastLinesIntersection( const line2d<T>& l) const
 | |
| 		{
 | |
| 			const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
 | |
| 				(l.end.X - l.start.X)*(end.Y - start.Y));
 | |
| 
 | |
| 			if ( commonDenominator != 0.f )
 | |
| 			{
 | |
| 				const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
 | |
| 					(l.end.Y - l.start.Y)*(start.X - l.start.X));
 | |
| 
 | |
| 				const f32 uA = numeratorA / commonDenominator;
 | |
| 
 | |
| 				// Calculate the intersection point.
 | |
| 				return vector2d<T> (
 | |
| 					(T)(start.X + uA * (end.X - start.X)),
 | |
| 					(T)(start.Y + uA * (end.Y - start.Y))
 | |
| 					);
 | |
| 			}
 | |
| 			else
 | |
| 				return l.start;
 | |
| 		}
 | |
| 
 | |
| 		/*! Check if this line intersect a segment. The eventual intersection point is returned in "out".*/
 | |
| 		bool lineIntersectSegment( const line2d<T>& segment, vector2d<T> & out) const
 | |
| 		{
 | |
| 			if (nearlyParallel( segment))
 | |
| 				return false;
 | |
| 
 | |
| 			out = fastLinesIntersection( segment);
 | |
| 
 | |
| 			return out.isBetweenPoints( segment.start, segment.end);
 | |
| 		}
 | |
| 
 | |
| 		//! Tests if this line intersects with another line.
 | |
| 		/** \param l: Other line to test intersection with.
 | |
| 		\param checkOnlySegments: Default is to check intersection between the begin and endpoints.
 | |
| 		When set to false the function will check for the first intersection point when extending the lines.
 | |
| 		\param out: If there is an intersection, the location of the
 | |
| 		intersection will be stored in this vector.
 | |
| 		\param ignoreCoincidentLines: When true coincident lines (lines above each other) are never considered as intersecting.
 | |
| 		When false the center of the overlapping part is returned.
 | |
| 		\return True if there is an intersection, false if not. */
 | |
| 		bool intersectWith(const line2d<T>& l, vector2d<T>& out, bool checkOnlySegments=true, bool ignoreCoincidentLines=false) const
 | |
| 		{
 | |
| 			// Uses the method given at:
 | |
| 			// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
 | |
| 			const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
 | |
| 											(l.end.X - l.start.X)*(end.Y - start.Y));
 | |
| 
 | |
| 			const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
 | |
| 											(l.end.Y - l.start.Y)*(start.X -l.start.X));
 | |
| 
 | |
| 			const f32 numeratorB = (f32)((end.X - start.X)*(start.Y - l.start.Y) -
 | |
| 											(end.Y - start.Y)*(start.X -l.start.X));
 | |
| 
 | |
| 			if(equals(commonDenominator, 0.f))
 | |
| 			{
 | |
| 				// The lines are either coincident or parallel
 | |
| 				// if both numerators are 0, the lines are coincident
 | |
| 				if(!ignoreCoincidentLines && equals(numeratorA, 0.f) && equals(numeratorB, 0.f))
 | |
| 				{
 | |
| 					// Try and find a common endpoint
 | |
| 					if(l.start == start || l.end == start)
 | |
| 						out = start;
 | |
| 					else if(l.end == end || l.start == end)
 | |
| 						out = end;
 | |
| 					// now check if the two segments are disjunct
 | |
| 					else if (l.start.X>start.X && l.end.X>start.X && l.start.X>end.X && l.end.X>end.X)
 | |
| 						return false;
 | |
| 					else if (l.start.Y>start.Y && l.end.Y>start.Y && l.start.Y>end.Y && l.end.Y>end.Y)
 | |
| 						return false;
 | |
| 					else if (l.start.X<start.X && l.end.X<start.X && l.start.X<end.X && l.end.X<end.X)
 | |
| 						return false;
 | |
| 					else if (l.start.Y<start.Y && l.end.Y<start.Y && l.start.Y<end.Y && l.end.Y<end.Y)
 | |
| 						return false;
 | |
| 					// else the lines are overlapping to some extent
 | |
| 					else
 | |
| 					{
 | |
| 						// find the points which are not contributing to the
 | |
| 						// common part
 | |
| 						vector2d<T> maxp;
 | |
| 						vector2d<T> minp;
 | |
| 						if ((start.X>l.start.X && start.X>l.end.X && start.X>end.X) || (start.Y>l.start.Y && start.Y>l.end.Y && start.Y>end.Y))
 | |
| 							maxp=start;
 | |
| 						else if ((end.X>l.start.X && end.X>l.end.X && end.X>start.X) || (end.Y>l.start.Y && end.Y>l.end.Y && end.Y>start.Y))
 | |
| 							maxp=end;
 | |
| 						else if ((l.start.X>start.X && l.start.X>l.end.X && l.start.X>end.X) || (l.start.Y>start.Y && l.start.Y>l.end.Y && l.start.Y>end.Y))
 | |
| 							maxp=l.start;
 | |
| 						else
 | |
| 							maxp=l.end;
 | |
| 						if (maxp != start && ((start.X<l.start.X && start.X<l.end.X && start.X<end.X) || (start.Y<l.start.Y && start.Y<l.end.Y && start.Y<end.Y)))
 | |
| 							minp=start;
 | |
| 						else if (maxp != end && ((end.X<l.start.X && end.X<l.end.X && end.X<start.X) || (end.Y<l.start.Y && end.Y<l.end.Y && end.Y<start.Y)))
 | |
| 							minp=end;
 | |
| 						else if (maxp != l.start && ((l.start.X<start.X && l.start.X<l.end.X && l.start.X<end.X) || (l.start.Y<start.Y && l.start.Y<l.end.Y && l.start.Y<end.Y)))
 | |
| 							minp=l.start;
 | |
| 						else
 | |
| 							minp=l.end;
 | |
| 
 | |
| 						// one line is contained in the other. Pick the center
 | |
| 						// of the remaining points, which overlap for sure
 | |
| 						out = core::vector2d<T>();
 | |
| 						if (start != maxp && start != minp)
 | |
| 							out += start;
 | |
| 						if (end != maxp && end != minp)
 | |
| 							out += end;
 | |
| 						if (l.start != maxp && l.start != minp)
 | |
| 							out += l.start;
 | |
| 						if (l.end != maxp && l.end != minp)
 | |
| 							out += l.end;
 | |
| 						out.X = (T)(out.X/2);
 | |
| 						out.Y = (T)(out.Y/2);
 | |
| 					}
 | |
| 
 | |
| 					return true; // coincident
 | |
| 				}
 | |
| 
 | |
| 				return false; // parallel
 | |
| 			}
 | |
| 
 | |
| 			// Get the point of intersection on this line, checking that
 | |
| 			// it is within the line segment.
 | |
| 			const f32 uA = numeratorA / commonDenominator;
 | |
| 			if (checkOnlySegments)
 | |
| 			{
 | |
| 				if(uA < 0.f || uA > 1.f)
 | |
| 					return false; // Outside the line segment
 | |
| 
 | |
| 				const f32 uB = numeratorB / commonDenominator;
 | |
| 				if(uB < 0.f || uB > 1.f)
 | |
| 					return false; // Outside the line segment
 | |
| 			}
 | |
| 
 | |
| 			// Calculate the intersection point.
 | |
| 			out.X = (T)(start.X + uA * (end.X - start.X));
 | |
| 			out.Y = (T)(start.Y + uA * (end.Y - start.Y));
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		//! Get unit vector of the line.
 | |
| 		/** \return Unit vector of this line. */
 | |
| 		vector2d<T> getUnitVector() const
 | |
| 		{
 | |
| 			T len = (T)(1.0 / getLength());
 | |
| 			return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
 | |
| 		}
 | |
| 
 | |
| 		//! Get angle between this line and given line.
 | |
| 		/** \param l Other line for test.
 | |
| 		\return Angle in degrees. */
 | |
| 		f64 getAngleWith(const line2d<T>& l) const
 | |
| 		{
 | |
| 			vector2d<T> vect = getVector();
 | |
| 			vector2d<T> vect2 = l.getVector();
 | |
| 			return vect.getAngleWith(vect2);
 | |
| 		}
 | |
| 
 | |
| 		//! Tells us if the given point lies to the left, right, or on the line.
 | |
| 		/** \return 0 if the point is on the line
 | |
| 		<0 if to the left, or >0 if to the right. */
 | |
| 		T getPointOrientation(const vector2d<T>& point) const
 | |
| 		{
 | |
| 			return ( (end.X - start.X) * (point.Y - start.Y) -
 | |
| 					(point.X - start.X) * (end.Y - start.Y) );
 | |
| 		}
 | |
| 
 | |
| 		//! Check if the given point is a member of the line
 | |
| 		/** \return True if point is between start and end, else false. */
 | |
| 		bool isPointOnLine(const vector2d<T>& point) const
 | |
| 		{
 | |
| 			T d = getPointOrientation(point);
 | |
| 			return (d == 0 && point.isBetweenPoints(start, end));
 | |
| 		}
 | |
| 
 | |
| 		//! Check if the given point is between start and end of the line.
 | |
| 		/** Assumes that the point is already somewhere on the line. */
 | |
| 		bool isPointBetweenStartAndEnd(const vector2d<T>& point) const
 | |
| 		{
 | |
| 			return point.isBetweenPoints(start, end);
 | |
| 		}
 | |
| 
 | |
| 		//! Get the closest point on this line to a point
 | |
| 		/** \param point: Starting search at this point
 | |
| 		\param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
 | |
| 		When set to false the function will check for the first the closest point on the the line even when outside the segment. */
 | |
| 		vector2d<T> getClosestPoint(const vector2d<T>& point, bool checkOnlySegments=true) const
 | |
| 		{
 | |
| 			vector2d<f64> c((f64)(point.X-start.X), (f64)(point.Y- start.Y));
 | |
| 			vector2d<f64> v((f64)(end.X-start.X), (f64)(end.Y-start.Y));
 | |
| 			f64 d = v.getLength();
 | |
| 			if ( d == 0 ) // can't tell much when the line is just a single point
 | |
| 				return start;
 | |
| 			v /= d;
 | |
| 			f64 t = v.dotProduct(c);
 | |
| 
 | |
| 			if ( checkOnlySegments )
 | |
| 			{
 | |
| 				if (t < 0) return vector2d<T>((T)start.X, (T)start.Y);
 | |
| 				if (t > d) return vector2d<T>((T)end.X, (T)end.Y);
 | |
| 			}
 | |
| 
 | |
| 			v *= t;
 | |
| 			return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
 | |
| 		}
 | |
| 
 | |
| 		//! Start point of the line.
 | |
| 		vector2d<T> start;
 | |
| 		//! End point of the line.
 | |
| 		vector2d<T> end;
 | |
| };
 | |
| 
 | |
| 	// partial specialization to optimize <f32> lines (avoiding casts)
 | |
| 	template <>
 | |
| 	inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df& point, bool checkOnlySegments) const
 | |
| 	{
 | |
| 		const vector2df c = point - start;
 | |
| 		vector2df v = end - start;
 | |
| 		const f32 d = (f32)v.getLength();
 | |
| 		if ( d == 0 ) // can't tell much when the line is just a single point
 | |
| 			return start;
 | |
| 		v /= d;
 | |
| 		const f32 t = v.dotProduct(c);
 | |
| 
 | |
| 		if ( checkOnlySegments )
 | |
| 		{
 | |
| 			if (t < 0) return start;
 | |
| 			if (t > d) return end;
 | |
| 		}
 | |
| 
 | |
| 		v *= t;
 | |
| 		return start + v;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Typedef for an f32 line.
 | |
| 	typedef line2d<f32> line2df;
 | |
| 	//! Typedef for an integer line.
 | |
| 	typedef line2d<s32> line2di;
 | |
| 
 | |
| } // end namespace core
 | |
| } // end namespace irr
 | |
| 
 | |
| 
 |