(fixing OSX again) git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6257 dfc29bdd-3216-0410-991c-e03cc46cb475
		
			
				
	
	
		
			813 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			813 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2002-2012 Nikolaus Gebhardt
 | |
| // This file is part of the "Irrlicht Engine".
 | |
| // For conditions of distribution and use, see copyright notice in irrlicht.h
 | |
| 
 | |
| #ifndef IRR_S_COLOR_H_INCLUDED
 | |
| #define IRR_S_COLOR_H_INCLUDED
 | |
| 
 | |
| #include "irrTypes.h"
 | |
| #include "irrMath.h"
 | |
| 
 | |
| namespace irr
 | |
| {
 | |
| namespace video
 | |
| {
 | |
| 	//! An enum for the color format of textures used by the Irrlicht Engine.
 | |
| 	/** A color format specifies how color information is stored.
 | |
| 	    NOTE: Byte order in memory is usually flipped (it's probably correct in bitmap files, but flipped on reading).
 | |
| 	    So for example ECF_A8R8G8B8 is BGRA in memory same as in DX9's D3DFMT_A8R8G8B8 format.
 | |
| 	*/
 | |
| 	enum ECOLOR_FORMAT
 | |
| 	{
 | |
| 		//! 16 bit color format used by the software driver.
 | |
| 		/** It is thus preferred by all other irrlicht engine video drivers.
 | |
| 		There are 5 bits for every color component, and a single bit is left
 | |
| 		for alpha information. */
 | |
| 		ECF_A1R5G5B5 = 0,
 | |
| 
 | |
| 		//! Standard 16 bit color format.
 | |
| 		ECF_R5G6B5,
 | |
| 
 | |
| 		//! 24 bit color, no alpha channel, but 8 bit for red, green and blue.
 | |
| 		//! Warning: 24 bit formats tend to be badly supported. Depending on driver it's usually converted to another
 | |
| 		//           format or even not working at all. It's mostly better to use 16-bit or 32-bit formats.
 | |
| 		ECF_R8G8B8,
 | |
| 
 | |
| 		//! Default 32 bit color format. 8 bits are used for every component: red, green, blue and alpha.
 | |
| 		//! Warning: This tends to be BGRA in memory (it's ARGB on file, but with usual big-endian memory it's flipped)
 | |
| 		ECF_A8R8G8B8,
 | |
| 
 | |
| 		/** Compressed image formats. **/
 | |
| 
 | |
| 		//! DXT1 color format.
 | |
| 		ECF_DXT1,
 | |
| 
 | |
| 		//! DXT2 color format.
 | |
| 		ECF_DXT2,
 | |
| 
 | |
| 		//! DXT3 color format.
 | |
| 		ECF_DXT3,
 | |
| 
 | |
| 		//! DXT4 color format.
 | |
| 		ECF_DXT4,
 | |
| 
 | |
| 		//! DXT5 color format.
 | |
| 		ECF_DXT5,
 | |
| 
 | |
| 		//! PVRTC RGB 2bpp.
 | |
| 		ECF_PVRTC_RGB2,
 | |
| 
 | |
| 		//! PVRTC ARGB 2bpp.
 | |
| 		ECF_PVRTC_ARGB2,
 | |
| 
 | |
| 		//! PVRTC RGB 4bpp.
 | |
| 		ECF_PVRTC_RGB4,
 | |
| 
 | |
| 		//! PVRTC ARGB 4bpp.
 | |
| 		ECF_PVRTC_ARGB4,
 | |
| 
 | |
| 		//! PVRTC2 ARGB 2bpp.
 | |
| 		ECF_PVRTC2_ARGB2,
 | |
| 
 | |
| 		//! PVRTC2 ARGB 4bpp.
 | |
| 		ECF_PVRTC2_ARGB4,
 | |
| 
 | |
| 		//! ETC1 RGB.
 | |
| 		ECF_ETC1,
 | |
| 
 | |
| 		//! ETC2 RGB.
 | |
| 		ECF_ETC2_RGB,
 | |
| 
 | |
| 		//! ETC2 ARGB.
 | |
| 		ECF_ETC2_ARGB,
 | |
| 
 | |
| 		/** The following formats may only be used for render target textures. */
 | |
| 
 | |
| 		/** Floating point formats. */
 | |
| 
 | |
| 		//! 16 bit format using 16 bits for the red channel.
 | |
| 		ECF_R16F,
 | |
| 
 | |
| 		//! 32 bit format using 16 bits for the red and green channels.
 | |
| 		ECF_G16R16F,
 | |
| 
 | |
| 		//! 64 bit format using 16 bits for the red, green, blue and alpha channels.
 | |
| 		ECF_A16B16G16R16F,
 | |
| 
 | |
| 		//! 32 bit format using 32 bits for the red channel.
 | |
| 		ECF_R32F,
 | |
| 
 | |
| 		//! 64 bit format using 32 bits for the red and green channels.
 | |
| 		ECF_G32R32F,
 | |
| 
 | |
| 		//! 128 bit format using 32 bits for the red, green, blue and alpha channels.
 | |
| 		ECF_A32B32G32R32F,
 | |
| 
 | |
| 		/** Unsigned normalized integer formats. */
 | |
| 
 | |
| 		//! 8 bit format using 8 bits for the red channel.
 | |
| 		ECF_R8,
 | |
| 
 | |
| 		//! 16 bit format using 8 bits for the red and green channels.
 | |
| 		ECF_R8G8,
 | |
| 
 | |
| 		//! 16 bit format using 16 bits for the red channel.
 | |
| 		ECF_R16,
 | |
| 
 | |
| 		//! 32 bit format using 16 bits for the red and green channels.
 | |
| 		ECF_R16G16,
 | |
| 
 | |
| 		/** Depth and stencil formats. */
 | |
| 
 | |
| 		//! 16 bit format using 16 bits for depth.
 | |
| 		ECF_D16,
 | |
| 
 | |
| 		//! 32 bit format using 32 bits for depth.
 | |
| 		ECF_D32,
 | |
| 
 | |
| 		//! 32 bit format using 24 bits for depth and 8 bits for stencil.
 | |
| 		ECF_D24S8,
 | |
| 
 | |
| 		//! Unknown color format:
 | |
| 		ECF_UNKNOWN
 | |
| 	};
 | |
| 
 | |
| 	//! Names for ECOLOR_FORMAT types
 | |
| 	const c8* const ColorFormatNames[ECF_UNKNOWN+2] =
 | |
| 	{
 | |
| 		"A1R5G5B5",
 | |
| 		"R5G6B5",
 | |
| 		"R8G8B8",
 | |
| 		"A8R8G8B8",
 | |
| 		"DXT1",
 | |
| 		"DXT2",
 | |
| 		"DXT3",
 | |
| 		"DXT4",
 | |
| 		"DXT5",
 | |
| 		"PVRTC_RGB2",
 | |
| 		"PVRTC_ARGB2",
 | |
| 		"PVRTC_RGB4",
 | |
| 		"PVRTC_ARGB4",
 | |
| 		"PVRTC2_ARGB2",
 | |
| 		"PVRTC2_ARGB4",
 | |
| 		"ETC1",
 | |
| 		"ETC2_RGB",
 | |
| 		"ETC2_ARGB",
 | |
| 		"R16F",
 | |
| 		"G16R16F",
 | |
| 		"A16B16G16R16F",
 | |
| 		"R32F",
 | |
| 		"G32R32F",
 | |
| 		"A32B32G32R32F",
 | |
| 		"R8",
 | |
| 		"R8G8",
 | |
| 		"R16",
 | |
| 		"R16G16",
 | |
| 		"D16",
 | |
| 		"D32",
 | |
| 		"D24S8",
 | |
| 		"UNKNOWN",
 | |
| 		0
 | |
| 	};
 | |
| 
 | |
| 
 | |
| 	//! Creates a 16 bit A1R5G5B5 color
 | |
| 	inline u16 RGBA16(u32 r, u32 g, u32 b, u32 a=0xFF)
 | |
| 	{
 | |
| 		return (u16)((a & 0x80) << 8 |
 | |
| 			(r & 0xF8) << 7 |
 | |
| 			(g & 0xF8) << 2 |
 | |
| 			(b & 0xF8) >> 3);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Creates a 16 bit A1R5G5B5 color
 | |
| 	inline u16 RGB16(u32 r, u32 g, u32 b)
 | |
| 	{
 | |
| 		return RGBA16(r,g,b);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Creates a 16bit A1R5G5B5 color, based on 16bit input values
 | |
| 	inline u16 RGB16from16(u16 r, u16 g, u16 b)
 | |
| 	{
 | |
| 		return (0x8000 |
 | |
| 				(r & 0x1F) << 10 |
 | |
| 				(g & 0x1F) << 5  |
 | |
| 				(b & 0x1F));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Converts a 32bit (X8R8G8B8) color to a 16bit A1R5G5B5 color
 | |
| 	inline u16 X8R8G8B8toA1R5G5B5(u32 color)
 | |
| 	{
 | |
| 		return (u16)(0x8000 |
 | |
| 			( color & 0x00F80000) >> 9 |
 | |
| 			( color & 0x0000F800) >> 6 |
 | |
| 			( color & 0x000000F8) >> 3);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Converts a 32bit (A8R8G8B8) color to a 16bit A1R5G5B5 color
 | |
| 	inline u16 A8R8G8B8toA1R5G5B5(u32 color)
 | |
| 	{
 | |
| 		return (u16)(( color & 0x80000000) >> 16|
 | |
| 			( color & 0x00F80000) >> 9 |
 | |
| 			( color & 0x0000F800) >> 6 |
 | |
| 			( color & 0x000000F8) >> 3);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Converts a 32bit (A8R8G8B8) color to a 16bit R5G6B5 color
 | |
| 	inline u16 A8R8G8B8toR5G6B5(u32 color)
 | |
| 	{
 | |
| 		return (u16)(( color & 0x00F80000) >> 8 |
 | |
| 			( color & 0x0000FC00) >> 5 |
 | |
| 			( color & 0x000000F8) >> 3);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Convert A8R8G8B8 Color from A1R5G5B5 color
 | |
| 	/** build a nicer 32bit Color by extending dest lower bits with source high bits. */
 | |
| 	inline u32 A1R5G5B5toA8R8G8B8(u16 color)
 | |
| 	{
 | |
| 		return ( (( -( (s32) color & 0x00008000 ) >> (s32) 31 ) & 0xFF000000 ) |
 | |
| 				(( color & 0x00007C00 ) << 9) | (( color & 0x00007000 ) << 4) |
 | |
| 				(( color & 0x000003E0 ) << 6) | (( color & 0x00000380 ) << 1) |
 | |
| 				(( color & 0x0000001F ) << 3) | (( color & 0x0000001C ) >> 2)
 | |
| 				);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns A8R8G8B8 Color from R5G6B5 color
 | |
| 	inline u32 R5G6B5toA8R8G8B8(u16 color)
 | |
| 	{
 | |
| 		return 0xFF000000 |
 | |
| 			((color & 0xF800) << 8)|
 | |
| 			((color & 0x07E0) << 5)|
 | |
| 			((color & 0x001F) << 3);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns A1R5G5B5 Color from R5G6B5 color
 | |
| 	inline u16 R5G6B5toA1R5G5B5(u16 color)
 | |
| 	{
 | |
| 		return 0x8000 | (((color & 0xFFC0) >> 1) | (color & 0x1F));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns R5G6B5 Color from A1R5G5B5 color
 | |
| 	inline u16 A1R5G5B5toR5G6B5(u16 color)
 | |
| 	{
 | |
| 		return (((color & 0x7FE0) << 1) | (color & 0x1F));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	//! Returns the alpha component from A1R5G5B5 color
 | |
| 	/** In Irrlicht, alpha refers to opacity.
 | |
| 	\return The alpha value of the color. 0 is transparent, 1 is opaque. */
 | |
| 	inline u32 getAlpha(u16 color)
 | |
| 	{
 | |
| 		return ((color >> 15)&0x1);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns the red component from A1R5G5B5 color.
 | |
| 	/** Shift left by 3 to get 8 bit value. */
 | |
| 	inline u32 getRed(u16 color)
 | |
| 	{
 | |
| 		return ((color >> 10)&0x1F);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns the green component from A1R5G5B5 color
 | |
| 	/** Shift left by 3 to get 8 bit value. */
 | |
| 	inline u32 getGreen(u16 color)
 | |
| 	{
 | |
| 		return ((color >> 5)&0x1F);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns the blue component from A1R5G5B5 color
 | |
| 	/** Shift left by 3 to get 8 bit value. */
 | |
| 	inline u32 getBlue(u16 color)
 | |
| 	{
 | |
| 		return (color & 0x1F);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Returns the average from a 16 bit A1R5G5B5 color
 | |
| 	inline s32 getAverage(s16 color)
 | |
| 	{
 | |
| 		return ((getRed(color)<<3) + (getGreen(color)<<3) + (getBlue(color)<<3)) / 3;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	//! Class representing a 32 bit ARGB color.
 | |
| 	/** The color values for alpha, red, green, and blue are
 | |
| 	stored in a single u32. So all four values may be between 0 and 255.
 | |
| 	Alpha in Irrlicht is opacity, so 0 is fully transparent, 255 is fully opaque (solid).
 | |
| 	This class is used by most parts of the Irrlicht Engine
 | |
| 	to specify a color. Another way is using the class SColorf, which
 | |
| 	stores the color values in 4 floats.
 | |
| 	This class must consist of only one u32 and must not use virtual functions.
 | |
| 	*/
 | |
| 	class SColor
 | |
| 	{
 | |
| 	public:
 | |
| 
 | |
| 		//! Constructor of the Color. Does nothing.
 | |
| 		/** The color value is not initialized to save time. */
 | |
| 		SColor() {}
 | |
| 
 | |
| 		//! Constructs the color from 4 values representing the alpha, red, green and blue component.
 | |
| 		/** Must be values between 0 and 255. */
 | |
| 		SColor (u32 a, u32 r, u32 g, u32 b)
 | |
| 			: color(((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff)) {}
 | |
| 
 | |
| 		//! Constructs the color from a 32 bit value. Could be another color.
 | |
| 		SColor(u32 clr)
 | |
| 			: color(clr) {}
 | |
| 
 | |
| 		//! Returns the alpha component of the color.
 | |
| 		/** The alpha component defines how opaque a color is.
 | |
| 		\return The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
 | |
| 		u32 getAlpha() const { return color>>24; }
 | |
| 
 | |
| 		//! Returns the red component of the color.
 | |
| 		/** \return Value between 0 and 255, specifying how red the color is.
 | |
| 		0 means no red, 255 means full red. */
 | |
| 		u32 getRed() const { return (color>>16) & 0xff; }
 | |
| 
 | |
| 		//! Returns the green component of the color.
 | |
| 		/** \return Value between 0 and 255, specifying how green the color is.
 | |
| 		0 means no green, 255 means full green. */
 | |
| 		u32 getGreen() const { return (color>>8) & 0xff; }
 | |
| 
 | |
| 		//! Returns the blue component of the color.
 | |
| 		/** \return Value between 0 and 255, specifying how blue the color is.
 | |
| 		0 means no blue, 255 means full blue. */
 | |
| 		u32 getBlue() const { return color & 0xff; }
 | |
| 
 | |
| 		//! Get lightness of the color in the range [0,255]
 | |
| 		f32 getLightness() const
 | |
| 		{
 | |
| 			return 0.5f*(core::max_(core::max_(getRed(),getGreen()),getBlue())+core::min_(core::min_(getRed(),getGreen()),getBlue()));
 | |
| 		}
 | |
| 
 | |
| 		//! Get luminance of the color in the range [0,255].
 | |
| 		f32 getLuminance() const
 | |
| 		{
 | |
| 			return 0.3f*getRed() + 0.59f*getGreen() + 0.11f*getBlue();
 | |
| 		}
 | |
| 
 | |
| 		//! Get average intensity of the color in the range [0,255].
 | |
| 		u32 getAverage() const
 | |
| 		{
 | |
| 			return ( getRed() + getGreen() + getBlue() ) / 3;
 | |
| 		}
 | |
| 
 | |
| 		//! Sets the alpha component of the Color.
 | |
| 		/** The alpha component defines how transparent a color should be.
 | |
| 		\param a The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
 | |
| 		void setAlpha(u32 a) { color = ((a & 0xff)<<24) | (color & 0x00ffffff); }
 | |
| 
 | |
| 		//! Sets the red component of the Color.
 | |
| 		/** \param r: Has to be a value between 0 and 255.
 | |
| 		0 means no red, 255 means full red. */
 | |
| 		void setRed(u32 r) { color = ((r & 0xff)<<16) | (color & 0xff00ffff); }
 | |
| 
 | |
| 		//! Sets the green component of the Color.
 | |
| 		/** \param g: Has to be a value between 0 and 255.
 | |
| 		0 means no green, 255 means full green. */
 | |
| 		void setGreen(u32 g) { color = ((g & 0xff)<<8) | (color & 0xffff00ff); }
 | |
| 
 | |
| 		//! Sets the blue component of the Color.
 | |
| 		/** \param b: Has to be a value between 0 and 255.
 | |
| 		0 means no blue, 255 means full blue. */
 | |
| 		void setBlue(u32 b) { color = (b & 0xff) | (color & 0xffffff00); }
 | |
| 
 | |
| 		//! Calculates a 16 bit A1R5G5B5 value of this color.
 | |
| 		/** \return 16 bit A1R5G5B5 value of this color. */
 | |
| 		u16 toA1R5G5B5() const { return A8R8G8B8toA1R5G5B5(color); }
 | |
| 
 | |
| 		//! Converts color to OpenGL color format
 | |
| 		/** From ARGB to RGBA in 4 byte components for endian aware
 | |
| 		passing to OpenGL
 | |
| 		\param dest: address where the 4x8 bit OpenGL color is stored. */
 | |
| 		void toOpenGLColor(u8* dest) const
 | |
| 		{
 | |
| 			*dest =   (u8)getRed();
 | |
| 			*++dest = (u8)getGreen();
 | |
| 			*++dest = (u8)getBlue();
 | |
| 			*++dest = (u8)getAlpha();
 | |
| 		}
 | |
| 
 | |
| 		//! Sets all four components of the color at once.
 | |
| 		/** Constructs the color from 4 values representing the alpha,
 | |
| 		red, green and blue components of the color. Must be values
 | |
| 		between 0 and 255.
 | |
| 		\param a: Alpha component of the color. The alpha component
 | |
| 		defines how transparent a color should be. Has to be a value
 | |
| 		between 0 and 255. 255 means not transparent (opaque), 0 means
 | |
| 		fully transparent.
 | |
| 		\param r: Sets the red component of the Color. Has to be a
 | |
| 		value between 0 and 255. 0 means no red, 255 means full red.
 | |
| 		\param g: Sets the green component of the Color. Has to be a
 | |
| 		value between 0 and 255. 0 means no green, 255 means full
 | |
| 		green.
 | |
| 		\param b: Sets the blue component of the Color. Has to be a
 | |
| 		value between 0 and 255. 0 means no blue, 255 means full blue. */
 | |
| 		void set(u32 a, u32 r, u32 g, u32 b)
 | |
| 		{
 | |
| 			color = (((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff));
 | |
| 		}
 | |
| 		void set(u32 col) { color = col; }
 | |
| 
 | |
| 		//! Compares the color to another color.
 | |
| 		/** \return True if the colors are the same, and false if not. */
 | |
| 		bool operator==(const SColor& other) const { return other.color == color; }
 | |
| 
 | |
| 		//! Compares the color to another color.
 | |
| 		/** \return True if the colors are different, and false if they are the same. */
 | |
| 		bool operator!=(const SColor& other) const { return other.color != color; }
 | |
| 
 | |
| 		//! comparison operator
 | |
| 		/** \return True if this color is smaller than the other one */
 | |
| 		bool operator<(const SColor& other) const { return (color < other.color); }
 | |
| 
 | |
| 		//! Adds two colors, result is clamped to 0..255 values
 | |
| 		/** \param other Color to add to this color
 | |
| 		\return Addition of the two colors, clamped to 0..255 values */
 | |
| 		SColor operator+(const SColor& other) const
 | |
| 		{
 | |
| 			return SColor(core::min_(getAlpha() + other.getAlpha(), 255u),
 | |
| 					core::min_(getRed() + other.getRed(), 255u),
 | |
| 					core::min_(getGreen() + other.getGreen(), 255u),
 | |
| 					core::min_(getBlue() + other.getBlue(), 255u));
 | |
| 		}
 | |
| 
 | |
| 		//! Interpolates the color with a f32 value to another color
 | |
| 		/** \param other: Other color
 | |
| 		\param d: value between 0.0f and 1.0f. d=0 returns other, d=1 returns this, values between interpolate.
 | |
| 		\return Interpolated color. */
 | |
| 		SColor getInterpolated(const SColor &other, f32 d) const
 | |
| 		{
 | |
| 			d = core::clamp(d, 0.f, 1.f);
 | |
| 			const f32 inv = 1.0f - d;
 | |
| 			return SColor((u32)core::round32(other.getAlpha()*inv + getAlpha()*d),
 | |
| 				(u32)core::round32(other.getRed()*inv + getRed()*d),
 | |
| 				(u32)core::round32(other.getGreen()*inv + getGreen()*d),
 | |
| 				(u32)core::round32(other.getBlue()*inv + getBlue()*d));
 | |
| 		}
 | |
| 
 | |
| 		//! Returns interpolated color. ( quadratic )
 | |
| 		/** \param c1: first color to interpolate with
 | |
| 		\param c2: second color to interpolate with
 | |
| 		\param d: value between 0.0f and 1.0f. */
 | |
| 		SColor getInterpolated_quadratic(const SColor& c1, const SColor& c2, f32 d) const
 | |
| 		{
 | |
| 			// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
 | |
| 			d = core::clamp(d, 0.f, 1.f);
 | |
| 			const f32 inv = 1.f - d;
 | |
| 			const f32 mul0 = inv * inv;
 | |
| 			const f32 mul1 = 2.f * d * inv;
 | |
| 			const f32 mul2 = d * d;
 | |
| 
 | |
| 			return SColor(
 | |
| 					core::clamp( core::floor32(
 | |
| 							getAlpha() * mul0 + c1.getAlpha() * mul1 + c2.getAlpha() * mul2 ), 0, 255 ),
 | |
| 					core::clamp( core::floor32(
 | |
| 							getRed()   * mul0 + c1.getRed()   * mul1 + c2.getRed()   * mul2 ), 0, 255 ),
 | |
| 					core::clamp ( core::floor32(
 | |
| 							getGreen() * mul0 + c1.getGreen() * mul1 + c2.getGreen() * mul2 ), 0, 255 ),
 | |
| 					core::clamp ( core::floor32(
 | |
| 							getBlue()  * mul0 + c1.getBlue()  * mul1 + c2.getBlue()  * mul2 ), 0, 255 ));
 | |
| 		}
 | |
| 
 | |
| 		//! set the color by expecting data in the given format
 | |
| 		/** \param data: must point to valid memory containing color information in the given format
 | |
| 			\param format: tells the format in which data is available
 | |
| 		*/
 | |
| 		void setData(const void *data, ECOLOR_FORMAT format)
 | |
| 		{
 | |
| 			switch (format)
 | |
| 			{
 | |
| 				case ECF_A1R5G5B5:
 | |
| 					color = A1R5G5B5toA8R8G8B8(*(u16*)data);
 | |
| 					break;
 | |
| 				case ECF_R5G6B5:
 | |
| 					color = R5G6B5toA8R8G8B8(*(u16*)data);
 | |
| 					break;
 | |
| 				case ECF_A8R8G8B8:
 | |
| 					color = *(u32*)data;
 | |
| 					break;
 | |
| 				case ECF_R8G8B8:
 | |
| 					{
 | |
| 						const u8* p = (u8*)data;
 | |
| 						set(255, p[0],p[1],p[2]);
 | |
| 					}
 | |
| 					break;
 | |
| 				default:
 | |
| 					color = 0xffffffff;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//! Write the color to data in the defined format
 | |
| 		/** \param data: target to write the color. Must contain sufficiently large memory to receive the number of bytes neede for format
 | |
| 			\param format: tells the format used to write the color into data
 | |
| 		*/
 | |
| 		void getData(void *data, ECOLOR_FORMAT format) const
 | |
| 		{
 | |
| 			switch(format)
 | |
| 			{
 | |
| 				case ECF_A1R5G5B5:
 | |
| 				{
 | |
| 					u16 * dest = (u16*)data;
 | |
| 					*dest = video::A8R8G8B8toA1R5G5B5( color );
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 				case ECF_R5G6B5:
 | |
| 				{
 | |
| 					u16 * dest = (u16*)data;
 | |
| 					*dest = video::A8R8G8B8toR5G6B5( color );
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 				case ECF_R8G8B8:
 | |
| 				{
 | |
| 					u8* dest = (u8*)data;
 | |
| 					dest[0] = (u8)getRed();
 | |
| 					dest[1] = (u8)getGreen();
 | |
| 					dest[2] = (u8)getBlue();
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 				case ECF_A8R8G8B8:
 | |
| 				{
 | |
| 					u32 * dest = (u32*)data;
 | |
| 					*dest = color;
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 				default:
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//! color in A8R8G8B8 Format
 | |
| 		u32 color;
 | |
| 	};
 | |
| 
 | |
| 
 | |
| 	//! Class representing a color with four floats.
 | |
| 	/** The color values for red, green, blue
 | |
| 	and alpha are each stored in a 32 bit floating point variable.
 | |
| 	So all four values may be between 0.0f and 1.0f.
 | |
| 	Another, faster way to define colors is using the class SColor, which
 | |
| 	stores the color values in a single 32 bit integer.
 | |
| 	*/
 | |
| 	class SColorf
 | |
| 	{
 | |
| 	public:
 | |
| 		//! Default constructor for SColorf.
 | |
| 		/** Sets red, green and blue to 0.0f and alpha to 1.0f. */
 | |
| 		SColorf() : r(0.0f), g(0.0f), b(0.0f), a(1.0f) {}
 | |
| 
 | |
| 		//! Constructs a color from up to four color values: red, green, blue, and alpha.
 | |
| 		/** \param r: Red color component. Should be a value between
 | |
| 		0.0f meaning no red and 1.0f, meaning full red.
 | |
| 		\param g: Green color component. Should be a value between 0.0f
 | |
| 		meaning no green and 1.0f, meaning full green.
 | |
| 		\param b: Blue color component. Should be a value between 0.0f
 | |
| 		meaning no blue and 1.0f, meaning full blue.
 | |
| 		\param a: Alpha color component of the color. The alpha
 | |
| 		component defines how transparent a color should be. Has to be
 | |
| 		a value between 0.0f and 1.0f, 1.0f means not transparent
 | |
| 		(opaque), 0.0f means fully transparent. */
 | |
| 		SColorf(f32 r, f32 g, f32 b, f32 a = 1.0f) : r(r), g(g), b(b), a(a) {}
 | |
| 
 | |
| 		//! Constructs a color from 32 bit Color.
 | |
| 		/** \param c: 32 bit color from which this SColorf class is
 | |
| 		constructed from. */
 | |
| 		SColorf(SColor c)
 | |
| 		{
 | |
| 			const f32 inv = 1.0f / 255.0f;
 | |
| 			r = c.getRed() * inv;
 | |
| 			g = c.getGreen() * inv;
 | |
| 			b = c.getBlue() * inv;
 | |
| 			a = c.getAlpha() * inv;
 | |
| 		}
 | |
| 
 | |
| 		//! Converts this color to a SColor without floats.
 | |
| 		SColor toSColor() const
 | |
| 		{
 | |
| 			return SColor((u32)core::round32(a*255.0f), (u32)core::round32(r*255.0f), (u32)core::round32(g*255.0f), (u32)core::round32(b*255.0f));
 | |
| 		}
 | |
| 
 | |
| 		//! Sets three color components to new values at once.
 | |
| 		/** \param rr: Red color component. Should be a value between 0.0f meaning
 | |
| 		no red (=black) and 1.0f, meaning full red.
 | |
| 		\param gg: Green color component. Should be a value between 0.0f meaning
 | |
| 		no green (=black) and 1.0f, meaning full green.
 | |
| 		\param bb: Blue color component. Should be a value between 0.0f meaning
 | |
| 		no blue (=black) and 1.0f, meaning full blue. */
 | |
| 		void set(f32 rr, f32 gg, f32 bb) {r = rr; g =gg; b = bb; }
 | |
| 
 | |
| 		//! Sets all four color components to new values at once.
 | |
| 		/** \param aa: Alpha component. Should be a value between 0.0f meaning
 | |
| 		fully transparent and 1.0f, meaning opaque.
 | |
| 		\param rr: Red color component. Should be a value between 0.0f meaning
 | |
| 		no red and 1.0f, meaning full red.
 | |
| 		\param gg: Green color component. Should be a value between 0.0f meaning
 | |
| 		no green and 1.0f, meaning full green.
 | |
| 		\param bb: Blue color component. Should be a value between 0.0f meaning
 | |
| 		no blue and 1.0f, meaning full blue. */
 | |
| 		void set(f32 aa, f32 rr, f32 gg, f32 bb) {a = aa; r = rr; g =gg; b = bb; }
 | |
| 
 | |
| 		//! Interpolates the color with a f32 value to another color
 | |
| 		/** \param other: Other color
 | |
| 		\param d: value between 0.0f and 1.0f
 | |
| 		\return Interpolated color. */
 | |
| 		SColorf getInterpolated(const SColorf &other, f32 d) const
 | |
| 		{
 | |
| 			d = core::clamp(d, 0.f, 1.f);
 | |
| 			const f32 inv = 1.0f - d;
 | |
| 			return SColorf(other.r*inv + r*d,
 | |
| 				other.g*inv + g*d, other.b*inv + b*d, other.a*inv + a*d);
 | |
| 		}
 | |
| 
 | |
| 		//! Returns interpolated color. ( quadratic )
 | |
| 		/** \param c1: first color to interpolate with
 | |
| 		\param c2: second color to interpolate with
 | |
| 		\param d: value between 0.0f and 1.0f. */
 | |
| 		inline SColorf getInterpolated_quadratic(const SColorf& c1, const SColorf& c2,
 | |
| 				f32 d) const
 | |
| 		{
 | |
| 			d = core::clamp(d, 0.f, 1.f);
 | |
| 			// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
 | |
| 			const f32 inv = 1.f - d;
 | |
| 			const f32 mul0 = inv * inv;
 | |
| 			const f32 mul1 = 2.f * d * inv;
 | |
| 			const f32 mul2 = d * d;
 | |
| 
 | |
| 			return SColorf (r * mul0 + c1.r * mul1 + c2.r * mul2,
 | |
| 					g * mul0 + c1.g * mul1 + c2.g * mul2,
 | |
| 					b * mul0 + c1.b * mul1 + c2.b * mul2,
 | |
| 					a * mul0 + c1.a * mul1 + c2.a * mul2);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		//! Sets a color component by index. R=0, G=1, B=2, A=3
 | |
| 		void setColorComponentValue(s32 index, f32 value)
 | |
| 		{
 | |
| 			switch(index)
 | |
| 			{
 | |
| 			case 0: r = value; break;
 | |
| 			case 1: g = value; break;
 | |
| 			case 2: b = value; break;
 | |
| 			case 3: a = value; break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//! Returns the alpha component of the color in the range 0.0 (transparent) to 1.0 (opaque)
 | |
| 		f32 getAlpha() const { return a; }
 | |
| 
 | |
| 		//! Returns the red component of the color in the range 0.0 to 1.0
 | |
| 		f32 getRed() const { return r; }
 | |
| 
 | |
| 		//! Returns the green component of the color in the range 0.0 to 1.0
 | |
| 		f32 getGreen() const { return g; }
 | |
| 
 | |
| 		//! Returns the blue component of the color in the range 0.0 to 1.0
 | |
| 		f32 getBlue() const { return b; }
 | |
| 
 | |
| 		//! red color component
 | |
| 		f32 r;
 | |
| 
 | |
| 		//! green color component
 | |
| 		f32 g;
 | |
| 
 | |
| 		//! blue component
 | |
| 		f32 b;
 | |
| 
 | |
| 		//! alpha color component
 | |
| 		f32 a;
 | |
| 	};
 | |
| 
 | |
| 
 | |
| 	//! Class representing a color in HSL format
 | |
| 	/** The color values for hue, saturation, luminance
 | |
| 	are stored in 32bit floating point variables. Hue is in range [0,360],
 | |
| 	Luminance and Saturation are in percent [0,100]
 | |
| 	*/
 | |
| 	class SColorHSL
 | |
| 	{
 | |
| 	public:
 | |
| 		SColorHSL ( f32 h = 0.f, f32 s = 0.f, f32 l = 0.f )
 | |
| 			: Hue ( h ), Saturation ( s ), Luminance ( l ) {}
 | |
| 
 | |
| 		void fromRGB(const SColorf &color);
 | |
| 		void toRGB(SColorf &color) const;
 | |
| 
 | |
| 		f32 Hue;
 | |
| 		f32 Saturation;
 | |
| 		f32 Luminance;
 | |
| 
 | |
| 	private:
 | |
| 		inline f32 toRGB1(f32 rm1, f32 rm2, f32 rh) const;
 | |
| 
 | |
| 	};
 | |
| 
 | |
| 	inline void SColorHSL::fromRGB(const SColorf &color)
 | |
| 	{
 | |
| 		const f32 maxVal = core::max_(color.getRed(), color.getGreen(), color.getBlue());
 | |
| 		const f32 minVal = (f32)core::min_(color.getRed(), color.getGreen(), color.getBlue());
 | |
| 		Luminance = (maxVal+minVal)*50;
 | |
| 		if (core::equals(maxVal, minVal))
 | |
| 		{
 | |
| 			Hue=0.f;
 | |
| 			Saturation=0.f;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		const f32 delta = maxVal-minVal;
 | |
| 		if ( Luminance <= 50 )
 | |
| 		{
 | |
| 			Saturation = (delta)/(maxVal+minVal);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			Saturation = (delta)/(2-maxVal-minVal);
 | |
| 		}
 | |
| 		Saturation *= 100;
 | |
| 
 | |
| 		if (core::equals(maxVal, color.getRed()))
 | |
| 			Hue = (color.getGreen()-color.getBlue())/delta;
 | |
| 		else if (core::equals(maxVal, color.getGreen()))
 | |
| 			Hue = 2+((color.getBlue()-color.getRed())/delta);
 | |
| 		else // blue is max
 | |
| 			Hue = 4+((color.getRed()-color.getGreen())/delta);
 | |
| 
 | |
| 		Hue *= 60.0f;
 | |
| 		while ( Hue < 0.f )
 | |
| 			Hue += 360;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	inline void SColorHSL::toRGB(SColorf &color) const
 | |
| 	{
 | |
| 		const f32 l = Luminance/100;
 | |
| 		if (core::iszero(Saturation)) // grey
 | |
| 		{
 | |
| 			color.set(l, l, l);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		f32 rm2;
 | |
| 
 | |
| 		if ( Luminance <= 50 )
 | |
| 		{
 | |
| 			rm2 = l + l * (Saturation/100);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			rm2 = l + (1 - l) * (Saturation/100);
 | |
| 		}
 | |
| 
 | |
| 		const f32 rm1 = 2.0f * l - rm2;
 | |
| 
 | |
| 		const f32 h = Hue / 360.0f;
 | |
| 		color.set( toRGB1(rm1, rm2, h + 1.f/3.f),
 | |
| 			toRGB1(rm1, rm2, h),
 | |
| 			toRGB1(rm1, rm2, h - 1.f/3.f)
 | |
| 			);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	// algorithm from Foley/Van-Dam
 | |
| 	inline f32 SColorHSL::toRGB1(f32 rm1, f32 rm2, f32 rh) const
 | |
| 	{
 | |
| 		if (rh<0)
 | |
| 			rh += 1;
 | |
| 		if (rh>1)
 | |
| 			rh -= 1;
 | |
| 
 | |
| 		if (rh < 1.f/6.f)
 | |
| 			rm1 = rm1 + (rm2 - rm1) * rh*6.f;
 | |
| 		else if (rh < 0.5f)
 | |
| 			rm1 = rm2;
 | |
| 		else if (rh < 2.f/3.f)
 | |
| 			rm1 = rm1 + (rm2 - rm1) * ((2.f/3.f)-rh)*6.f;
 | |
| 
 | |
| 		return rm1;
 | |
| 	}
 | |
| 
 | |
| } // end namespace video
 | |
| } // end namespace irr
 | |
| 
 | |
| #endif
 |