git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6000 dfc29bdd-3216-0410-991c-e03cc46cb475
		
			
				
	
	
		
			797 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * jdarith.c
 | |
|  *
 | |
|  * Developed 1997-2013 by Guido Vollbeding.
 | |
|  * This file is part of the Independent JPEG Group's software.
 | |
|  * For conditions of distribution and use, see the accompanying README file.
 | |
|  *
 | |
|  * This file contains portable arithmetic entropy decoding routines for JPEG
 | |
|  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
 | |
|  *
 | |
|  * Both sequential and progressive modes are supported in this single module.
 | |
|  *
 | |
|  * Suspension is not currently supported in this module.
 | |
|  */
 | |
| 
 | |
| #define JPEG_INTERNALS
 | |
| #include "jinclude.h"
 | |
| #include "jpeglib.h"
 | |
| 
 | |
| 
 | |
| /* Expanded entropy decoder object for arithmetic decoding. */
 | |
| 
 | |
| typedef struct {
 | |
|   struct jpeg_entropy_decoder pub; /* public fields */
 | |
| 
 | |
|   INT32 c;       /* C register, base of coding interval + input bit buffer */
 | |
|   INT32 a;               /* A register, normalized size of coding interval */
 | |
|   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
 | |
|                                                          /* init: ct = -16 */
 | |
|                                                          /* run: ct = 0..7 */
 | |
|                                                          /* error: ct = -1 */
 | |
|   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 | |
|   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
 | |
| 
 | |
|   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 | |
| 
 | |
|   /* Pointers to statistics areas (these workspaces have image lifespan) */
 | |
|   unsigned char * dc_stats[NUM_ARITH_TBLS];
 | |
|   unsigned char * ac_stats[NUM_ARITH_TBLS];
 | |
| 
 | |
|   /* Statistics bin for coding with fixed probability 0.5 */
 | |
|   unsigned char fixed_bin[4];
 | |
| } arith_entropy_decoder;
 | |
| 
 | |
| typedef arith_entropy_decoder * arith_entropy_ptr;
 | |
| 
 | |
| /* The following two definitions specify the allocation chunk size
 | |
|  * for the statistics area.
 | |
|  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
 | |
|  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
 | |
|  *
 | |
|  * We use a compact representation with 1 byte per statistics bin,
 | |
|  * thus the numbers directly represent byte sizes.
 | |
|  * This 1 byte per statistics bin contains the meaning of the MPS
 | |
|  * (more probable symbol) in the highest bit (mask 0x80), and the
 | |
|  * index into the probability estimation state machine table
 | |
|  * in the lower bits (mask 0x7F).
 | |
|  */
 | |
| 
 | |
| #define DC_STAT_BINS 64
 | |
| #define AC_STAT_BINS 256
 | |
| 
 | |
| 
 | |
| LOCAL(int)
 | |
| get_byte (j_decompress_ptr cinfo)
 | |
| /* Read next input byte; we do not support suspension in this module. */
 | |
| {
 | |
|   struct jpeg_source_mgr * src = cinfo->src;
 | |
| 
 | |
|   if (src->bytes_in_buffer == 0)
 | |
|     if (! (*src->fill_input_buffer) (cinfo))
 | |
|       ERREXIT(cinfo, JERR_CANT_SUSPEND);
 | |
|   src->bytes_in_buffer--;
 | |
|   return GETJOCTET(*src->next_input_byte++);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The core arithmetic decoding routine (common in JPEG and JBIG).
 | |
|  * This needs to go as fast as possible.
 | |
|  * Machine-dependent optimization facilities
 | |
|  * are not utilized in this portable implementation.
 | |
|  * However, this code should be fairly efficient and
 | |
|  * may be a good base for further optimizations anyway.
 | |
|  *
 | |
|  * Return value is 0 or 1 (binary decision).
 | |
|  *
 | |
|  * Note: I've changed the handling of the code base & bit
 | |
|  * buffer register C compared to other implementations
 | |
|  * based on the standards layout & procedures.
 | |
|  * While it also contains both the actual base of the
 | |
|  * coding interval (16 bits) and the next-bits buffer,
 | |
|  * the cut-point between these two parts is floating
 | |
|  * (instead of fixed) with the bit shift counter CT.
 | |
|  * Thus, we also need only one (variable instead of
 | |
|  * fixed size) shift for the LPS/MPS decision, and
 | |
|  * we can get away with any renormalization update
 | |
|  * of C (except for new data insertion, of course).
 | |
|  *
 | |
|  * I've also introduced a new scheme for accessing
 | |
|  * the probability estimation state machine table,
 | |
|  * derived from Markus Kuhn's JBIG implementation.
 | |
|  */
 | |
| 
 | |
| LOCAL(int)
 | |
| arith_decode (j_decompress_ptr cinfo, unsigned char *st)
 | |
| {
 | |
|   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
 | |
|   register unsigned char nl, nm;
 | |
|   register INT32 qe, temp;
 | |
|   register int sv, data;
 | |
| 
 | |
|   /* Renormalization & data input per section D.2.6 */
 | |
|   while (e->a < 0x8000L) {
 | |
|     if (--e->ct < 0) {
 | |
|       /* Need to fetch next data byte */
 | |
|       if (cinfo->unread_marker)
 | |
| 	data = 0;		/* stuff zero data */
 | |
|       else {
 | |
| 	data = get_byte(cinfo);	/* read next input byte */
 | |
| 	if (data == 0xFF) {	/* zero stuff or marker code */
 | |
| 	  do data = get_byte(cinfo);
 | |
| 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
 | |
| 	  if (data == 0)
 | |
| 	    data = 0xFF;	/* discard stuffed zero byte */
 | |
| 	  else {
 | |
| 	    /* Note: Different from the Huffman decoder, hitting
 | |
| 	     * a marker while processing the compressed data
 | |
| 	     * segment is legal in arithmetic coding.
 | |
| 	     * The convention is to supply zero data
 | |
| 	     * then until decoding is complete.
 | |
| 	     */
 | |
| 	    cinfo->unread_marker = data;
 | |
| 	    data = 0;
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       e->c = (e->c << 8) | data; /* insert data into C register */
 | |
|       if ((e->ct += 8) < 0)	 /* update bit shift counter */
 | |
| 	/* Need more initial bytes */
 | |
| 	if (++e->ct == 0)
 | |
| 	  /* Got 2 initial bytes -> re-init A and exit loop */
 | |
| 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
 | |
|     }
 | |
|     e->a <<= 1;
 | |
|   }
 | |
| 
 | |
|   /* Fetch values from our compact representation of Table D.3(D.2):
 | |
|    * Qe values and probability estimation state machine
 | |
|    */
 | |
|   sv = *st;
 | |
|   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
 | |
|   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
 | |
|   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
 | |
| 
 | |
|   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
 | |
|   temp = e->a - qe;
 | |
|   e->a = temp;
 | |
|   temp <<= e->ct;
 | |
|   if (e->c >= temp) {
 | |
|     e->c -= temp;
 | |
|     /* Conditional LPS (less probable symbol) exchange */
 | |
|     if (e->a < qe) {
 | |
|       e->a = qe;
 | |
|       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
 | |
|     } else {
 | |
|       e->a = qe;
 | |
|       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
 | |
|       sv ^= 0x80;		/* Exchange LPS/MPS */
 | |
|     }
 | |
|   } else if (e->a < 0x8000L) {
 | |
|     /* Conditional MPS (more probable symbol) exchange */
 | |
|     if (e->a < qe) {
 | |
|       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
 | |
|       sv ^= 0x80;		/* Exchange LPS/MPS */
 | |
|     } else {
 | |
|       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return sv >> 7;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check for a restart marker & resynchronize decoder.
 | |
|  */
 | |
| 
 | |
| LOCAL(void)
 | |
| process_restart (j_decompress_ptr cinfo)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   int ci;
 | |
|   jpeg_component_info * compptr;
 | |
| 
 | |
|   /* Advance past the RSTn marker */
 | |
|   if (! (*cinfo->marker->read_restart_marker) (cinfo))
 | |
|     ERREXIT(cinfo, JERR_CANT_SUSPEND);
 | |
| 
 | |
|   /* Re-initialize statistics areas */
 | |
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
 | |
|       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
 | |
|       /* Reset DC predictions to 0 */
 | |
|       entropy->last_dc_val[ci] = 0;
 | |
|       entropy->dc_context[ci] = 0;
 | |
|     }
 | |
|     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
 | |
| 	(cinfo->progressive_mode && cinfo->Ss)) {
 | |
|       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Reset arithmetic decoding variables */
 | |
|   entropy->c = 0;
 | |
|   entropy->a = 0;
 | |
|   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
 | |
| 
 | |
|   /* Reset restart counter */
 | |
|   entropy->restarts_to_go = cinfo->restart_interval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Arithmetic MCU decoding.
 | |
|  * Each of these routines decodes and returns one MCU's worth of
 | |
|  * arithmetic-compressed coefficients.
 | |
|  * The coefficients are reordered from zigzag order into natural array order,
 | |
|  * but are not dequantized.
 | |
|  *
 | |
|  * The i'th block of the MCU is stored into the block pointed to by
 | |
|  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * MCU decoding for DC initial scan (either spectral selection,
 | |
|  * or first pass of successive approximation).
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   JBLOCKROW block;
 | |
|   unsigned char *st;
 | |
|   int blkn, ci, tbl, sign;
 | |
|   int v, m;
 | |
| 
 | |
|   /* Process restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       process_restart(cinfo);
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
 | |
| 
 | |
|   /* Outer loop handles each block in the MCU */
 | |
| 
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     block = MCU_data[blkn];
 | |
|     ci = cinfo->MCU_membership[blkn];
 | |
|     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
 | |
| 
 | |
|     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
 | |
| 
 | |
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
 | |
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
 | |
| 
 | |
|     /* Figure F.19: Decode_DC_DIFF */
 | |
|     if (arith_decode(cinfo, st) == 0)
 | |
|       entropy->dc_context[ci] = 0;
 | |
|     else {
 | |
|       /* Figure F.21: Decoding nonzero value v */
 | |
|       /* Figure F.22: Decoding the sign of v */
 | |
|       sign = arith_decode(cinfo, st + 1);
 | |
|       st += 2; st += sign;
 | |
|       /* Figure F.23: Decoding the magnitude category of v */
 | |
|       if ((m = arith_decode(cinfo, st)) != 0) {
 | |
| 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
 | |
| 	while (arith_decode(cinfo, st)) {
 | |
| 	  if ((m <<= 1) == 0x8000) {
 | |
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	    entropy->ct = -1;			/* magnitude overflow */
 | |
| 	    return TRUE;
 | |
| 	  }
 | |
| 	  st += 1;
 | |
| 	}
 | |
|       }
 | |
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
 | |
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
 | |
| 	entropy->dc_context[ci] = 0;		   /* zero diff category */
 | |
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
 | |
| 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
 | |
|       else
 | |
| 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
 | |
|       v = m;
 | |
|       /* Figure F.24: Decoding the magnitude bit pattern of v */
 | |
|       st += 14;
 | |
|       while (m >>= 1)
 | |
| 	if (arith_decode(cinfo, st)) v |= m;
 | |
|       v += 1; if (sign) v = -v;
 | |
|       entropy->last_dc_val[ci] += v;
 | |
|     }
 | |
| 
 | |
|     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
 | |
|     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU decoding for AC initial scan (either spectral selection,
 | |
|  * or first pass of successive approximation).
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   JBLOCKROW block;
 | |
|   unsigned char *st;
 | |
|   int tbl, sign, k;
 | |
|   int v, m;
 | |
|   const int * natural_order;
 | |
| 
 | |
|   /* Process restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       process_restart(cinfo);
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
 | |
| 
 | |
|   natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* There is always only one block per MCU */
 | |
|   block = MCU_data[0];
 | |
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
 | |
| 
 | |
|   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
 | |
| 
 | |
|   /* Figure F.20: Decode_AC_coefficients */
 | |
|   k = cinfo->Ss - 1;
 | |
|   do {
 | |
|     st = entropy->ac_stats[tbl] + 3 * k;
 | |
|     if (arith_decode(cinfo, st)) break;		/* EOB flag */
 | |
|     for (;;) {
 | |
|       k++;
 | |
|       if (arith_decode(cinfo, st + 1)) break;
 | |
|       st += 3;
 | |
|       if (k >= cinfo->Se) {
 | |
| 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	entropy->ct = -1;			/* spectral overflow */
 | |
| 	return TRUE;
 | |
|       }
 | |
|     }
 | |
|     /* Figure F.21: Decoding nonzero value v */
 | |
|     /* Figure F.22: Decoding the sign of v */
 | |
|     sign = arith_decode(cinfo, entropy->fixed_bin);
 | |
|     st += 2;
 | |
|     /* Figure F.23: Decoding the magnitude category of v */
 | |
|     if ((m = arith_decode(cinfo, st)) != 0) {
 | |
|       if (arith_decode(cinfo, st)) {
 | |
| 	m <<= 1;
 | |
| 	st = entropy->ac_stats[tbl] +
 | |
| 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
 | |
| 	while (arith_decode(cinfo, st)) {
 | |
| 	  if ((m <<= 1) == 0x8000) {
 | |
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	    entropy->ct = -1;			/* magnitude overflow */
 | |
| 	    return TRUE;
 | |
| 	  }
 | |
| 	  st += 1;
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     v = m;
 | |
|     /* Figure F.24: Decoding the magnitude bit pattern of v */
 | |
|     st += 14;
 | |
|     while (m >>= 1)
 | |
|       if (arith_decode(cinfo, st)) v |= m;
 | |
|     v += 1; if (sign) v = -v;
 | |
|     /* Scale and output coefficient in natural (dezigzagged) order */
 | |
|     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
 | |
|   } while (k < cinfo->Se);
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU decoding for DC successive approximation refinement scan.
 | |
|  * Note: we assume such scans can be multi-component,
 | |
|  * although the spec is not very clear on the point.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   unsigned char *st;
 | |
|   int p1, blkn;
 | |
| 
 | |
|   /* Process restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       process_restart(cinfo);
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   st = entropy->fixed_bin;	/* use fixed probability estimation */
 | |
|   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
 | |
| 
 | |
|   /* Outer loop handles each block in the MCU */
 | |
| 
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     /* Encoded data is simply the next bit of the two's-complement DC value */
 | |
|     if (arith_decode(cinfo, st))
 | |
|       MCU_data[blkn][0][0] |= p1;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU decoding for AC successive approximation refinement scan.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   JBLOCKROW block;
 | |
|   JCOEFPTR thiscoef;
 | |
|   unsigned char *st;
 | |
|   int tbl, k, kex;
 | |
|   int p1, m1;
 | |
|   const int * natural_order;
 | |
| 
 | |
|   /* Process restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       process_restart(cinfo);
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
 | |
| 
 | |
|   natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* There is always only one block per MCU */
 | |
|   block = MCU_data[0];
 | |
|   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
 | |
| 
 | |
|   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
 | |
|   m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
 | |
| 
 | |
|   /* Establish EOBx (previous stage end-of-block) index */
 | |
|   kex = cinfo->Se;
 | |
|   do {
 | |
|     if ((*block)[natural_order[kex]]) break;
 | |
|   } while (--kex);
 | |
| 
 | |
|   k = cinfo->Ss - 1;
 | |
|   do {
 | |
|     st = entropy->ac_stats[tbl] + 3 * k;
 | |
|     if (k >= kex)
 | |
|       if (arith_decode(cinfo, st)) break;	/* EOB flag */
 | |
|     for (;;) {
 | |
|       thiscoef = *block + natural_order[++k];
 | |
|       if (*thiscoef) {				/* previously nonzero coef */
 | |
| 	if (arith_decode(cinfo, st + 2)) {
 | |
| 	  if (*thiscoef < 0)
 | |
| 	    *thiscoef += m1;
 | |
| 	  else
 | |
| 	    *thiscoef += p1;
 | |
| 	}
 | |
| 	break;
 | |
|       }
 | |
|       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
 | |
| 	if (arith_decode(cinfo, entropy->fixed_bin))
 | |
| 	  *thiscoef = m1;
 | |
| 	else
 | |
| 	  *thiscoef = p1;
 | |
| 	break;
 | |
|       }
 | |
|       st += 3;
 | |
|       if (k >= cinfo->Se) {
 | |
| 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	entropy->ct = -1;			/* spectral overflow */
 | |
| 	return TRUE;
 | |
|       }
 | |
|     }
 | |
|   } while (k < cinfo->Se);
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Decode one MCU's worth of arithmetic-compressed coefficients.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   jpeg_component_info * compptr;
 | |
|   JBLOCKROW block;
 | |
|   unsigned char *st;
 | |
|   int blkn, ci, tbl, sign, k;
 | |
|   int v, m;
 | |
|   const int * natural_order;
 | |
| 
 | |
|   /* Process restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       process_restart(cinfo);
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
 | |
| 
 | |
|   natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* Outer loop handles each block in the MCU */
 | |
| 
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     block = MCU_data[blkn];
 | |
|     ci = cinfo->MCU_membership[blkn];
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
| 
 | |
|     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
 | |
| 
 | |
|     tbl = compptr->dc_tbl_no;
 | |
| 
 | |
|     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
 | |
|     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
 | |
| 
 | |
|     /* Figure F.19: Decode_DC_DIFF */
 | |
|     if (arith_decode(cinfo, st) == 0)
 | |
|       entropy->dc_context[ci] = 0;
 | |
|     else {
 | |
|       /* Figure F.21: Decoding nonzero value v */
 | |
|       /* Figure F.22: Decoding the sign of v */
 | |
|       sign = arith_decode(cinfo, st + 1);
 | |
|       st += 2; st += sign;
 | |
|       /* Figure F.23: Decoding the magnitude category of v */
 | |
|       if ((m = arith_decode(cinfo, st)) != 0) {
 | |
| 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
 | |
| 	while (arith_decode(cinfo, st)) {
 | |
| 	  if ((m <<= 1) == 0x8000) {
 | |
| 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	    entropy->ct = -1;			/* magnitude overflow */
 | |
| 	    return TRUE;
 | |
| 	  }
 | |
| 	  st += 1;
 | |
| 	}
 | |
|       }
 | |
|       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
 | |
|       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
 | |
| 	entropy->dc_context[ci] = 0;		   /* zero diff category */
 | |
|       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
 | |
| 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
 | |
|       else
 | |
| 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
 | |
|       v = m;
 | |
|       /* Figure F.24: Decoding the magnitude bit pattern of v */
 | |
|       st += 14;
 | |
|       while (m >>= 1)
 | |
| 	if (arith_decode(cinfo, st)) v |= m;
 | |
|       v += 1; if (sign) v = -v;
 | |
|       entropy->last_dc_val[ci] += v;
 | |
|     }
 | |
| 
 | |
|     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
 | |
| 
 | |
|     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
 | |
| 
 | |
|     if (cinfo->lim_Se == 0) continue;
 | |
|     tbl = compptr->ac_tbl_no;
 | |
|     k = 0;
 | |
| 
 | |
|     /* Figure F.20: Decode_AC_coefficients */
 | |
|     do {
 | |
|       st = entropy->ac_stats[tbl] + 3 * k;
 | |
|       if (arith_decode(cinfo, st)) break;	/* EOB flag */
 | |
|       for (;;) {
 | |
| 	k++;
 | |
| 	if (arith_decode(cinfo, st + 1)) break;
 | |
| 	st += 3;
 | |
| 	if (k >= cinfo->lim_Se) {
 | |
| 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	  entropy->ct = -1;			/* spectral overflow */
 | |
| 	  return TRUE;
 | |
| 	}
 | |
|       }
 | |
|       /* Figure F.21: Decoding nonzero value v */
 | |
|       /* Figure F.22: Decoding the sign of v */
 | |
|       sign = arith_decode(cinfo, entropy->fixed_bin);
 | |
|       st += 2;
 | |
|       /* Figure F.23: Decoding the magnitude category of v */
 | |
|       if ((m = arith_decode(cinfo, st)) != 0) {
 | |
| 	if (arith_decode(cinfo, st)) {
 | |
| 	  m <<= 1;
 | |
| 	  st = entropy->ac_stats[tbl] +
 | |
| 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
 | |
| 	  while (arith_decode(cinfo, st)) {
 | |
| 	    if ((m <<= 1) == 0x8000) {
 | |
| 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
 | |
| 	      entropy->ct = -1;			/* magnitude overflow */
 | |
| 	      return TRUE;
 | |
| 	    }
 | |
| 	    st += 1;
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       v = m;
 | |
|       /* Figure F.24: Decoding the magnitude bit pattern of v */
 | |
|       st += 14;
 | |
|       while (m >>= 1)
 | |
| 	if (arith_decode(cinfo, st)) v |= m;
 | |
|       v += 1; if (sign) v = -v;
 | |
|       (*block)[natural_order[k]] = (JCOEF) v;
 | |
|     } while (k < cinfo->lim_Se);
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize for an arithmetic-compressed scan.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| start_pass (j_decompress_ptr cinfo)
 | |
| {
 | |
|   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
 | |
|   int ci, tbl;
 | |
|   jpeg_component_info * compptr;
 | |
| 
 | |
|   if (cinfo->progressive_mode) {
 | |
|     /* Validate progressive scan parameters */
 | |
|     if (cinfo->Ss == 0) {
 | |
|       if (cinfo->Se != 0)
 | |
| 	goto bad;
 | |
|     } else {
 | |
|       /* need not check Ss/Se < 0 since they came from unsigned bytes */
 | |
|       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
 | |
| 	goto bad;
 | |
|       /* AC scans may have only one component */
 | |
|       if (cinfo->comps_in_scan != 1)
 | |
| 	goto bad;
 | |
|     }
 | |
|     if (cinfo->Ah != 0) {
 | |
|       /* Successive approximation refinement scan: must have Al = Ah-1. */
 | |
|       if (cinfo->Ah-1 != cinfo->Al)
 | |
| 	goto bad;
 | |
|     }
 | |
|     if (cinfo->Al > 13) {	/* need not check for < 0 */
 | |
|       bad:
 | |
|       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
 | |
| 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
 | |
|     }
 | |
|     /* Update progression status, and verify that scan order is legal.
 | |
|      * Note that inter-scan inconsistencies are treated as warnings
 | |
|      * not fatal errors ... not clear if this is right way to behave.
 | |
|      */
 | |
|     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | |
|       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
 | |
|       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
 | |
|       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
 | |
| 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
 | |
|       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
 | |
| 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
 | |
| 	if (cinfo->Ah != expected)
 | |
| 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
 | |
| 	coef_bit_ptr[coefi] = cinfo->Al;
 | |
|       }
 | |
|     }
 | |
|     /* Select MCU decoding routine */
 | |
|     if (cinfo->Ah == 0) {
 | |
|       if (cinfo->Ss == 0)
 | |
| 	entropy->pub.decode_mcu = decode_mcu_DC_first;
 | |
|       else
 | |
| 	entropy->pub.decode_mcu = decode_mcu_AC_first;
 | |
|     } else {
 | |
|       if (cinfo->Ss == 0)
 | |
| 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
 | |
|       else
 | |
| 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
 | |
|     }
 | |
|   } else {
 | |
|     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
 | |
|      * This ought to be an error condition, but we make it a warning.
 | |
|      */
 | |
|     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
 | |
| 	(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
 | |
|       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
 | |
|     /* Select MCU decoding routine */
 | |
|     entropy->pub.decode_mcu = decode_mcu;
 | |
|   }
 | |
| 
 | |
|   /* Allocate & initialize requested statistics areas */
 | |
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
 | |
|       tbl = compptr->dc_tbl_no;
 | |
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
 | |
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
 | |
|       if (entropy->dc_stats[tbl] == NULL)
 | |
| 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
 | |
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
 | |
|       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
 | |
|       /* Initialize DC predictions to 0 */
 | |
|       entropy->last_dc_val[ci] = 0;
 | |
|       entropy->dc_context[ci] = 0;
 | |
|     }
 | |
|     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
 | |
| 	(cinfo->progressive_mode && cinfo->Ss)) {
 | |
|       tbl = compptr->ac_tbl_no;
 | |
|       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
 | |
| 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
 | |
|       if (entropy->ac_stats[tbl] == NULL)
 | |
| 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
 | |
| 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
 | |
|       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Initialize arithmetic decoding variables */
 | |
|   entropy->c = 0;
 | |
|   entropy->a = 0;
 | |
|   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
 | |
| 
 | |
|   /* Initialize restart counter */
 | |
|   entropy->restarts_to_go = cinfo->restart_interval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Finish up at the end of an arithmetic-compressed scan.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| finish_pass (j_decompress_ptr cinfo)
 | |
| {
 | |
|   /* no work necessary here */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Module initialization routine for arithmetic entropy decoding.
 | |
|  */
 | |
| 
 | |
| GLOBAL(void)
 | |
| jinit_arith_decoder (j_decompress_ptr cinfo)
 | |
| {
 | |
|   arith_entropy_ptr entropy;
 | |
|   int i;
 | |
| 
 | |
|   entropy = (arith_entropy_ptr)
 | |
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 				SIZEOF(arith_entropy_decoder));
 | |
|   cinfo->entropy = &entropy->pub;
 | |
|   entropy->pub.start_pass = start_pass;
 | |
|   entropy->pub.finish_pass = finish_pass;
 | |
| 
 | |
|   /* Mark tables unallocated */
 | |
|   for (i = 0; i < NUM_ARITH_TBLS; i++) {
 | |
|     entropy->dc_stats[i] = NULL;
 | |
|     entropy->ac_stats[i] = NULL;
 | |
|   }
 | |
| 
 | |
|   /* Initialize index for fixed probability estimation */
 | |
|   entropy->fixed_bin[0] = 113;
 | |
| 
 | |
|   if (cinfo->progressive_mode) {
 | |
|     /* Create progression status table */
 | |
|     int *coef_bit_ptr, ci;
 | |
|     cinfo->coef_bits = (int (*)[DCTSIZE2])
 | |
|       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
| 				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
 | |
|     coef_bit_ptr = & cinfo->coef_bits[0][0];
 | |
|     for (ci = 0; ci < cinfo->num_components; ci++) 
 | |
|       for (i = 0; i < DCTSIZE2; i++)
 | |
| 	*coef_bit_ptr++ = -1;
 | |
|   }
 | |
| }
 |