mirror of
				https://github.com/luanti-org/luanti.git
				synced 2025-10-31 15:35:21 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			478 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			478 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2002-2012 Nikolaus Gebhardt
 | |
| // This file is part of the "Irrlicht Engine".
 | |
| // For conditions of distribution and use, see copyright notice in irrlicht.h
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "irrTypes.h"
 | |
| #include <cmath>
 | |
| #include <cfloat>
 | |
| #include <cstdlib> // for abs() etc.
 | |
| #include <climits> // For INT_MAX / UINT_MAX
 | |
| #include <type_traits>
 | |
| 
 | |
| namespace irr
 | |
| {
 | |
| namespace core
 | |
| {
 | |
| 
 | |
| //! Rounding error constant often used when comparing f32 values.
 | |
| 
 | |
| const f32 ROUNDING_ERROR_f32 = 0.000001f;
 | |
| const f64 ROUNDING_ERROR_f64 = 0.00000001;
 | |
| 
 | |
| #ifdef PI // make sure we don't collide with a define
 | |
| #undef PI
 | |
| #endif
 | |
| //! Constant for PI.
 | |
| const f32 PI = 3.14159265359f;
 | |
| 
 | |
| //! Constant for reciprocal of PI.
 | |
| const f32 RECIPROCAL_PI = 1.0f / PI;
 | |
| 
 | |
| //! Constant for half of PI.
 | |
| const f32 HALF_PI = PI / 2.0f;
 | |
| 
 | |
| #ifdef PI64 // make sure we don't collide with a define
 | |
| #undef PI64
 | |
| #endif
 | |
| //! Constant for 64bit PI.
 | |
| const f64 PI64 = 3.1415926535897932384626433832795028841971693993751;
 | |
| 
 | |
| //! Constant for 64bit reciprocal of PI.
 | |
| const f64 RECIPROCAL_PI64 = 1.0 / PI64;
 | |
| 
 | |
| //! 32bit Constant for converting from degrees to radians
 | |
| const f32 DEGTORAD = PI / 180.0f;
 | |
| 
 | |
| //! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)
 | |
| const f32 RADTODEG = 180.0f / PI;
 | |
| 
 | |
| //! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)
 | |
| const f64 DEGTORAD64 = PI64 / 180.0;
 | |
| 
 | |
| //! 64bit constant for converting from radians to degrees
 | |
| const f64 RADTODEG64 = 180.0 / PI64;
 | |
| 
 | |
| //! Utility function to convert a radian value to degrees
 | |
| /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
 | |
| \param radians The radians value to convert to degrees.
 | |
| */
 | |
| inline f32 radToDeg(f32 radians)
 | |
| {
 | |
| 	return RADTODEG * radians;
 | |
| }
 | |
| 
 | |
| //! Utility function to convert a radian value to degrees
 | |
| /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
 | |
| \param radians The radians value to convert to degrees.
 | |
| */
 | |
| inline f64 radToDeg(f64 radians)
 | |
| {
 | |
| 	return RADTODEG64 * radians;
 | |
| }
 | |
| 
 | |
| //! Utility function to convert a degrees value to radians
 | |
| /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
 | |
| \param degrees The degrees value to convert to radians.
 | |
| */
 | |
| inline f32 degToRad(f32 degrees)
 | |
| {
 | |
| 	return DEGTORAD * degrees;
 | |
| }
 | |
| 
 | |
| //! Utility function to convert a degrees value to radians
 | |
| /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
 | |
| \param degrees The degrees value to convert to radians.
 | |
| */
 | |
| inline f64 degToRad(f64 degrees)
 | |
| {
 | |
| 	return DEGTORAD64 * degrees;
 | |
| }
 | |
| 
 | |
| //! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)
 | |
| template <class T>
 | |
| inline const T &min_(const T &a, const T &b)
 | |
| {
 | |
| 	return a < b ? a : b;
 | |
| }
 | |
| 
 | |
| //! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)
 | |
| template <class T>
 | |
| inline const T &min_(const T &a, const T &b, const T &c)
 | |
| {
 | |
| 	return a < b ? min_(a, c) : min_(b, c);
 | |
| }
 | |
| 
 | |
| //! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)
 | |
| template <class T>
 | |
| inline const T &max_(const T &a, const T &b)
 | |
| {
 | |
| 	return a < b ? b : a;
 | |
| }
 | |
| 
 | |
| //! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)
 | |
| template <class T>
 | |
| inline const T &max_(const T &a, const T &b, const T &c)
 | |
| {
 | |
| 	return a < b ? max_(b, c) : max_(a, c);
 | |
| }
 | |
| 
 | |
| //! returns abs of two values. Own implementation to get rid of STL (VS6 problems)
 | |
| template <class T>
 | |
| inline T abs_(const T &a)
 | |
| {
 | |
| 	return a < (T)0 ? -a : a;
 | |
| }
 | |
| 
 | |
| //! returns linear interpolation of a and b with ratio t
 | |
| //! \return: a if t==0, b if t==1, and the linear interpolation else
 | |
| template <class T>
 | |
| inline T lerp(const T &a, const T &b, const f32 t)
 | |
| {
 | |
| 	return (T)(a * (1.f - t)) + (b * t);
 | |
| }
 | |
| 
 | |
| //! clamps a value between low and high
 | |
| template <class T>
 | |
| inline const T clamp(const T &value, const T &low, const T &high)
 | |
| {
 | |
| 	return min_(max_(value, low), high);
 | |
| }
 | |
| 
 | |
| //! swaps the content of the passed parameters
 | |
| // Note: We use the same trick as boost and use two template arguments to
 | |
| // avoid ambiguity when swapping objects of an Irrlicht type that has not
 | |
| // it's own swap overload. Otherwise we get conflicts with some compilers
 | |
| // in combination with stl.
 | |
| template <class T1, class T2>
 | |
| inline void swap(T1 &a, T2 &b)
 | |
| {
 | |
| 	T1 c(a);
 | |
| 	a = b;
 | |
| 	b = c;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T roundingError();
 | |
| 
 | |
| template <>
 | |
| inline f32 roundingError()
 | |
| {
 | |
| 	return ROUNDING_ERROR_f32;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline f64 roundingError()
 | |
| {
 | |
| 	return ROUNDING_ERROR_f64;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T relativeErrorFactor()
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline f32 relativeErrorFactor()
 | |
| {
 | |
| 	return 4;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline f64 relativeErrorFactor()
 | |
| {
 | |
| 	return 8;
 | |
| }
 | |
| 
 | |
| //! returns if a equals b, for types without rounding errors
 | |
| template <class T, std::enable_if_t<std::is_integral<T>::value, bool> = true>
 | |
| inline bool equals(const T a, const T b)
 | |
| {
 | |
| 	return a == b;
 | |
| }
 | |
| 
 | |
| //! returns if a equals b, taking possible rounding errors into account
 | |
| template <class T, std::enable_if_t<std::is_floating_point<T>::value, bool> = true>
 | |
| inline bool equals(const T a, const T b, const T tolerance = roundingError<T>())
 | |
| {
 | |
| 	return std::abs(a - b) <= tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals b, taking relative error in form of factor
 | |
| //! this particular function does not involve any division.
 | |
| template <class T>
 | |
| inline bool equalsRelative(const T a, const T b, const T factor = relativeErrorFactor<T>())
 | |
| {
 | |
| 	// https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
 | |
| 
 | |
| 	const T maxi = max_(a, b);
 | |
| 	const T mini = min_(a, b);
 | |
| 	const T maxMagnitude = max_(maxi, -mini);
 | |
| 
 | |
| 	return (maxMagnitude * factor + maxi) == (maxMagnitude * factor + mini); // MAD Wise
 | |
| }
 | |
| 
 | |
| union FloatIntUnion32
 | |
| {
 | |
| 	FloatIntUnion32(float f1 = 0.0f) :
 | |
| 			f(f1) {}
 | |
| 	// Portable sign-extraction
 | |
| 	bool sign() const { return (i >> 31) != 0; }
 | |
| 
 | |
| 	irr::s32 i;
 | |
| 	irr::f32 f;
 | |
| };
 | |
| 
 | |
| //! We compare the difference in ULP's (spacing between floating-point numbers, aka ULP=1 means there exists no float between).
 | |
| //\result true when numbers have a ULP <= maxUlpDiff AND have the same sign.
 | |
| inline bool equalsByUlp(f32 a, f32 b, int maxUlpDiff)
 | |
| {
 | |
| 	// Based on the ideas and code from Bruce Dawson on
 | |
| 	// http://www.altdevblogaday.com/2012/02/22/comparing-floating-point-numbers-2012-edition/
 | |
| 	// When floats are interpreted as integers the two nearest possible float numbers differ just
 | |
| 	// by one integer number. Also works the other way round, an integer of 1 interpreted as float
 | |
| 	// is for example the smallest possible float number.
 | |
| 
 | |
| 	const FloatIntUnion32 fa(a);
 | |
| 	const FloatIntUnion32 fb(b);
 | |
| 
 | |
| 	// Different signs, we could maybe get difference to 0, but so close to 0 using epsilons is better.
 | |
| 	if (fa.sign() != fb.sign()) {
 | |
| 		// Check for equality to make sure +0==-0
 | |
| 		if (fa.i == fb.i)
 | |
| 			return true;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Find the difference in ULPs.
 | |
| 	const int ulpsDiff = abs_(fa.i - fb.i);
 | |
| 	if (ulpsDiff <= maxUlpDiff)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| //! returns if a equals zero, taking rounding errors into account
 | |
| inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64)
 | |
| {
 | |
| 	return fabs(a) <= tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals zero, taking rounding errors into account
 | |
| inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
 | |
| {
 | |
| 	return fabsf(a) <= tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals not zero, taking rounding errors into account
 | |
| inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
 | |
| {
 | |
| 	return fabsf(a) > tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals zero, taking rounding errors into account
 | |
| inline bool iszero(const s32 a, const s32 tolerance = 0)
 | |
| {
 | |
| 	return (a & 0x7ffffff) <= tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals zero, taking rounding errors into account
 | |
| inline bool iszero(const u32 a, const u32 tolerance = 0)
 | |
| {
 | |
| 	return a <= tolerance;
 | |
| }
 | |
| 
 | |
| //! returns if a equals zero, taking rounding errors into account
 | |
| inline bool iszero(const s64 a, const s64 tolerance = 0)
 | |
| {
 | |
| 	return abs_(a) <= tolerance;
 | |
| }
 | |
| 
 | |
| inline s32 s32_min(s32 a, s32 b)
 | |
| {
 | |
| 	return min_(a, b);
 | |
| }
 | |
| 
 | |
| inline s32 s32_max(s32 a, s32 b)
 | |
| {
 | |
| 	return max_(a, b);
 | |
| }
 | |
| 
 | |
| inline s32 s32_clamp(s32 value, s32 low, s32 high)
 | |
| {
 | |
| 	return clamp(value, low, high);
 | |
| }
 | |
| 
 | |
| /*
 | |
| 	float IEEE-754 bit representation
 | |
| 
 | |
| 	0      0x00000000
 | |
| 	1.0    0x3f800000
 | |
| 	0.5    0x3f000000
 | |
| 	3      0x40400000
 | |
| 	+inf   0x7f800000
 | |
| 	-inf   0xff800000
 | |
| 	+NaN   0x7fc00000 or 0x7ff00000
 | |
| 	in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
 | |
| */
 | |
| 
 | |
| typedef union
 | |
| {
 | |
| 	u32 u;
 | |
| 	s32 s;
 | |
| 	f32 f;
 | |
| } inttofloat;
 | |
| 
 | |
| #define F32_AS_S32(f) (*((s32 *)&(f)))
 | |
| #define F32_AS_U32(f) (*((u32 *)&(f)))
 | |
| #define F32_AS_U32_POINTER(f) (((u32 *)&(f)))
 | |
| 
 | |
| #define F32_VALUE_0 0x00000000
 | |
| #define F32_VALUE_1 0x3f800000
 | |
| 
 | |
| //! code is taken from IceFPU
 | |
| //! Integer representation of a floating-point value.
 | |
| inline u32 IR(f32 x)
 | |
| {
 | |
| 	inttofloat tmp;
 | |
| 	tmp.f = x;
 | |
| 	return tmp.u;
 | |
| }
 | |
| 
 | |
| //! Floating-point representation of an integer value.
 | |
| inline f32 FR(u32 x)
 | |
| {
 | |
| 	inttofloat tmp;
 | |
| 	tmp.u = x;
 | |
| 	return tmp.f;
 | |
| }
 | |
| inline f32 FR(s32 x)
 | |
| {
 | |
| 	inttofloat tmp;
 | |
| 	tmp.s = x;
 | |
| 	return tmp.f;
 | |
| }
 | |
| 
 | |
| #define F32_LOWER_0(n) ((n) < 0.0f)
 | |
| #define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f)
 | |
| #define F32_GREATER_0(n) ((n) > 0.0f)
 | |
| #define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f)
 | |
| #define F32_EQUAL_1(n) ((n) == 1.0f)
 | |
| #define F32_EQUAL_0(n) ((n) == 0.0f)
 | |
| #define F32_A_GREATER_B(a, b) ((a) > (b))
 | |
| 
 | |
| #ifndef REALINLINE
 | |
| #ifdef _MSC_VER
 | |
| #define REALINLINE __forceinline
 | |
| #else
 | |
| #define REALINLINE inline
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| // NOTE: This is not as exact as the c99/c++11 round function, especially at high numbers starting with 8388609
 | |
| //       (only low number which seems to go wrong is 0.49999997 which is rounded to 1)
 | |
| //      Also negative 0.5 is rounded up not down unlike with the standard function (p.E. input -0.5 will be 0 and not -1)
 | |
| inline f32 round_(f32 x)
 | |
| {
 | |
| 	return floorf(x + 0.5f);
 | |
| }
 | |
| 
 | |
| // calculate: sqrt ( x )
 | |
| REALINLINE f32 squareroot(const f32 f)
 | |
| {
 | |
| 	return sqrtf(f);
 | |
| }
 | |
| 
 | |
| // calculate: sqrt ( x )
 | |
| REALINLINE f64 squareroot(const f64 f)
 | |
| {
 | |
| 	return sqrt(f);
 | |
| }
 | |
| 
 | |
| // calculate: sqrt ( x )
 | |
| REALINLINE s32 squareroot(const s32 f)
 | |
| {
 | |
| 	return static_cast<s32>(squareroot(static_cast<f32>(f)));
 | |
| }
 | |
| 
 | |
| // calculate: sqrt ( x )
 | |
| REALINLINE s64 squareroot(const s64 f)
 | |
| {
 | |
| 	return static_cast<s64>(squareroot(static_cast<f64>(f)));
 | |
| }
 | |
| 
 | |
| // calculate: 1 / sqrt ( x )
 | |
| REALINLINE f64 reciprocal_squareroot(const f64 x)
 | |
| {
 | |
| 	return 1.0 / sqrt(x);
 | |
| }
 | |
| 
 | |
| // calculate: 1 / sqrtf ( x )
 | |
| REALINLINE f32 reciprocal_squareroot(const f32 f)
 | |
| {
 | |
| 	return 1.f / sqrtf(f);
 | |
| }
 | |
| 
 | |
| // calculate: 1 / sqrtf( x )
 | |
| REALINLINE s32 reciprocal_squareroot(const s32 x)
 | |
| {
 | |
| 	return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x)));
 | |
| }
 | |
| 
 | |
| // calculate: 1 / x
 | |
| REALINLINE f32 reciprocal(const f32 f)
 | |
| {
 | |
| 	return 1.f / f;
 | |
| }
 | |
| 
 | |
| // calculate: 1 / x
 | |
| REALINLINE f64 reciprocal(const f64 f)
 | |
| {
 | |
| 	return 1.0 / f;
 | |
| }
 | |
| 
 | |
| // calculate: 1 / x, low precision allowed
 | |
| REALINLINE f32 reciprocal_approxim(const f32 f)
 | |
| {
 | |
| 	return 1.f / f;
 | |
| }
 | |
| 
 | |
| REALINLINE s32 floor32(f32 x)
 | |
| {
 | |
| 	return (s32)floorf(x);
 | |
| }
 | |
| 
 | |
| REALINLINE s32 ceil32(f32 x)
 | |
| {
 | |
| 	return (s32)ceilf(x);
 | |
| }
 | |
| 
 | |
| // NOTE: Please check round_ documentation about some inaccuracies in this compared to standard library round function.
 | |
| REALINLINE s32 round32(f32 x)
 | |
| {
 | |
| 	return (s32)round_(x);
 | |
| }
 | |
| 
 | |
| inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
 | |
| {
 | |
| 	return a > b ? (a > c ? a : c) : (b > c ? b : c);
 | |
| }
 | |
| 
 | |
| inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
 | |
| {
 | |
| 	return a < b ? (a < c ? a : c) : (b < c ? b : c);
 | |
| }
 | |
| 
 | |
| inline f32 fract(f32 x)
 | |
| {
 | |
| 	return x - floorf(x);
 | |
| }
 | |
| 
 | |
| } // end namespace core
 | |
| } // end namespace irr
 | |
| 
 | |
| using irr::core::FR;
 | |
| using irr::core::IR;
 |