mirror of
				https://github.com/luanti-org/luanti.git
				synced 2025-10-31 23:45:22 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			514 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2002-2012 Nikolaus Gebhardt
 | |
| // This file is part of the "Irrlicht Engine".
 | |
| // For conditions of distribution and use, see copyright notice in irrlicht.h
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "irrMath.h"
 | |
| #include "dimension2d.h"
 | |
| 
 | |
| #include <functional>
 | |
| #include <array>
 | |
| 
 | |
| namespace irr
 | |
| {
 | |
| namespace core
 | |
| {
 | |
| 
 | |
| //! 2d vector template class with lots of operators and methods.
 | |
| /** As of Irrlicht 1.6, this class supersedes position2d, which should
 | |
| 	be considered deprecated. */
 | |
| template <class T>
 | |
| class vector2d
 | |
| {
 | |
| public:
 | |
| 	//! Default constructor (null vector)
 | |
| 	constexpr vector2d() :
 | |
| 			X(0), Y(0) {}
 | |
| 	//! Constructor with two different values
 | |
| 	constexpr vector2d(T nx, T ny) :
 | |
| 			X(nx), Y(ny) {}
 | |
| 	//! Constructor with the same value for both members
 | |
| 	explicit constexpr vector2d(T n) :
 | |
| 			X(n), Y(n) {}
 | |
| 
 | |
| 	constexpr vector2d(const dimension2d<T> &other) :
 | |
| 			X(other.Width), Y(other.Height) {}
 | |
| 
 | |
| 	explicit constexpr vector2d(const std::array<T, 2> &arr) :
 | |
| 			X(arr[0]), Y(arr[1]) {}
 | |
| 
 | |
| 	template <class U>
 | |
| 	constexpr static vector2d<T> from(const vector2d<U> &other)
 | |
| 	{
 | |
| 		return {static_cast<T>(other.X), static_cast<T>(other.Y)};
 | |
| 	}
 | |
| 
 | |
| 	// operators
 | |
| 
 | |
| 	vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
 | |
| 
 | |
| 	vector2d<T> &operator=(const dimension2d<T> &other)
 | |
| 	{
 | |
| 		X = other.Width;
 | |
| 		Y = other.Height;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	vector2d<T> operator+(const vector2d<T> &other) const { return vector2d<T>(X + other.X, Y + other.Y); }
 | |
| 	vector2d<T> operator+(const dimension2d<T> &other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
 | |
| 	vector2d<T> &operator+=(const vector2d<T> &other)
 | |
| 	{
 | |
| 		X += other.X;
 | |
| 		Y += other.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
 | |
| 	vector2d<T> &operator+=(const T v)
 | |
| 	{
 | |
| 		X += v;
 | |
| 		Y += v;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> &operator+=(const dimension2d<T> &other)
 | |
| 	{
 | |
| 		X += other.Width;
 | |
| 		Y += other.Height;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	vector2d<T> operator-(const vector2d<T> &other) const { return vector2d<T>(X - other.X, Y - other.Y); }
 | |
| 	vector2d<T> operator-(const dimension2d<T> &other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
 | |
| 	vector2d<T> &operator-=(const vector2d<T> &other)
 | |
| 	{
 | |
| 		X -= other.X;
 | |
| 		Y -= other.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
 | |
| 	vector2d<T> &operator-=(const T v)
 | |
| 	{
 | |
| 		X -= v;
 | |
| 		Y -= v;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> &operator-=(const dimension2d<T> &other)
 | |
| 	{
 | |
| 		X -= other.Width;
 | |
| 		Y -= other.Height;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	vector2d<T> operator*(const vector2d<T> &other) const { return vector2d<T>(X * other.X, Y * other.Y); }
 | |
| 	vector2d<T> &operator*=(const vector2d<T> &other)
 | |
| 	{
 | |
| 		X *= other.X;
 | |
| 		Y *= other.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
 | |
| 	vector2d<T> &operator*=(const T v)
 | |
| 	{
 | |
| 		X *= v;
 | |
| 		Y *= v;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	vector2d<T> operator/(const vector2d<T> &other) const { return vector2d<T>(X / other.X, Y / other.Y); }
 | |
| 	vector2d<T> &operator/=(const vector2d<T> &other)
 | |
| 	{
 | |
| 		X /= other.X;
 | |
| 		Y /= other.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
 | |
| 	vector2d<T> &operator/=(const T v)
 | |
| 	{
 | |
| 		X /= v;
 | |
| 		Y /= v;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	T &operator[](u32 index)
 | |
| 	{
 | |
| 		_IRR_DEBUG_BREAK_IF(index > 1) // access violation
 | |
| 
 | |
| 		return *(&X + index);
 | |
| 	}
 | |
| 
 | |
| 	const T &operator[](u32 index) const
 | |
| 	{
 | |
| 		_IRR_DEBUG_BREAK_IF(index > 1) // access violation
 | |
| 
 | |
| 		return *(&X + index);
 | |
| 	}
 | |
| 
 | |
| 	//! sort in order X, Y.
 | |
| 	constexpr bool operator<=(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return !(*this > other);
 | |
| 	}
 | |
| 
 | |
| 	//! sort in order X, Y.
 | |
| 	constexpr bool operator>=(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return !(*this < other);
 | |
| 	}
 | |
| 
 | |
| 	//! sort in order X, Y.
 | |
| 	constexpr bool operator<(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return X < other.X || (X == other.X && Y < other.Y);
 | |
| 	}
 | |
| 
 | |
| 	//! sort in order X, Y.
 | |
| 	constexpr bool operator>(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return X > other.X || (X == other.X && Y > other.Y);
 | |
| 	}
 | |
| 
 | |
| 	constexpr bool operator==(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return X == other.X && Y == other.Y;
 | |
| 	}
 | |
| 
 | |
| 	constexpr bool operator!=(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return !(*this == other);
 | |
| 	}
 | |
| 
 | |
| 	// functions
 | |
| 
 | |
| 	//! Checks if this vector equals the other one.
 | |
| 	/** Takes floating point rounding errors into account.
 | |
| 	\param other Vector to compare with.
 | |
| 	\return True if the two vector are (almost) equal, else false. */
 | |
| 	bool equals(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return core::equals(X, other.X) && core::equals(Y, other.Y);
 | |
| 	}
 | |
| 
 | |
| 	vector2d<T> &set(T nx, T ny)
 | |
| 	{
 | |
| 		X = nx;
 | |
| 		Y = ny;
 | |
| 		return *this;
 | |
| 	}
 | |
| 	vector2d<T> &set(const vector2d<T> &p)
 | |
| 	{
 | |
| 		X = p.X;
 | |
| 		Y = p.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	//! Gets the length of the vector.
 | |
| 	/** \return The length of the vector. */
 | |
| 	T getLength() const { return core::squareroot(X * X + Y * Y); }
 | |
| 
 | |
| 	//! Get the squared length of this vector
 | |
| 	/** This is useful because it is much faster than getLength().
 | |
| 	\return The squared length of the vector. */
 | |
| 	T getLengthSQ() const { return X * X + Y * Y; }
 | |
| 
 | |
| 	//! Get the dot product of this vector with another.
 | |
| 	/** \param other Other vector to take dot product with.
 | |
| 	\return The dot product of the two vectors. */
 | |
| 	T dotProduct(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return X * other.X + Y * other.Y;
 | |
| 	}
 | |
| 
 | |
| 	//! check if this vector is parallel to another vector
 | |
| 	bool nearlyParallel(const vector2d<T> &other, const T factor = relativeErrorFactor<T>()) const
 | |
| 	{
 | |
| 		// https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
 | |
| 		// if a || b then  a.x/a.y = b.x/b.y (similar triangles)
 | |
| 		// if a || b then either both x are 0 or both y are 0.
 | |
| 
 | |
| 		return equalsRelative(X * other.Y, other.X * Y, factor) && // a bit counterintuitive, but makes sure  that
 | |
| 																   // only y or only x are 0, and at same time deals
 | |
| 																   // with the case where one vector is zero vector.
 | |
| 			   (X * other.X + Y * other.Y) != 0;
 | |
| 	}
 | |
| 
 | |
| 	//! Gets distance from another point.
 | |
| 	/** Here, the vector is interpreted as a point in 2-dimensional space.
 | |
| 	\param other Other vector to measure from.
 | |
| 	\return Distance from other point. */
 | |
| 	T getDistanceFrom(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return vector2d<T>(X - other.X, Y - other.Y).getLength();
 | |
| 	}
 | |
| 
 | |
| 	//! Returns squared distance from another point.
 | |
| 	/** Here, the vector is interpreted as a point in 2-dimensional space.
 | |
| 	\param other Other vector to measure from.
 | |
| 	\return Squared distance from other point. */
 | |
| 	T getDistanceFromSQ(const vector2d<T> &other) const
 | |
| 	{
 | |
| 		return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
 | |
| 	}
 | |
| 
 | |
| 	//! rotates the point anticlockwise around a center by an amount of degrees.
 | |
| 	/** \param degrees Amount of degrees to rotate by, anticlockwise.
 | |
| 	\param center Rotation center.
 | |
| 	\return This vector after transformation. */
 | |
| 	vector2d<T> &rotateBy(f64 degrees, const vector2d<T> ¢er = vector2d<T>())
 | |
| 	{
 | |
| 		degrees *= DEGTORAD64;
 | |
| 		const f64 cs = cos(degrees);
 | |
| 		const f64 sn = sin(degrees);
 | |
| 
 | |
| 		X -= center.X;
 | |
| 		Y -= center.Y;
 | |
| 
 | |
| 		set((T)(X * cs - Y * sn), (T)(X * sn + Y * cs));
 | |
| 
 | |
| 		X += center.X;
 | |
| 		Y += center.Y;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	//! Normalize the vector.
 | |
| 	/** The null vector is left untouched.
 | |
| 	\return Reference to this vector, after normalization. */
 | |
| 	vector2d<T> &normalize()
 | |
| 	{
 | |
| 		f32 length = (f32)(X * X + Y * Y);
 | |
| 		if (length == 0)
 | |
| 			return *this;
 | |
| 		length = core::reciprocal_squareroot(length);
 | |
| 		X = (T)(X * length);
 | |
| 		Y = (T)(Y * length);
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	//! Calculates the angle of this vector in degrees in the trigonometric sense.
 | |
| 	/** 0 is to the right (3 o'clock), values increase counter-clockwise.
 | |
| 	This method has been suggested by Pr3t3nd3r.
 | |
| 	\return Returns a value between 0 and 360. */
 | |
| 	f64 getAngleTrig() const
 | |
| 	{
 | |
| 		if (Y == 0)
 | |
| 			return X < 0 ? 180 : 0;
 | |
| 		else if (X == 0)
 | |
| 			return Y < 0 ? 270 : 90;
 | |
| 
 | |
| 		if (Y > 0)
 | |
| 			if (X > 0)
 | |
| 				return atan((irr::f64)Y / (irr::f64)X) * RADTODEG64;
 | |
| 			else
 | |
| 				return 180.0 - atan((irr::f64)Y / -(irr::f64)X) * RADTODEG64;
 | |
| 		else if (X > 0)
 | |
| 			return 360.0 - atan(-(irr::f64)Y / (irr::f64)X) * RADTODEG64;
 | |
| 		else
 | |
| 			return 180.0 + atan(-(irr::f64)Y / -(irr::f64)X) * RADTODEG64;
 | |
| 	}
 | |
| 
 | |
| 	//! Calculates the angle of this vector in degrees in the counter trigonometric sense.
 | |
| 	/** 0 is to the right (3 o'clock), values increase clockwise.
 | |
| 	\return Returns a value between 0 and 360. */
 | |
| 	inline f64 getAngle() const
 | |
| 	{
 | |
| 		if (Y == 0) // corrected thanks to a suggestion by Jox
 | |
| 			return X < 0 ? 180 : 0;
 | |
| 		else if (X == 0)
 | |
| 			return Y < 0 ? 90 : 270;
 | |
| 
 | |
| 		// don't use getLength here to avoid precision loss with s32 vectors
 | |
| 		// avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
 | |
| 		const f64 tmp = core::clamp(Y / sqrt((f64)(X * X + Y * Y)), -1.0, 1.0);
 | |
| 		const f64 angle = atan(core::squareroot(1 - tmp * tmp) / tmp) * RADTODEG64;
 | |
| 
 | |
| 		if (X > 0 && Y > 0)
 | |
| 			return angle + 270;
 | |
| 		else if (X > 0 && Y < 0)
 | |
| 			return angle + 90;
 | |
| 		else if (X < 0 && Y < 0)
 | |
| 			return 90 - angle;
 | |
| 		else if (X < 0 && Y > 0)
 | |
| 			return 270 - angle;
 | |
| 
 | |
| 		return angle;
 | |
| 	}
 | |
| 
 | |
| 	//! Calculates the angle between this vector and another one in degree.
 | |
| 	/** \param b Other vector to test with.
 | |
| 	\return Returns a value between 0 and 90. */
 | |
| 	inline f64 getAngleWith(const vector2d<T> &b) const
 | |
| 	{
 | |
| 		f64 tmp = (f64)(X * b.X + Y * b.Y);
 | |
| 
 | |
| 		if (tmp == 0.0)
 | |
| 			return 90.0;
 | |
| 
 | |
| 		tmp = tmp / core::squareroot((f64)((X * X + Y * Y) * (b.X * b.X + b.Y * b.Y)));
 | |
| 		if (tmp < 0.0)
 | |
| 			tmp = -tmp;
 | |
| 		if (tmp > 1.0) //   avoid floating-point trouble
 | |
| 			tmp = 1.0;
 | |
| 
 | |
| 		return atan(sqrt(1 - tmp * tmp) / tmp) * RADTODEG64;
 | |
| 	}
 | |
| 
 | |
| 	//! Returns if this vector interpreted as a point is on a line between two other points.
 | |
| 	/** It is assumed that the point is on the line.
 | |
| 	\param begin Beginning vector to compare between.
 | |
| 	\param end Ending vector to compare between.
 | |
| 	\return True if this vector is between begin and end, false if not. */
 | |
| 	bool isBetweenPoints(const vector2d<T> &begin, const vector2d<T> &end) const
 | |
| 	{
 | |
| 		//             .  end
 | |
| 		//            /
 | |
| 		//           /
 | |
| 		//          /
 | |
| 		//         . begin
 | |
| 		//        -
 | |
| 		//       -
 | |
| 		//      . this point (am I inside or outside)?
 | |
| 		//
 | |
| 		if (begin.X != end.X) {
 | |
| 			return ((begin.X <= X && X <= end.X) ||
 | |
| 					(begin.X >= X && X >= end.X));
 | |
| 		} else {
 | |
| 			return ((begin.Y <= Y && Y <= end.Y) ||
 | |
| 					(begin.Y >= Y && Y >= end.Y));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//! Creates an interpolated vector between this vector and another vector.
 | |
| 	/** \param other The other vector to interpolate with.
 | |
| 	\param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
 | |
| 	Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
 | |
| 	\return An interpolated vector.  This vector is not modified. */
 | |
| 	vector2d<T> getInterpolated(const vector2d<T> &other, f64 d) const
 | |
| 	{
 | |
| 		const f64 inv = 1.0f - d;
 | |
| 		return vector2d<T>((T)(other.X * inv + X * d), (T)(other.Y * inv + Y * d));
 | |
| 	}
 | |
| 
 | |
| 	//! Creates a quadratically interpolated vector between this and two other vectors.
 | |
| 	/** \param v2 Second vector to interpolate with.
 | |
| 	\param v3 Third vector to interpolate with (maximum at 1.0f)
 | |
| 	\param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
 | |
| 	Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
 | |
| 	\return An interpolated vector. This vector is not modified. */
 | |
| 	vector2d<T> getInterpolated_quadratic(const vector2d<T> &v2, const vector2d<T> &v3, f64 d) const
 | |
| 	{
 | |
| 		// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
 | |
| 		const f64 inv = 1.0f - d;
 | |
| 		const f64 mul0 = inv * inv;
 | |
| 		const f64 mul1 = 2.0f * d * inv;
 | |
| 		const f64 mul2 = d * d;
 | |
| 
 | |
| 		return vector2d<T>((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
 | |
| 				(T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
 | |
| 	}
 | |
| 
 | |
| 	/*! Test if this point and another 2 points taken as triplet
 | |
| 		are colinear, clockwise, anticlockwise. This can be used also
 | |
| 		to check winding order in triangles for 2D meshes.
 | |
| 		\return 0 if points are colinear, 1 if clockwise, 2 if anticlockwise
 | |
| 	*/
 | |
| 	s32 checkOrientation(const vector2d<T> &b, const vector2d<T> &c) const
 | |
| 	{
 | |
| 		// Example of clockwise points
 | |
| 		//
 | |
| 		//   ^ Y
 | |
| 		//   |       A
 | |
| 		//   |      . .
 | |
| 		//   |     .   .
 | |
| 		//   |    C.....B
 | |
| 		//   +---------------> X
 | |
| 
 | |
| 		T val = (b.Y - Y) * (c.X - b.X) -
 | |
| 				(b.X - X) * (c.Y - b.Y);
 | |
| 
 | |
| 		if (val == 0)
 | |
| 			return 0; // colinear
 | |
| 
 | |
| 		return (val > 0) ? 1 : 2; // clock or counterclock wise
 | |
| 	}
 | |
| 
 | |
| 	/*! Returns true if points (a,b,c) are clockwise on the X,Y plane*/
 | |
| 	inline bool areClockwise(const vector2d<T> &b, const vector2d<T> &c) const
 | |
| 	{
 | |
| 		T val = (b.Y - Y) * (c.X - b.X) -
 | |
| 				(b.X - X) * (c.Y - b.Y);
 | |
| 
 | |
| 		return val > 0;
 | |
| 	}
 | |
| 
 | |
| 	/*! Returns true if points (a,b,c) are counterclockwise on the X,Y plane*/
 | |
| 	inline bool areCounterClockwise(const vector2d<T> &b, const vector2d<T> &c) const
 | |
| 	{
 | |
| 		T val = (b.Y - Y) * (c.X - b.X) -
 | |
| 				(b.X - X) * (c.Y - b.Y);
 | |
| 
 | |
| 		return val < 0;
 | |
| 	}
 | |
| 
 | |
| 	//! Sets this vector to the linearly interpolated vector between a and b.
 | |
| 	/** \param a first vector to interpolate with, maximum at 1.0f
 | |
| 	\param b second vector to interpolate with, maximum at 0.0f
 | |
| 	\param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
 | |
| 	Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
 | |
| 	*/
 | |
| 	vector2d<T> &interpolate(const vector2d<T> &a, const vector2d<T> &b, f64 d)
 | |
| 	{
 | |
| 		X = (T)((f64)b.X + ((a.X - b.X) * d));
 | |
| 		Y = (T)((f64)b.Y + ((a.Y - b.Y) * d));
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	//! X coordinate of vector.
 | |
| 	T X;
 | |
| 
 | |
| 	//! Y coordinate of vector.
 | |
| 	T Y;
 | |
| };
 | |
| 
 | |
| //! Typedef for f32 2d vector.
 | |
| typedef vector2d<f32> vector2df;
 | |
| 
 | |
| //! Typedef for integer 2d vector.
 | |
| typedef vector2d<s32> vector2di;
 | |
| 
 | |
| template <class S, class T>
 | |
| vector2d<T> operator*(const S scalar, const vector2d<T> &vector)
 | |
| {
 | |
| 	return vector * scalar;
 | |
| }
 | |
| 
 | |
| // These methods are declared in dimension2d, but need definitions of vector2d
 | |
| template <class T>
 | |
| dimension2d<T>::dimension2d(const vector2d<T> &other) :
 | |
| 		Width(other.X), Height(other.Y)
 | |
| {
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool dimension2d<T>::operator==(const vector2d<T> &other) const
 | |
| {
 | |
| 	return Width == other.X && Height == other.Y;
 | |
| }
 | |
| 
 | |
| } // end namespace core
 | |
| } // end namespace irr
 | |
| 
 | |
| namespace std
 | |
| {
 | |
| 
 | |
| template <class T>
 | |
| struct hash<irr::core::vector2d<T>>
 | |
| {
 | |
| 	size_t operator()(const irr::core::vector2d<T> &vec) const
 | |
| 	{
 | |
| 		size_t h1 = hash<T>()(vec.X);
 | |
| 		size_t h2 = hash<T>()(vec.Y);
 | |
| 		return (h1 << (4 * sizeof(h1)) | h1 >> (4 * sizeof(h1))) ^ h2;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| }
 |