mirror of
				https://github.com/luanti-org/luanti.git
				synced 2025-10-31 15:35:21 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			243 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Lua
		
	
	
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Lua
		
	
	
	
	
	
| 
 | |
| vector = {}
 | |
| 
 | |
| function vector.new(a, b, c)
 | |
| 	if type(a) == "table" then
 | |
| 		assert(a.x and a.y and a.z, "Invalid vector passed to vector.new()")
 | |
| 		return {x=a.x, y=a.y, z=a.z}
 | |
| 	elseif a then
 | |
| 		assert(b and c, "Invalid arguments for vector.new()")
 | |
| 		return {x=a, y=b, z=c}
 | |
| 	end
 | |
| 	return {x=0, y=0, z=0}
 | |
| end
 | |
| 
 | |
| function vector.equals(a, b)
 | |
| 	return a.x == b.x and
 | |
| 	       a.y == b.y and
 | |
| 	       a.z == b.z
 | |
| end
 | |
| 
 | |
| function vector.length(v)
 | |
| 	return math.hypot(v.x, math.hypot(v.y, v.z))
 | |
| end
 | |
| 
 | |
| function vector.normalize(v)
 | |
| 	local len = vector.length(v)
 | |
| 	if len == 0 then
 | |
| 		return {x=0, y=0, z=0}
 | |
| 	else
 | |
| 		return vector.divide(v, len)
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.floor(v)
 | |
| 	return {
 | |
| 		x = math.floor(v.x),
 | |
| 		y = math.floor(v.y),
 | |
| 		z = math.floor(v.z)
 | |
| 	}
 | |
| end
 | |
| 
 | |
| function vector.round(v)
 | |
| 	return {
 | |
| 		x = math.floor(v.x + 0.5),
 | |
| 		y = math.floor(v.y + 0.5),
 | |
| 		z = math.floor(v.z + 0.5)
 | |
| 	}
 | |
| end
 | |
| 
 | |
| function vector.apply(v, func)
 | |
| 	return {
 | |
| 		x = func(v.x),
 | |
| 		y = func(v.y),
 | |
| 		z = func(v.z)
 | |
| 	}
 | |
| end
 | |
| 
 | |
| function vector.distance(a, b)
 | |
| 	local x = a.x - b.x
 | |
| 	local y = a.y - b.y
 | |
| 	local z = a.z - b.z
 | |
| 	return math.hypot(x, math.hypot(y, z))
 | |
| end
 | |
| 
 | |
| function vector.direction(pos1, pos2)
 | |
| 	return vector.normalize({
 | |
| 		x = pos2.x - pos1.x,
 | |
| 		y = pos2.y - pos1.y,
 | |
| 		z = pos2.z - pos1.z
 | |
| 	})
 | |
| end
 | |
| 
 | |
| function vector.angle(a, b)
 | |
| 	local dotp = vector.dot(a, b)
 | |
| 	local cp = vector.cross(a, b)
 | |
| 	local crossplen = vector.length(cp)
 | |
| 	return math.atan2(crossplen, dotp)
 | |
| end
 | |
| 
 | |
| function vector.dot(a, b)
 | |
| 	return a.x * b.x + a.y * b.y + a.z * b.z
 | |
| end
 | |
| 
 | |
| function vector.cross(a, b)
 | |
| 	return {
 | |
| 		x = a.y * b.z - a.z * b.y,
 | |
| 		y = a.z * b.x - a.x * b.z,
 | |
| 		z = a.x * b.y - a.y * b.x
 | |
| 	}
 | |
| end
 | |
| 
 | |
| function vector.add(a, b)
 | |
| 	if type(b) == "table" then
 | |
| 		return {x = a.x + b.x,
 | |
| 			y = a.y + b.y,
 | |
| 			z = a.z + b.z}
 | |
| 	else
 | |
| 		return {x = a.x + b,
 | |
| 			y = a.y + b,
 | |
| 			z = a.z + b}
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.subtract(a, b)
 | |
| 	if type(b) == "table" then
 | |
| 		return {x = a.x - b.x,
 | |
| 			y = a.y - b.y,
 | |
| 			z = a.z - b.z}
 | |
| 	else
 | |
| 		return {x = a.x - b,
 | |
| 			y = a.y - b,
 | |
| 			z = a.z - b}
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.multiply(a, b)
 | |
| 	if type(b) == "table" then
 | |
| 		return {x = a.x * b.x,
 | |
| 			y = a.y * b.y,
 | |
| 			z = a.z * b.z}
 | |
| 	else
 | |
| 		return {x = a.x * b,
 | |
| 			y = a.y * b,
 | |
| 			z = a.z * b}
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.divide(a, b)
 | |
| 	if type(b) == "table" then
 | |
| 		return {x = a.x / b.x,
 | |
| 			y = a.y / b.y,
 | |
| 			z = a.z / b.z}
 | |
| 	else
 | |
| 		return {x = a.x / b,
 | |
| 			y = a.y / b,
 | |
| 			z = a.z / b}
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.offset(v, x, y, z)
 | |
| 	return {x = v.x + x,
 | |
| 		y = v.y + y,
 | |
| 		z = v.z + z}
 | |
| end
 | |
| 
 | |
| function vector.sort(a, b)
 | |
| 	return {x = math.min(a.x, b.x), y = math.min(a.y, b.y), z = math.min(a.z, b.z)},
 | |
| 		{x = math.max(a.x, b.x), y = math.max(a.y, b.y), z = math.max(a.z, b.z)}
 | |
| end
 | |
| 
 | |
| local function sin(x)
 | |
| 	if x % math.pi == 0 then
 | |
| 		return 0
 | |
| 	else
 | |
| 		return math.sin(x)
 | |
| 	end
 | |
| end
 | |
| 
 | |
| local function cos(x)
 | |
| 	if x % math.pi == math.pi / 2 then
 | |
| 		return 0
 | |
| 	else
 | |
| 		return math.cos(x)
 | |
| 	end
 | |
| end
 | |
| 
 | |
| function vector.rotate_around_axis(v, axis, angle)
 | |
| 	local cosangle = cos(angle)
 | |
| 	local sinangle = sin(angle)
 | |
| 	axis = vector.normalize(axis)
 | |
| 	-- https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
 | |
| 	local dot_axis = vector.multiply(axis, vector.dot(axis, v))
 | |
| 	local cross = vector.cross(v, axis)
 | |
| 	return vector.new(
 | |
| 		cross.x * sinangle + (v.x - dot_axis.x) * cosangle + dot_axis.x,
 | |
| 		cross.y * sinangle + (v.y - dot_axis.y) * cosangle + dot_axis.y,
 | |
| 		cross.z * sinangle + (v.z - dot_axis.z) * cosangle + dot_axis.z
 | |
| 	)
 | |
| end
 | |
| 
 | |
| function vector.rotate(v, rot)
 | |
| 	local sinpitch = sin(-rot.x)
 | |
| 	local sinyaw = sin(-rot.y)
 | |
| 	local sinroll = sin(-rot.z)
 | |
| 	local cospitch = cos(rot.x)
 | |
| 	local cosyaw = cos(rot.y)
 | |
| 	local cosroll = math.cos(rot.z)
 | |
| 	-- Rotation matrix that applies yaw, pitch and roll
 | |
| 	local matrix = {
 | |
| 		{
 | |
| 			sinyaw * sinpitch * sinroll + cosyaw * cosroll,
 | |
| 			sinyaw * sinpitch * cosroll - cosyaw * sinroll,
 | |
| 			sinyaw * cospitch,
 | |
| 		},
 | |
| 		{
 | |
| 			cospitch * sinroll,
 | |
| 			cospitch * cosroll,
 | |
| 			-sinpitch,
 | |
| 		},
 | |
| 		{
 | |
| 			cosyaw * sinpitch * sinroll - sinyaw * cosroll,
 | |
| 			cosyaw * sinpitch * cosroll + sinyaw * sinroll,
 | |
| 			cosyaw * cospitch,
 | |
| 		},
 | |
| 	}
 | |
| 	-- Compute matrix multiplication: `matrix` * `v`
 | |
| 	return vector.new(
 | |
| 		matrix[1][1] * v.x + matrix[1][2] * v.y + matrix[1][3] * v.z,
 | |
| 		matrix[2][1] * v.x + matrix[2][2] * v.y + matrix[2][3] * v.z,
 | |
| 		matrix[3][1] * v.x + matrix[3][2] * v.y + matrix[3][3] * v.z
 | |
| 	)
 | |
| end
 | |
| 
 | |
| function vector.dir_to_rotation(forward, up)
 | |
| 	forward = vector.normalize(forward)
 | |
| 	local rot = {x = math.asin(forward.y), y = -math.atan2(forward.x, forward.z), z = 0}
 | |
| 	if not up then
 | |
| 		return rot
 | |
| 	end
 | |
| 	assert(vector.dot(forward, up) < 0.000001,
 | |
| 			"Invalid vectors passed to vector.dir_to_rotation().")
 | |
| 	up = vector.normalize(up)
 | |
| 	-- Calculate vector pointing up with roll = 0, just based on forward vector.
 | |
| 	local forwup = vector.rotate({x = 0, y = 1, z = 0}, rot)
 | |
| 	-- 'forwup' and 'up' are now in a plane with 'forward' as normal.
 | |
| 	-- The angle between them is the absolute of the roll value we're looking for.
 | |
| 	rot.z = vector.angle(forwup, up)
 | |
| 
 | |
| 	-- Since vector.angle never returns a negative value or a value greater
 | |
| 	-- than math.pi, rot.z has to be inverted sometimes.
 | |
| 	-- To determine wether this is the case, we rotate the up vector back around
 | |
| 	-- the forward vector and check if it worked out.
 | |
| 	local back = vector.rotate_around_axis(up, forward, -rot.z)
 | |
| 
 | |
| 	-- We don't use vector.equals for this because of floating point imprecision.
 | |
| 	if (back.x - forwup.x) * (back.x - forwup.x) +
 | |
| 			(back.y - forwup.y) * (back.y - forwup.y) +
 | |
| 			(back.z - forwup.z) * (back.z - forwup.z) > 0.0000001 then
 | |
| 		rot.z = -rot.z
 | |
| 	end
 | |
| 	return rot
 | |
| end
 |