mirror of
				https://github.com/luanti-org/luanti.git
				synced 2025-10-28 22:25:20 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			381 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (C) 2002-2012 Nikolaus Gebhardt
 | |
| // This file is part of the "Irrlicht Engine".
 | |
| // For conditions of distribution and use, see copyright notice in irrlicht.h
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "irrTypes.h"
 | |
| #include "vector2d.h"
 | |
| 
 | |
| namespace irr
 | |
| {
 | |
| namespace core
 | |
| {
 | |
| 
 | |
| //! 2D line between two points with intersection methods.
 | |
| template <class T>
 | |
| class line2d
 | |
| {
 | |
| public:
 | |
| 	//! Default constructor for line going from (0,0) to (1,1).
 | |
| 	constexpr line2d() :
 | |
| 			start(0, 0), end(1, 1) {}
 | |
| 	//! Constructor for line between the two points.
 | |
| 	constexpr line2d(T xa, T ya, T xb, T yb) :
 | |
| 			start(xa, ya), end(xb, yb) {}
 | |
| 	//! Constructor for line between the two points given as vectors.
 | |
| 	constexpr line2d(const vector2d<T> &start, const vector2d<T> &end) :
 | |
| 			start(start), end(end) {}
 | |
| 
 | |
| 	// operators
 | |
| 
 | |
| 	line2d<T> operator+(const vector2d<T> &point) const { return line2d<T>(start + point, end + point); }
 | |
| 	line2d<T> &operator+=(const vector2d<T> &point)
 | |
| 	{
 | |
| 		start += point;
 | |
| 		end += point;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	line2d<T> operator-(const vector2d<T> &point) const { return line2d<T>(start - point, end - point); }
 | |
| 	line2d<T> &operator-=(const vector2d<T> &point)
 | |
| 	{
 | |
| 		start -= point;
 | |
| 		end -= point;
 | |
| 		return *this;
 | |
| 	}
 | |
| 
 | |
| 	constexpr bool operator==(const line2d<T> &other) const
 | |
| 	{
 | |
| 		return (start == other.start && end == other.end) || (end == other.start && start == other.end);
 | |
| 	}
 | |
| 	constexpr bool operator!=(const line2d<T> &other) const
 | |
| 	{
 | |
| 		return !(start == other.start && end == other.end) || (end == other.start && start == other.end);
 | |
| 	}
 | |
| 
 | |
| 	// functions
 | |
| 	//! Set this line to new line going through the two points.
 | |
| 	void setLine(const T &xa, const T &ya, const T &xb, const T &yb)
 | |
| 	{
 | |
| 		start.set(xa, ya);
 | |
| 		end.set(xb, yb);
 | |
| 	}
 | |
| 	//! Set this line to new line going through the two points.
 | |
| 	void setLine(const vector2d<T> &nstart, const vector2d<T> &nend)
 | |
| 	{
 | |
| 		start.set(nstart);
 | |
| 		end.set(nend);
 | |
| 	}
 | |
| 	//! Set this line to new line given as parameter.
 | |
| 	void setLine(const line2d<T> &line)
 | |
| 	{
 | |
| 		start.set(line.start);
 | |
| 		end.set(line.end);
 | |
| 	}
 | |
| 
 | |
| 	//! Get length of line
 | |
| 	/** \return Length of the line. */
 | |
| 	T getLength() const { return start.getDistanceFrom(end); }
 | |
| 
 | |
| 	//! Get squared length of the line
 | |
| 	/** \return Squared length of line. */
 | |
| 	T getLengthSQ() const { return start.getDistanceFromSQ(end); }
 | |
| 
 | |
| 	//! Get middle of the line
 | |
| 	/** \return center of the line. */
 | |
| 	vector2d<T> getMiddle() const
 | |
| 	{
 | |
| 		return (start + end) / (T)2;
 | |
| 	}
 | |
| 
 | |
| 	//! Get the vector of the line.
 | |
| 	/** \return The vector of the line. */
 | |
| 	vector2d<T> getVector() const { return vector2d<T>(end.X - start.X, end.Y - start.Y); }
 | |
| 
 | |
| 	/*! Check if this segment intersects another segment,
 | |
| 		or if segments are coincident (colinear). */
 | |
| 	bool intersectAsSegments(const line2d<T> &other) const
 | |
| 	{
 | |
| 		// Taken from:
 | |
| 		// http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
 | |
| 
 | |
| 		// Find the four orientations needed for general and
 | |
| 		// special cases
 | |
| 		s32 o1 = start.checkOrientation(end, other.start);
 | |
| 		s32 o2 = start.checkOrientation(end, other.end);
 | |
| 		s32 o3 = other.start.checkOrientation(other.end, start);
 | |
| 		s32 o4 = other.start.checkOrientation(other.end, end);
 | |
| 
 | |
| 		// General case
 | |
| 		if (o1 != o2 && o3 != o4)
 | |
| 			return true;
 | |
| 
 | |
| 		// Special Cases to check if segments are colinear
 | |
| 		if (o1 == 0 && other.start.isBetweenPoints(start, end))
 | |
| 			return true;
 | |
| 		if (o2 == 0 && other.end.isBetweenPoints(start, end))
 | |
| 			return true;
 | |
| 		if (o3 == 0 && start.isBetweenPoints(other.start, other.end))
 | |
| 			return true;
 | |
| 		if (o4 == 0 && end.isBetweenPoints(other.start, other.end))
 | |
| 			return true;
 | |
| 
 | |
| 		return false; // Doesn't fall in any of the above cases
 | |
| 	}
 | |
| 
 | |
| 	/*! Check if 2 segments are incident (intersects in exactly 1 point).*/
 | |
| 	bool incidentSegments(const line2d<T> &other) const
 | |
| 	{
 | |
| 		return start.checkOrientation(end, other.start) != start.checkOrientation(end, other.end) && other.start.checkOrientation(other.end, start) != other.start.checkOrientation(other.end, end);
 | |
| 	}
 | |
| 
 | |
| 	/*! Check if 2 lines/segments are parallel or nearly parallel.*/
 | |
| 	bool nearlyParallel(const line2d<T> &line, const T factor = relativeErrorFactor<T>()) const
 | |
| 	{
 | |
| 		const vector2d<T> a = getVector();
 | |
| 		const vector2d<T> b = line.getVector();
 | |
| 
 | |
| 		return a.nearlyParallel(b, factor);
 | |
| 	}
 | |
| 
 | |
| 	/*! returns a intersection point of 2 lines (if lines are not parallel). Behaviour
 | |
| 	undefined if lines are parallel or coincident.
 | |
| 	It's on optimized intersectWith with checkOnlySegments=false and ignoreCoincidentLines=true
 | |
| 	*/
 | |
| 	vector2d<T> fastLinesIntersection(const line2d<T> &l) const
 | |
| 	{
 | |
| 		const f32 commonDenominator = (f32)((l.end.Y - l.start.Y) * (end.X - start.X) -
 | |
| 											(l.end.X - l.start.X) * (end.Y - start.Y));
 | |
| 
 | |
| 		if (commonDenominator != 0.f) {
 | |
| 			const f32 numeratorA = (f32)((l.end.X - l.start.X) * (start.Y - l.start.Y) -
 | |
| 										 (l.end.Y - l.start.Y) * (start.X - l.start.X));
 | |
| 
 | |
| 			const f32 uA = numeratorA / commonDenominator;
 | |
| 
 | |
| 			// Calculate the intersection point.
 | |
| 			return vector2d<T>(
 | |
| 					(T)(start.X + uA * (end.X - start.X)),
 | |
| 					(T)(start.Y + uA * (end.Y - start.Y)));
 | |
| 		} else
 | |
| 			return l.start;
 | |
| 	}
 | |
| 
 | |
| 	/*! Check if this line intersect a segment. The eventual intersection point is returned in "out".*/
 | |
| 	bool lineIntersectSegment(const line2d<T> &segment, vector2d<T> &out) const
 | |
| 	{
 | |
| 		if (nearlyParallel(segment))
 | |
| 			return false;
 | |
| 
 | |
| 		out = fastLinesIntersection(segment);
 | |
| 
 | |
| 		return out.isBetweenPoints(segment.start, segment.end);
 | |
| 	}
 | |
| 
 | |
| 	//! Tests if this line intersects with another line.
 | |
| 	/** \param l: Other line to test intersection with.
 | |
| 	\param checkOnlySegments: Default is to check intersection between the begin and endpoints.
 | |
| 	When set to false the function will check for the first intersection point when extending the lines.
 | |
| 	\param out: If there is an intersection, the location of the
 | |
| 	intersection will be stored in this vector.
 | |
| 	\param ignoreCoincidentLines: When true coincident lines (lines above each other) are never considered as intersecting.
 | |
| 	When false the center of the overlapping part is returned.
 | |
| 	\return True if there is an intersection, false if not. */
 | |
| 	bool intersectWith(const line2d<T> &l, vector2d<T> &out, bool checkOnlySegments = true, bool ignoreCoincidentLines = false) const
 | |
| 	{
 | |
| 		// Uses the method given at:
 | |
| 		// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
 | |
| 		const f32 commonDenominator = (f32)((l.end.Y - l.start.Y) * (end.X - start.X) -
 | |
| 											(l.end.X - l.start.X) * (end.Y - start.Y));
 | |
| 
 | |
| 		const f32 numeratorA = (f32)((l.end.X - l.start.X) * (start.Y - l.start.Y) -
 | |
| 									 (l.end.Y - l.start.Y) * (start.X - l.start.X));
 | |
| 
 | |
| 		const f32 numeratorB = (f32)((end.X - start.X) * (start.Y - l.start.Y) -
 | |
| 									 (end.Y - start.Y) * (start.X - l.start.X));
 | |
| 
 | |
| 		if (equals(commonDenominator, 0.f)) {
 | |
| 			// The lines are either coincident or parallel
 | |
| 			// if both numerators are 0, the lines are coincident
 | |
| 			if (!ignoreCoincidentLines && equals(numeratorA, 0.f) && equals(numeratorB, 0.f)) {
 | |
| 				// Try and find a common endpoint
 | |
| 				if (l.start == start || l.end == start)
 | |
| 					out = start;
 | |
| 				else if (l.end == end || l.start == end)
 | |
| 					out = end;
 | |
| 				// now check if the two segments are disjunct
 | |
| 				else if (l.start.X > start.X && l.end.X > start.X && l.start.X > end.X && l.end.X > end.X)
 | |
| 					return false;
 | |
| 				else if (l.start.Y > start.Y && l.end.Y > start.Y && l.start.Y > end.Y && l.end.Y > end.Y)
 | |
| 					return false;
 | |
| 				else if (l.start.X < start.X && l.end.X < start.X && l.start.X < end.X && l.end.X < end.X)
 | |
| 					return false;
 | |
| 				else if (l.start.Y < start.Y && l.end.Y < start.Y && l.start.Y < end.Y && l.end.Y < end.Y)
 | |
| 					return false;
 | |
| 				// else the lines are overlapping to some extent
 | |
| 				else {
 | |
| 					// find the points which are not contributing to the
 | |
| 					// common part
 | |
| 					vector2d<T> maxp;
 | |
| 					vector2d<T> minp;
 | |
| 					if ((start.X > l.start.X && start.X > l.end.X && start.X > end.X) || (start.Y > l.start.Y && start.Y > l.end.Y && start.Y > end.Y))
 | |
| 						maxp = start;
 | |
| 					else if ((end.X > l.start.X && end.X > l.end.X && end.X > start.X) || (end.Y > l.start.Y && end.Y > l.end.Y && end.Y > start.Y))
 | |
| 						maxp = end;
 | |
| 					else if ((l.start.X > start.X && l.start.X > l.end.X && l.start.X > end.X) || (l.start.Y > start.Y && l.start.Y > l.end.Y && l.start.Y > end.Y))
 | |
| 						maxp = l.start;
 | |
| 					else
 | |
| 						maxp = l.end;
 | |
| 					if (maxp != start && ((start.X < l.start.X && start.X < l.end.X && start.X < end.X) || (start.Y < l.start.Y && start.Y < l.end.Y && start.Y < end.Y)))
 | |
| 						minp = start;
 | |
| 					else if (maxp != end && ((end.X < l.start.X && end.X < l.end.X && end.X < start.X) || (end.Y < l.start.Y && end.Y < l.end.Y && end.Y < start.Y)))
 | |
| 						minp = end;
 | |
| 					else if (maxp != l.start && ((l.start.X < start.X && l.start.X < l.end.X && l.start.X < end.X) || (l.start.Y < start.Y && l.start.Y < l.end.Y && l.start.Y < end.Y)))
 | |
| 						minp = l.start;
 | |
| 					else
 | |
| 						minp = l.end;
 | |
| 
 | |
| 					// one line is contained in the other. Pick the center
 | |
| 					// of the remaining points, which overlap for sure
 | |
| 					out = core::vector2d<T>();
 | |
| 					if (start != maxp && start != minp)
 | |
| 						out += start;
 | |
| 					if (end != maxp && end != minp)
 | |
| 						out += end;
 | |
| 					if (l.start != maxp && l.start != minp)
 | |
| 						out += l.start;
 | |
| 					if (l.end != maxp && l.end != minp)
 | |
| 						out += l.end;
 | |
| 					out.X = (T)(out.X / 2);
 | |
| 					out.Y = (T)(out.Y / 2);
 | |
| 				}
 | |
| 
 | |
| 				return true; // coincident
 | |
| 			}
 | |
| 
 | |
| 			return false; // parallel
 | |
| 		}
 | |
| 
 | |
| 		// Get the point of intersection on this line, checking that
 | |
| 		// it is within the line segment.
 | |
| 		const f32 uA = numeratorA / commonDenominator;
 | |
| 		if (checkOnlySegments) {
 | |
| 			if (uA < 0.f || uA > 1.f)
 | |
| 				return false; // Outside the line segment
 | |
| 
 | |
| 			const f32 uB = numeratorB / commonDenominator;
 | |
| 			if (uB < 0.f || uB > 1.f)
 | |
| 				return false; // Outside the line segment
 | |
| 		}
 | |
| 
 | |
| 		// Calculate the intersection point.
 | |
| 		out.X = (T)(start.X + uA * (end.X - start.X));
 | |
| 		out.Y = (T)(start.Y + uA * (end.Y - start.Y));
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	//! Get unit vector of the line.
 | |
| 	/** \return Unit vector of this line. */
 | |
| 	vector2d<T> getUnitVector() const
 | |
| 	{
 | |
| 		T len = (T)(1.0 / getLength());
 | |
| 		return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
 | |
| 	}
 | |
| 
 | |
| 	//! Get angle between this line and given line.
 | |
| 	/** \param l Other line for test.
 | |
| 	\return Angle in degrees. */
 | |
| 	f64 getAngleWith(const line2d<T> &l) const
 | |
| 	{
 | |
| 		vector2d<T> vect = getVector();
 | |
| 		vector2d<T> vect2 = l.getVector();
 | |
| 		return vect.getAngleWith(vect2);
 | |
| 	}
 | |
| 
 | |
| 	//! Tells us if the given point lies to the left, right, or on the line.
 | |
| 	/** \return 0 if the point is on the line
 | |
| 	<0 if to the left, or >0 if to the right. */
 | |
| 	T getPointOrientation(const vector2d<T> &point) const
 | |
| 	{
 | |
| 		return ((end.X - start.X) * (point.Y - start.Y) -
 | |
| 				(point.X - start.X) * (end.Y - start.Y));
 | |
| 	}
 | |
| 
 | |
| 	//! Check if the given point is a member of the line
 | |
| 	/** \return True if point is between start and end, else false. */
 | |
| 	bool isPointOnLine(const vector2d<T> &point) const
 | |
| 	{
 | |
| 		T d = getPointOrientation(point);
 | |
| 		return (d == 0 && point.isBetweenPoints(start, end));
 | |
| 	}
 | |
| 
 | |
| 	//! Check if the given point is between start and end of the line.
 | |
| 	/** Assumes that the point is already somewhere on the line. */
 | |
| 	bool isPointBetweenStartAndEnd(const vector2d<T> &point) const
 | |
| 	{
 | |
| 		return point.isBetweenPoints(start, end);
 | |
| 	}
 | |
| 
 | |
| 	//! Get the closest point on this line to a point
 | |
| 	/** \param point: Starting search at this point
 | |
| 	\param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
 | |
| 	When set to false the function will check for the first the closest point on the the line even when outside the segment. */
 | |
| 	vector2d<T> getClosestPoint(const vector2d<T> &point, bool checkOnlySegments = true) const
 | |
| 	{
 | |
| 		vector2d<f64> c((f64)(point.X - start.X), (f64)(point.Y - start.Y));
 | |
| 		vector2d<f64> v((f64)(end.X - start.X), (f64)(end.Y - start.Y));
 | |
| 		f64 d = v.getLength();
 | |
| 		if (d == 0) // can't tell much when the line is just a single point
 | |
| 			return start;
 | |
| 		v /= d;
 | |
| 		f64 t = v.dotProduct(c);
 | |
| 
 | |
| 		if (checkOnlySegments) {
 | |
| 			if (t < 0)
 | |
| 				return vector2d<T>((T)start.X, (T)start.Y);
 | |
| 			if (t > d)
 | |
| 				return vector2d<T>((T)end.X, (T)end.Y);
 | |
| 		}
 | |
| 
 | |
| 		v *= t;
 | |
| 		return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
 | |
| 	}
 | |
| 
 | |
| 	//! Start point of the line.
 | |
| 	vector2d<T> start;
 | |
| 	//! End point of the line.
 | |
| 	vector2d<T> end;
 | |
| };
 | |
| 
 | |
| // partial specialization to optimize <f32> lines (avoiding casts)
 | |
| template <>
 | |
| inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df &point, bool checkOnlySegments) const
 | |
| {
 | |
| 	const vector2df c = point - start;
 | |
| 	vector2df v = end - start;
 | |
| 	const f32 d = (f32)v.getLength();
 | |
| 	if (d == 0) // can't tell much when the line is just a single point
 | |
| 		return start;
 | |
| 	v /= d;
 | |
| 	const f32 t = v.dotProduct(c);
 | |
| 
 | |
| 	if (checkOnlySegments) {
 | |
| 		if (t < 0)
 | |
| 			return start;
 | |
| 		if (t > d)
 | |
| 			return end;
 | |
| 	}
 | |
| 
 | |
| 	v *= t;
 | |
| 	return start + v;
 | |
| }
 | |
| 
 | |
| //! Typedef for an f32 line.
 | |
| typedef line2d<f32> line2df;
 | |
| //! Typedef for an integer line.
 | |
| typedef line2d<s32> line2di;
 | |
| 
 | |
| } // end namespace core
 | |
| } // end namespace irr
 |