mirror of
				https://github.com/luanti-org/luanti.git
				synced 2025-10-31 07:25:22 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			800 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			800 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Minetest
 | |
|  * Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
 | |
|  * Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without modification, are
 | |
|  * permitted provided that the following conditions are met:
 | |
|  *  1. Redistributions of source code must retain the above copyright notice, this list of
 | |
|  *     conditions and the following disclaimer.
 | |
|  *  2. Redistributions in binary form must reproduce the above copyright notice, this list
 | |
|  *     of conditions and the following disclaimer in the documentation and/or other materials
 | |
|  *     provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
 | |
|  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
|  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 | |
|  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 | |
|  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include "noise.h"
 | |
| #include <iostream>
 | |
| #include <string.h> // memset
 | |
| #include "debug.h"
 | |
| #include "util/numeric.h"
 | |
| #include "util/string.h"
 | |
| #include "exceptions.h"
 | |
| 
 | |
| #define NOISE_MAGIC_X    1619
 | |
| #define NOISE_MAGIC_Y    31337
 | |
| #define NOISE_MAGIC_Z    52591
 | |
| #define NOISE_MAGIC_SEED 1013
 | |
| 
 | |
| typedef float (*Interp2dFxn)(
 | |
| 		float v00, float v10, float v01, float v11,
 | |
| 		float x, float y);
 | |
| 
 | |
| typedef float (*Interp3dFxn)(
 | |
| 		float v000, float v100, float v010, float v110,
 | |
| 		float v001, float v101, float v011, float v111,
 | |
| 		float x, float y, float z);
 | |
| 
 | |
| float cos_lookup[16] = {
 | |
| 	1.0,  0.9238,  0.7071,  0.3826, 0, -0.3826, -0.7071, -0.9238,
 | |
| 	1.0, -0.9238, -0.7071, -0.3826, 0,  0.3826,  0.7071,  0.9238
 | |
| };
 | |
| 
 | |
| FlagDesc flagdesc_noiseparams[] = {
 | |
| 	{"defaults",    NOISE_FLAG_DEFAULTS},
 | |
| 	{"eased",       NOISE_FLAG_EASED},
 | |
| 	{"absvalue",    NOISE_FLAG_ABSVALUE},
 | |
| 	{"pointbuffer", NOISE_FLAG_POINTBUFFER},
 | |
| 	{"simplex",     NOISE_FLAG_SIMPLEX},
 | |
| 	{NULL,          0}
 | |
| };
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| PcgRandom::PcgRandom(u64 state, u64 seq)
 | |
| {
 | |
| 	seed(state, seq);
 | |
| }
 | |
| 
 | |
| void PcgRandom::seed(u64 state, u64 seq)
 | |
| {
 | |
| 	m_state = 0U;
 | |
| 	m_inc = (seq << 1u) | 1u;
 | |
| 	next();
 | |
| 	m_state += state;
 | |
| 	next();
 | |
| }
 | |
| 
 | |
| 
 | |
| u32 PcgRandom::next()
 | |
| {
 | |
| 	u64 oldstate = m_state;
 | |
| 	m_state = oldstate * 6364136223846793005ULL + m_inc;
 | |
| 
 | |
| 	u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
 | |
| 	u32 rot = oldstate >> 59u;
 | |
| 	return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
 | |
| }
 | |
| 
 | |
| 
 | |
| u32 PcgRandom::range(u32 bound)
 | |
| {
 | |
| 	// If the bound is 0, we cover the whole RNG's range
 | |
| 	if (bound == 0)
 | |
| 		return next();
 | |
| 	/*
 | |
| 	If the bound is not a multiple of the RNG's range, it may cause bias,
 | |
| 	e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
 | |
| 	Using rand() % 3, the number 0 would be twice as likely to appear.
 | |
| 	With a very large RNG range, the effect becomes less prevalent but
 | |
| 	still present.  This can be solved by modifying the range of the RNG
 | |
| 	to become a multiple of bound by dropping values above the a threshold.
 | |
| 	In our example, threshold == 4 - 3 = 1 % 3 == 1, so reject 0, thus
 | |
| 	making the range 3 with no bias.
 | |
| 
 | |
| 	This loop looks dangerous, but will always terminate due to the
 | |
| 	RNG's property of uniformity.
 | |
| 	*/
 | |
| 	u32 threshold = -bound % bound;
 | |
| 	u32 r;
 | |
| 
 | |
| 	while ((r = next()) < threshold)
 | |
| 		;
 | |
| 
 | |
| 	return r % bound;
 | |
| }
 | |
| 
 | |
| 
 | |
| s32 PcgRandom::range(s32 min, s32 max)
 | |
| {
 | |
| 	if (max < min)
 | |
| 		throw PrngException("Invalid range (max < min)");
 | |
| 
 | |
| 	u32 bound = max - min + 1;
 | |
| 	return range(bound) + min;
 | |
| }
 | |
| 
 | |
| 
 | |
| void PcgRandom::bytes(void *out, size_t len)
 | |
| {
 | |
| 	u8 *outb = (u8 *)out;
 | |
| 	int bytes_left = 0;
 | |
| 	u32 r;
 | |
| 
 | |
| 	while (len--) {
 | |
| 		if (bytes_left == 0) {
 | |
| 			bytes_left = sizeof(u32);
 | |
| 			r = next();
 | |
| 		}
 | |
| 
 | |
| 		*outb = r & 0xFF;
 | |
| 		outb++;
 | |
| 		bytes_left--;
 | |
| 		r >>= CHAR_BIT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
 | |
| {
 | |
| 	s32 accum = 0;
 | |
| 	for (int i = 0; i != num_trials; i++)
 | |
| 		accum += range(min, max);
 | |
| 	return myround((float)accum / num_trials);
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| float noise2d(int x, int y, int seed)
 | |
| {
 | |
| 	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
 | |
| 			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
 | |
| 	n = (n >> 13) ^ n;
 | |
| 	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
 | |
| 	return 1.f - (float)(int)n / 0x40000000;
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise3d(int x, int y, int z, int seed)
 | |
| {
 | |
| 	unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
 | |
| 			+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
 | |
| 	n = (n >> 13) ^ n;
 | |
| 	n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
 | |
| 	return 1.f - (float)(int)n / 0x40000000;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float dotProduct(float vx, float vy, float wx, float wy)
 | |
| {
 | |
| 	return vx * wx + vy * wy;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float linearInterpolation(float v0, float v1, float t)
 | |
| {
 | |
| 	return v0 + (v1 - v0) * t;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float biLinearInterpolation(
 | |
| 	float v00, float v10,
 | |
| 	float v01, float v11,
 | |
| 	float x, float y)
 | |
| {
 | |
| 	float tx = easeCurve(x);
 | |
| 	float ty = easeCurve(y);
 | |
| 	float u = linearInterpolation(v00, v10, tx);
 | |
| 	float v = linearInterpolation(v01, v11, tx);
 | |
| 	return linearInterpolation(u, v, ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float biLinearInterpolationNoEase(
 | |
| 	float v00, float v10,
 | |
| 	float v01, float v11,
 | |
| 	float x, float y)
 | |
| {
 | |
| 	float u = linearInterpolation(v00, v10, x);
 | |
| 	float v = linearInterpolation(v01, v11, x);
 | |
| 	return linearInterpolation(u, v, y);
 | |
| }
 | |
| 
 | |
| 
 | |
| float triLinearInterpolation(
 | |
| 	float v000, float v100, float v010, float v110,
 | |
| 	float v001, float v101, float v011, float v111,
 | |
| 	float x, float y, float z)
 | |
| {
 | |
| 	float tx = easeCurve(x);
 | |
| 	float ty = easeCurve(y);
 | |
| 	float tz = easeCurve(z);
 | |
| 	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, tx, ty);
 | |
| 	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, tx, ty);
 | |
| 	return linearInterpolation(u, v, tz);
 | |
| }
 | |
| 
 | |
| float triLinearInterpolationNoEase(
 | |
| 	float v000, float v100, float v010, float v110,
 | |
| 	float v001, float v101, float v011, float v111,
 | |
| 	float x, float y, float z)
 | |
| {
 | |
| 	float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
 | |
| 	float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
 | |
| 	return linearInterpolation(u, v, z);
 | |
| }
 | |
| 
 | |
| float noise2d_gradient(float x, float y, int seed, bool eased)
 | |
| {
 | |
| 	// Calculate the integer coordinates
 | |
| 	int x0 = myfloor(x);
 | |
| 	int y0 = myfloor(y);
 | |
| 	// Calculate the remaining part of the coordinates
 | |
| 	float xl = x - (float)x0;
 | |
| 	float yl = y - (float)y0;
 | |
| 	// Get values for corners of square
 | |
| 	float v00 = noise2d(x0, y0, seed);
 | |
| 	float v10 = noise2d(x0+1, y0, seed);
 | |
| 	float v01 = noise2d(x0, y0+1, seed);
 | |
| 	float v11 = noise2d(x0+1, y0+1, seed);
 | |
| 	// Interpolate
 | |
| 	if (eased)
 | |
| 		return biLinearInterpolation(v00, v10, v01, v11, xl, yl);
 | |
| 	else
 | |
| 		return biLinearInterpolationNoEase(v00, v10, v01, v11, xl, yl);
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise3d_gradient(float x, float y, float z, int seed, bool eased)
 | |
| {
 | |
| 	// Calculate the integer coordinates
 | |
| 	int x0 = myfloor(x);
 | |
| 	int y0 = myfloor(y);
 | |
| 	int z0 = myfloor(z);
 | |
| 	// Calculate the remaining part of the coordinates
 | |
| 	float xl = x - (float)x0;
 | |
| 	float yl = y - (float)y0;
 | |
| 	float zl = z - (float)z0;
 | |
| 	// Get values for corners of cube
 | |
| 	float v000 = noise3d(x0,     y0,     z0,     seed);
 | |
| 	float v100 = noise3d(x0 + 1, y0,     z0,     seed);
 | |
| 	float v010 = noise3d(x0,     y0 + 1, z0,     seed);
 | |
| 	float v110 = noise3d(x0 + 1, y0 + 1, z0,     seed);
 | |
| 	float v001 = noise3d(x0,     y0,     z0 + 1, seed);
 | |
| 	float v101 = noise3d(x0 + 1, y0,     z0 + 1, seed);
 | |
| 	float v011 = noise3d(x0,     y0 + 1, z0 + 1, seed);
 | |
| 	float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
 | |
| 	// Interpolate
 | |
| 	if (eased) {
 | |
| 		return triLinearInterpolation(
 | |
| 			v000, v100, v010, v110,
 | |
| 			v001, v101, v011, v111,
 | |
| 			xl, yl, zl);
 | |
| 	} else {
 | |
| 		return triLinearInterpolationNoEase(
 | |
| 			v000, v100, v010, v110,
 | |
| 			v001, v101, v011, v111,
 | |
| 			xl, yl, zl);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise2d_perlin(float x, float y, int seed,
 | |
| 	int octaves, float persistence, bool eased)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 	for (int i = 0; i < octaves; i++)
 | |
| 	{
 | |
| 		a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
 | |
| 		f *= 2.0;
 | |
| 		g *= persistence;
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise2d_perlin_abs(float x, float y, int seed,
 | |
| 	int octaves, float persistence, bool eased)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 	for (int i = 0; i < octaves; i++) {
 | |
| 		a += g * fabs(noise2d_gradient(x * f, y * f, seed + i, eased));
 | |
| 		f *= 2.0;
 | |
| 		g *= persistence;
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise3d_perlin(float x, float y, float z, int seed,
 | |
| 	int octaves, float persistence, bool eased)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 	for (int i = 0; i < octaves; i++) {
 | |
| 		a += g * noise3d_gradient(x * f, y * f, z * f, seed + i, eased);
 | |
| 		f *= 2.0;
 | |
| 		g *= persistence;
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| float noise3d_perlin_abs(float x, float y, float z, int seed,
 | |
| 	int octaves, float persistence, bool eased)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 	for (int i = 0; i < octaves; i++) {
 | |
| 		a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i, eased));
 | |
| 		f *= 2.0;
 | |
| 		g *= persistence;
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| float contour(float v)
 | |
| {
 | |
| 	v = fabs(v);
 | |
| 	if (v >= 1.0)
 | |
| 		return 0.0;
 | |
| 	return (1.0 - v);
 | |
| }
 | |
| 
 | |
| 
 | |
| ///////////////////////// [ New noise ] ////////////////////////////
 | |
| 
 | |
| 
 | |
| float NoisePerlin2D(NoiseParams *np, float x, float y, int seed)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 
 | |
| 	x /= np->spread.X;
 | |
| 	y /= np->spread.Y;
 | |
| 	seed += np->seed;
 | |
| 
 | |
| 	for (size_t i = 0; i < np->octaves; i++) {
 | |
| 		float noiseval = noise2d_gradient(x * f, y * f, seed + i,
 | |
| 			np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
 | |
| 
 | |
| 		if (np->flags & NOISE_FLAG_ABSVALUE)
 | |
| 			noiseval = fabs(noiseval);
 | |
| 
 | |
| 		a += g * noiseval;
 | |
| 		f *= np->lacunarity;
 | |
| 		g *= np->persist;
 | |
| 	}
 | |
| 
 | |
| 	return np->offset + a * np->scale;
 | |
| }
 | |
| 
 | |
| 
 | |
| float NoisePerlin3D(NoiseParams *np, float x, float y, float z, int seed)
 | |
| {
 | |
| 	float a = 0;
 | |
| 	float f = 1.0;
 | |
| 	float g = 1.0;
 | |
| 
 | |
| 	x /= np->spread.X;
 | |
| 	y /= np->spread.Y;
 | |
| 	z /= np->spread.Z;
 | |
| 	seed += np->seed;
 | |
| 
 | |
| 	for (size_t i = 0; i < np->octaves; i++) {
 | |
| 		float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
 | |
| 			np->flags & NOISE_FLAG_EASED);
 | |
| 
 | |
| 		if (np->flags & NOISE_FLAG_ABSVALUE)
 | |
| 			noiseval = fabs(noiseval);
 | |
| 
 | |
| 		a += g * noiseval;
 | |
| 		f *= np->lacunarity;
 | |
| 		g *= np->persist;
 | |
| 	}
 | |
| 
 | |
| 	return np->offset + a * np->scale;
 | |
| }
 | |
| 
 | |
| 
 | |
| Noise::Noise(NoiseParams *np_, int seed, u32 sx, u32 sy, u32 sz)
 | |
| {
 | |
| 	memcpy(&np, np_, sizeof(np));
 | |
| 	this->seed = seed;
 | |
| 	this->sx   = sx;
 | |
| 	this->sy   = sy;
 | |
| 	this->sz   = sz;
 | |
| 
 | |
| 	this->persist_buf  = NULL;
 | |
| 	this->gradient_buf = NULL;
 | |
| 	this->result       = NULL;
 | |
| 
 | |
| 	allocBuffers();
 | |
| }
 | |
| 
 | |
| 
 | |
| Noise::~Noise()
 | |
| {
 | |
| 	delete[] gradient_buf;
 | |
| 	delete[] persist_buf;
 | |
| 	delete[] noise_buf;
 | |
| 	delete[] result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::allocBuffers()
 | |
| {
 | |
| 	if (sx < 1)
 | |
| 		sx = 1;
 | |
| 	if (sy < 1)
 | |
| 		sy = 1;
 | |
| 	if (sz < 1)
 | |
| 		sz = 1;
 | |
| 
 | |
| 	this->noise_buf = NULL;
 | |
| 	resizeNoiseBuf(sz > 1);
 | |
| 
 | |
| 	delete[] gradient_buf;
 | |
| 	delete[] persist_buf;
 | |
| 	delete[] result;
 | |
| 
 | |
| 	try {
 | |
| 		size_t bufsize = sx * sy * sz;
 | |
| 		this->persist_buf  = NULL;
 | |
| 		this->gradient_buf = new float[bufsize];
 | |
| 		this->result       = new float[bufsize];
 | |
| 	} catch (std::bad_alloc &e) {
 | |
| 		throw InvalidNoiseParamsException();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::setSize(u32 sx, u32 sy, u32 sz)
 | |
| {
 | |
| 	this->sx = sx;
 | |
| 	this->sy = sy;
 | |
| 	this->sz = sz;
 | |
| 
 | |
| 	allocBuffers();
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::setSpreadFactor(v3f spread)
 | |
| {
 | |
| 	this->np.spread = spread;
 | |
| 
 | |
| 	resizeNoiseBuf(sz > 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::setOctaves(int octaves)
 | |
| {
 | |
| 	this->np.octaves = octaves;
 | |
| 
 | |
| 	resizeNoiseBuf(sz > 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::resizeNoiseBuf(bool is3d)
 | |
| {
 | |
| 	//maximum possible spread value factor
 | |
| 	float ofactor = (np.lacunarity > 1.0) ?
 | |
| 		pow(np.lacunarity, np.octaves - 1) :
 | |
| 		np.lacunarity;
 | |
| 
 | |
| 	// noise lattice point count
 | |
| 	// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
 | |
| 	float num_noise_points_x = sx * ofactor / np.spread.X;
 | |
| 	float num_noise_points_y = sy * ofactor / np.spread.Y;
 | |
| 	float num_noise_points_z = sz * ofactor / np.spread.Z;
 | |
| 
 | |
| 	// protect against obviously invalid parameters
 | |
| 	if (num_noise_points_x > 1000000000.f ||
 | |
| 		num_noise_points_y > 1000000000.f ||
 | |
| 		num_noise_points_z > 1000000000.f)
 | |
| 		throw InvalidNoiseParamsException();
 | |
| 
 | |
| 	// + 2 for the two initial endpoints
 | |
| 	// + 1 for potentially crossing a boundary due to offset
 | |
| 	size_t nlx = (size_t)ceil(num_noise_points_x) + 3;
 | |
| 	size_t nly = (size_t)ceil(num_noise_points_y) + 3;
 | |
| 	size_t nlz = is3d ? (size_t)ceil(num_noise_points_z) + 3 : 1;
 | |
| 
 | |
| 	delete[] noise_buf;
 | |
| 	try {
 | |
| 		noise_buf = new float[nlx * nly * nlz];
 | |
| 	} catch (std::bad_alloc &e) {
 | |
| 		throw InvalidNoiseParamsException();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * NB:  This algorithm is not optimal in terms of space complexity.  The entire
 | |
|  * integer lattice of noise points could be done as 2 lines instead, and for 3D,
 | |
|  * 2 lines + 2 planes.
 | |
|  * However, this would require the noise calls to be interposed with the
 | |
|  * interpolation loops, which may trash the icache, leading to lower overall
 | |
|  * performance.
 | |
|  * Another optimization that could save half as many noise calls is to carry over
 | |
|  * values from the previous noise lattice as midpoints in the new lattice for the
 | |
|  * next octave.
 | |
|  */
 | |
| #define idx(x, y) ((y) * nlx + (x))
 | |
| void Noise::gradientMap2D(
 | |
| 		float x, float y,
 | |
| 		float step_x, float step_y,
 | |
| 		int seed)
 | |
| {
 | |
| 	float v00, v01, v10, v11, u, v, orig_u;
 | |
| 	u32 index, i, j, noisex, noisey;
 | |
| 	u32 nlx, nly;
 | |
| 	s32 x0, y0;
 | |
| 
 | |
| 	bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
 | |
| 	Interp2dFxn interpolate = eased ?
 | |
| 		biLinearInterpolation : biLinearInterpolationNoEase;
 | |
| 
 | |
| 	x0 = floor(x);
 | |
| 	y0 = floor(y);
 | |
| 	u = x - (float)x0;
 | |
| 	v = y - (float)y0;
 | |
| 	orig_u = u;
 | |
| 
 | |
| 	//calculate noise point lattice
 | |
| 	nlx = (u32)(u + sx * step_x) + 2;
 | |
| 	nly = (u32)(v + sy * step_y) + 2;
 | |
| 	index = 0;
 | |
| 	for (j = 0; j != nly; j++)
 | |
| 		for (i = 0; i != nlx; i++)
 | |
| 			noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
 | |
| 
 | |
| 	//calculate interpolations
 | |
| 	index  = 0;
 | |
| 	noisey = 0;
 | |
| 	for (j = 0; j != sy; j++) {
 | |
| 		v00 = noise_buf[idx(0, noisey)];
 | |
| 		v10 = noise_buf[idx(1, noisey)];
 | |
| 		v01 = noise_buf[idx(0, noisey + 1)];
 | |
| 		v11 = noise_buf[idx(1, noisey + 1)];
 | |
| 
 | |
| 		u = orig_u;
 | |
| 		noisex = 0;
 | |
| 		for (i = 0; i != sx; i++) {
 | |
| 			gradient_buf[index++] = interpolate(v00, v10, v01, v11, u, v);
 | |
| 
 | |
| 			u += step_x;
 | |
| 			if (u >= 1.0) {
 | |
| 				u -= 1.0;
 | |
| 				noisex++;
 | |
| 				v00 = v10;
 | |
| 				v01 = v11;
 | |
| 				v10 = noise_buf[idx(noisex + 1, noisey)];
 | |
| 				v11 = noise_buf[idx(noisex + 1, noisey + 1)];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		v += step_y;
 | |
| 		if (v >= 1.0) {
 | |
| 			v -= 1.0;
 | |
| 			noisey++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #undef idx
 | |
| 
 | |
| 
 | |
| #define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
 | |
| void Noise::gradientMap3D(
 | |
| 		float x, float y, float z,
 | |
| 		float step_x, float step_y, float step_z,
 | |
| 		int seed)
 | |
| {
 | |
| 	float v000, v010, v100, v110;
 | |
| 	float v001, v011, v101, v111;
 | |
| 	float u, v, w, orig_u, orig_v;
 | |
| 	u32 index, i, j, k, noisex, noisey, noisez;
 | |
| 	u32 nlx, nly, nlz;
 | |
| 	s32 x0, y0, z0;
 | |
| 
 | |
| 	Interp3dFxn interpolate = (np.flags & NOISE_FLAG_EASED) ?
 | |
| 		triLinearInterpolation : triLinearInterpolationNoEase;
 | |
| 
 | |
| 	x0 = floor(x);
 | |
| 	y0 = floor(y);
 | |
| 	z0 = floor(z);
 | |
| 	u = x - (float)x0;
 | |
| 	v = y - (float)y0;
 | |
| 	w = z - (float)z0;
 | |
| 	orig_u = u;
 | |
| 	orig_v = v;
 | |
| 
 | |
| 	//calculate noise point lattice
 | |
| 	nlx = (u32)(u + sx * step_x) + 2;
 | |
| 	nly = (u32)(v + sy * step_y) + 2;
 | |
| 	nlz = (u32)(w + sz * step_z) + 2;
 | |
| 	index = 0;
 | |
| 	for (k = 0; k != nlz; k++)
 | |
| 		for (j = 0; j != nly; j++)
 | |
| 			for (i = 0; i != nlx; i++)
 | |
| 				noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
 | |
| 
 | |
| 	//calculate interpolations
 | |
| 	index  = 0;
 | |
| 	noisey = 0;
 | |
| 	noisez = 0;
 | |
| 	for (k = 0; k != sz; k++) {
 | |
| 		v = orig_v;
 | |
| 		noisey = 0;
 | |
| 		for (j = 0; j != sy; j++) {
 | |
| 			v000 = noise_buf[idx(0, noisey,     noisez)];
 | |
| 			v100 = noise_buf[idx(1, noisey,     noisez)];
 | |
| 			v010 = noise_buf[idx(0, noisey + 1, noisez)];
 | |
| 			v110 = noise_buf[idx(1, noisey + 1, noisez)];
 | |
| 			v001 = noise_buf[idx(0, noisey,     noisez + 1)];
 | |
| 			v101 = noise_buf[idx(1, noisey,     noisez + 1)];
 | |
| 			v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
 | |
| 			v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
 | |
| 
 | |
| 			u = orig_u;
 | |
| 			noisex = 0;
 | |
| 			for (i = 0; i != sx; i++) {
 | |
| 				gradient_buf[index++] = interpolate(
 | |
| 					v000, v100, v010, v110,
 | |
| 					v001, v101, v011, v111,
 | |
| 					u, v, w);
 | |
| 
 | |
| 				u += step_x;
 | |
| 				if (u >= 1.0) {
 | |
| 					u -= 1.0;
 | |
| 					noisex++;
 | |
| 					v000 = v100;
 | |
| 					v010 = v110;
 | |
| 					v100 = noise_buf[idx(noisex + 1, noisey,     noisez)];
 | |
| 					v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
 | |
| 					v001 = v101;
 | |
| 					v011 = v111;
 | |
| 					v101 = noise_buf[idx(noisex + 1, noisey,     noisez + 1)];
 | |
| 					v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			v += step_y;
 | |
| 			if (v >= 1.0) {
 | |
| 				v -= 1.0;
 | |
| 				noisey++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		w += step_z;
 | |
| 		if (w >= 1.0) {
 | |
| 			w -= 1.0;
 | |
| 			noisez++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #undef idx
 | |
| 
 | |
| 
 | |
| float *Noise::perlinMap2D(float x, float y, float *persistence_map)
 | |
| {
 | |
| 	float f = 1.0, g = 1.0;
 | |
| 	size_t bufsize = sx * sy;
 | |
| 
 | |
| 	x /= np.spread.X;
 | |
| 	y /= np.spread.Y;
 | |
| 
 | |
| 	memset(result, 0, sizeof(float) * bufsize);
 | |
| 
 | |
| 	if (persistence_map) {
 | |
| 		if (!persist_buf)
 | |
| 			persist_buf = new float[bufsize];
 | |
| 		for (size_t i = 0; i != bufsize; i++)
 | |
| 			persist_buf[i] = 1.0;
 | |
| 	}
 | |
| 
 | |
| 	for (size_t oct = 0; oct < np.octaves; oct++) {
 | |
| 		gradientMap2D(x * f, y * f,
 | |
| 			f / np.spread.X, f / np.spread.Y,
 | |
| 			seed + np.seed + oct);
 | |
| 
 | |
| 		updateResults(g, persist_buf, persistence_map, bufsize);
 | |
| 
 | |
| 		f *= np.lacunarity;
 | |
| 		g *= np.persist;
 | |
| 	}
 | |
| 
 | |
| 	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
 | |
| 		for (size_t i = 0; i != bufsize; i++)
 | |
| 			result[i] = result[i] * np.scale + np.offset;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
 | |
| {
 | |
| 	float f = 1.0, g = 1.0;
 | |
| 	size_t bufsize = sx * sy * sz;
 | |
| 
 | |
| 	x /= np.spread.X;
 | |
| 	y /= np.spread.Y;
 | |
| 	z /= np.spread.Z;
 | |
| 
 | |
| 	memset(result, 0, sizeof(float) * bufsize);
 | |
| 
 | |
| 	if (persistence_map) {
 | |
| 		if (!persist_buf)
 | |
| 			persist_buf = new float[bufsize];
 | |
| 		for (size_t i = 0; i != bufsize; i++)
 | |
| 			persist_buf[i] = 1.0;
 | |
| 	}
 | |
| 
 | |
| 	for (size_t oct = 0; oct < np.octaves; oct++) {
 | |
| 		gradientMap3D(x * f, y * f, z * f,
 | |
| 			f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
 | |
| 			seed + np.seed + oct);
 | |
| 
 | |
| 		updateResults(g, persist_buf, persistence_map, bufsize);
 | |
| 
 | |
| 		f *= np.lacunarity;
 | |
| 		g *= np.persist;
 | |
| 	}
 | |
| 
 | |
| 	if (fabs(np.offset - 0.f) > 0.00001 || fabs(np.scale - 1.f) > 0.00001) {
 | |
| 		for (size_t i = 0; i != bufsize; i++)
 | |
| 			result[i] = result[i] * np.scale + np.offset;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Noise::updateResults(float g, float *gmap,
 | |
| 	float *persistence_map, size_t bufsize)
 | |
| {
 | |
| 	// This looks very ugly, but it is 50-70% faster than having
 | |
| 	// conditional statements inside the loop
 | |
| 	if (np.flags & NOISE_FLAG_ABSVALUE) {
 | |
| 		if (persistence_map) {
 | |
| 			for (size_t i = 0; i != bufsize; i++) {
 | |
| 				result[i] += gmap[i] * fabs(gradient_buf[i]);
 | |
| 				gmap[i] *= persistence_map[i];
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (size_t i = 0; i != bufsize; i++)
 | |
| 				result[i] += g * fabs(gradient_buf[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (persistence_map) {
 | |
| 			for (size_t i = 0; i != bufsize; i++) {
 | |
| 				result[i] += gmap[i] * gradient_buf[i];
 | |
| 				gmap[i] *= persistence_map[i];
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (size_t i = 0; i != bufsize; i++)
 | |
| 				result[i] += g * gradient_buf[i];
 | |
| 		}
 | |
| 	}
 | |
| }
 |