1
0
mirror of https://github.com/luanti-org/luanti.git synced 2025-11-28 03:45:24 +01:00
Files
luanti/irr/include/SkinnedMesh.h
2025-11-23 21:17:58 +01:00

438 lines
12 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#pragma once
#include "IAnimatedMesh.h"
#include "ISceneManager.h"
#include "CMeshBuffer.h"
#include "SSkinMeshBuffer.h"
#include "aabbox3d.h"
#include "irrMath.h"
#include "irrTypes.h"
#include "irr_ptr.h"
#include "matrix4.h"
#include "quaternion.h"
#include "vector3d.h"
#include "Transform.h"
#include <optional>
#include <string>
#include <variant>
#include <vector>
namespace scene
{
class AnimatedMeshSceneNode;
class IBoneSceneNode;
class ISceneManager;
class SkinnedMesh : public IAnimatedMesh
{
public:
enum class SourceFormat {
B3D,
X,
GLTF,
OTHER,
};
//! constructor
SkinnedMesh(SourceFormat src_format) :
EndFrame(0.f), FramesPerSecond(25.f),
HasAnimation(false), PreparedForSkinning(false),
SrcFormat(src_format)
{
SkinningBuffers = &LocalBuffers;
}
//! destructor
virtual ~SkinnedMesh();
//! The source (file) format the mesh was loaded from.
//! Important for legacy reasons pertaining to different mesh loader behavior.
SourceFormat getSourceFormat() const { return SrcFormat; }
//! If the duration is 0, it is a static (=non animated) mesh.
f32 getMaxFrameNumber() const override;
//! Turns the given array of local matrices into an array of global matrices
//! by multiplying with respective parent matrices.
void calculateGlobalMatrices(std::vector<core::matrix4> &matrices) const;
//! Performs a software skin on this mesh based on the given joint matrices
void skinMesh(const std::vector<core::matrix4> &animated_transforms);
//! returns amount of mesh buffers.
u32 getMeshBufferCount() const override;
//! returns pointer to a mesh buffer
IMeshBuffer *getMeshBuffer(u32 nr) const override;
//! Returns pointer to a mesh buffer which fits a material
/** \param material: material to search for
\return Returns the pointer to the mesh buffer or
NULL if there is no such mesh buffer. */
IMeshBuffer *getMeshBuffer(const video::SMaterial &material) const override;
u32 getTextureSlot(u32 meshbufNr) const override;
//! Returns bounding box of the mesh *in static pose*.
const core::aabbox3d<f32> &getBoundingBox() const override {
// TODO ideally we shouldn't be forced to implement this
return StaticPoseBox;
}
//! Set bounding box of the mesh *in static pose*.
void setBoundingBox(const core::aabbox3df &box) override {
StaticPoseBox = box;
}
//! set the hardware mapping hint, for driver
void setHardwareMappingHint(E_HARDWARE_MAPPING newMappingHint, E_BUFFER_TYPE buffer = EBT_VERTEX_AND_INDEX) override;
//! flags the meshbuffer as changed, reloads hardware buffers
void setDirty(E_BUFFER_TYPE buffer = EBT_VERTEX_AND_INDEX) override;
//! Returns the type of the animated mesh.
E_ANIMATED_MESH_TYPE getMeshType() const override {
return EAMT_SKINNED;
}
//! Gets joint count.
u32 getJointCount() const;
//! Gets the name of a joint.
/** \param number: Zero based index of joint.
\return Name of joint and null if an error happened. */
const std::optional<std::string> &getJointName(u32 number) const;
//! Gets a joint number from its name
/** \param name: Name of the joint.
\return Number of the joint or std::nullopt if not found. */
std::optional<u32> getJointNumber(const std::string &name) const;
//! converts the vertex type of all meshbuffers to tangents.
/** E.g. used for bump mapping. */
void convertMeshToTangents();
//! Does the mesh have no animation
bool isStatic() const {
return !HasAnimation;
}
//! Back up static pose after local buffers have been modified directly
void updateStaticPose();
//! Moves the mesh into static position.
void resetAnimation();
//! Creates an array of joints from this mesh as children of node
std::vector<IBoneSceneNode *> addJoints(
AnimatedMeshSceneNode *node, ISceneManager *smgr);
template <class T>
struct Channel {
struct Frame {
f32 time;
T value;
};
std::vector<Frame> frames;
bool interpolate = true;
bool empty() const {
return frames.empty();
}
f32 getEndFrame() const {
return frames.empty() ? 0 : frames.back().time;
}
void pushBack(f32 time, const T &value) {
frames.push_back({time, value});
}
void append(const Channel<T> &other) {
frames.insert(frames.end(), other.frames.begin(), other.frames.end());
}
void cleanup() {
if (frames.empty())
return;
std::vector<Frame> ordered;
ordered.push_back(frames.front());
// Drop out-of-order frames
for (auto it = frames.begin() + 1; it != frames.end(); ++it) {
if (it->time > ordered.back().time) {
ordered.push_back(*it);
}
}
frames.clear();
// Drop redundant middle keys
frames.push_back(ordered.front());
for (u32 i = 1; i < ordered.size() - 1; ++i) {
if (ordered[i - 1].value != ordered[i].value
|| ordered[i + 1].value != ordered[i].value) {
frames.push_back(ordered[i]);
}
}
if (ordered.size() > 1)
frames.push_back(ordered.back());
frames.shrink_to_fit();
}
static core::quaternion interpolateValue(core::quaternion from, core::quaternion to, f32 time) {
core::quaternion result;
result.slerp(from, to, time);
return result;
}
static core::vector3df interpolateValue(core::vector3df from, core::vector3df to, f32 time) {
// Note: `from` and `to` are swapped here compared to quaternion slerp
return to.getInterpolated(from, time);
}
std::optional<T> get(f32 time) const {
if (frames.empty())
return std::nullopt;
const auto next = std::lower_bound(frames.begin(), frames.end(), time, [](const auto& frame, f32 time) {
return frame.time < time;
});
if (next == frames.begin())
return next->value;
if (next == frames.end())
return frames.back().value;
const auto prev = next - 1;
if (!interpolate)
return prev->value;
return interpolateValue(prev->value, next->value, (time - prev->time) / (next->time - prev->time));
}
};
struct Keys {
Channel<core::vector3df> position;
Channel<core::quaternion> rotation;
Channel<core::vector3df> scale;
bool empty() const {
return position.empty() && rotation.empty() && scale.empty();
}
void append(const Keys &other) {
position.append(other.position);
rotation.append(other.rotation);
scale.append(other.scale);
}
f32 getEndFrame() const {
return std::max({
position.getEndFrame(),
rotation.getEndFrame(),
scale.getEndFrame()
});
}
void updateTransform(f32 frame, core::Transform &transform) const
{
if (auto pos = position.get(frame))
transform.translation = *pos;
if (auto rot = rotation.get(frame))
transform.rotation = *rot;
if (auto scl = scale.get(frame))
transform.scale = *scl;
}
void cleanup() {
position.cleanup();
rotation.cleanup();
scale.cleanup();
}
};
//! Joints
struct SJoint
{
SJoint() {}
//! The name of this joint
std::optional<std::string> Name;
//! Local transformation to be set by loaders. Mutated by animation.
using VariantTransform = std::variant<core::Transform, core::matrix4>;
VariantTransform transform{core::Transform{}};
VariantTransform animate(f32 frame) const {
if (keys.empty())
return transform;
if (std::holds_alternative<core::matrix4>(transform)) {
// .x lets animations override matrix transforms entirely,
// which is what we implement here.
// .gltf does not allow animation of nodes using matrix transforms.
// Note that a decomposition into a TRS transform need not exist!
core::Transform trs;
keys.updateTransform(frame, trs);
return {trs};
}
auto trs = std::get<core::Transform>(transform);
keys.updateTransform(frame, trs);
return {trs};
}
//! List of attached meshes
std::vector<u32> AttachedMeshes;
// TODO ^ should turn this into optional meshbuffer parent field?
// Animation keyframes for translation, rotation, scale
Keys keys;
//! Bounding box of all affected vertices, in local space
core::aabbox3df LocalBoundingBox{{0, 0, 0}};
//! Unnecessary for loaders, will be overwritten on finalize
core::matrix4 GlobalMatrix; // loaders may still choose to set this (temporarily) to calculate absolute vertex data.
// The .x and .gltf formats pre-calculate this
std::optional<core::matrix4> GlobalInversedMatrix;
void setParent(SJoint *parent) {
ParentJointID = parent ? parent->JointID : std::optional<u16>{};
}
u16 JointID; // TODO refactor away: pointers -> IDs (problem: .x loader abuses SJoint)
std::optional<u16> ParentJointID;
};
//! Animates joints based on frame input
std::vector<SJoint::VariantTransform> animateMesh(f32 frame);
//! Calculates a bounding box given an animation in the form of global joint transforms.
core::aabbox3df calculateBoundingBox(
const std::vector<core::matrix4> &global_transforms);
void recalculateBaseBoundingBoxes();
const std::vector<SJoint *> &getAllJoints() const {
return AllJoints;
}
protected:
bool checkForAnimation() const;
void prepareForSkinning();
void calculateStaticBoundingBox();
void calculateJointBoundingBoxes();
void calculateBufferBoundingBoxes();
void calculateTangents(core::vector3df &normal,
core::vector3df &tangent, core::vector3df &binormal,
const core::vector3df &vt1, const core::vector3df &vt2, const core::vector3df &vt3,
const core::vector2df &tc1, const core::vector2df &tc2, const core::vector2df &tc3);
friend class SkinnedMeshBuilder;
std::vector<SSkinMeshBuffer *> *SkinningBuffers; // Meshbuffer to skin, default is to skin localBuffers
std::vector<SSkinMeshBuffer *> LocalBuffers;
//! Mapping from meshbuffer number to bindable texture slot
std::vector<u32> TextureSlots;
//! Joints, topologically sorted (parents come before their children).
std::vector<SJoint *> AllJoints;
//! Bounding box of just the static parts of the mesh
core::aabbox3df StaticPartsBox{{0, 0, 0}};
//! Bounding box of the mesh in static pose
core::aabbox3df StaticPoseBox{{0, 0, 0}};
f32 EndFrame;
f32 FramesPerSecond;
bool HasAnimation;
bool PreparedForSkinning;
SourceFormat SrcFormat;
};
// Interface for mesh loaders
class SkinnedMeshBuilder {
using SJoint = SkinnedMesh::SJoint;
public:
// HACK the .x and .b3d loader do not separate the "loader" class from an "extractor" class
// used and destroyed in a specific loading process (contrast with the .gltf mesh loader).
// This means we need an empty skinned mesh builder.
SkinnedMeshBuilder() {}
SkinnedMeshBuilder(SkinnedMesh::SourceFormat src_format)
: mesh(new SkinnedMesh(src_format))
{}
//! loaders should call this after populating the mesh
SkinnedMesh *finalize() &&;
//! alternative method for adding joints
std::vector<SJoint *> &getJoints() { return mesh->AllJoints; }
//! Adds a new meshbuffer to the mesh, access it as last one
SSkinMeshBuffer *addMeshBuffer();
//! Adds a new meshbuffer to the mesh, returns ID
u32 addMeshBuffer(SSkinMeshBuffer *meshbuf);
u32 getMeshBufferCount() { return mesh->getMeshBufferCount(); }
void setTextureSlot(u32 meshbufNr, u32 textureSlot)
{
mesh->TextureSlots.at(meshbufNr) = textureSlot;
}
//! Adds a new joint to the mesh, access it as last one
SJoint *addJoint(SJoint *parent = nullptr);
std::optional<u32> getJointNumber(const std::string &name) const
{
return mesh->getJointNumber(name);
}
void addPositionKey(SJoint *joint, f32 frame, core::vector3df pos);
void addRotationKey(SJoint *joint, f32 frame, core::quaternion rotation);
void addScaleKey(SJoint *joint, f32 frame, core::vector3df scale);
//! Adds a new weight to the mesh
void addWeight(SJoint *joint, u16 buf, u32 vert_id, f32 strength);
private:
void topoSortJoints();
//! The mesh that is being built
irr_ptr<SkinnedMesh> mesh;
struct Weight {
u16 joint_id;
u16 buffer_id;
u32 vertex_id;
f32 strength;
};
//! Weights to be added once all mesh buffers have been loaded
std::vector<Weight> weights;
};
} // end namespace scene