--[[ The enriched uranium rod driven EU generator. A very large and advanced machine providing vast amounts of power. Very efficient but also expensive to run as it needs uranium. Provides 10000 HV EUs for one week (only counted when loaded). The nuclear reactor core requires a casing of water and a protective shield to work. This is checked now and then and if the casing is not intact the reactor will melt down! --]] local burn_ticks = 7 * 24 * 60 * 60 -- Seconds local power_supply = 100000 -- EUs local fuel_type = "technic:uranium_fuel" -- The reactor burns this local S = technic.getter local reactor_desc = S("@1 Nuclear Reactor Core", S("HV")), -- FIXME: Recipe should make more sense like a rod recepticle, steam chamber, HV generator? minetest.register_craft({ output = 'technic:hv_nuclear_reactor_core', recipe = { {'technic:carbon_plate', 'default:obsidian_glass', 'technic:carbon_plate'}, {'technic:composite_plate', 'technic:machine_casing', 'technic:composite_plate'}, {'technic:stainless_steel_ingot', 'technic:hv_cable', 'technic:stainless_steel_ingot'}, } }) local reactor_formspec = "invsize[8,9;]".. "label[0,0;"..S("Nuclear Reactor Rod Compartment").."]".. "list[current_name;src;2,1;3,2;]".. "list[current_player;main;0,5;8,4;]".. "listring[]" -- "Boxy sphere" local node_box = { {-0.353, -0.353, -0.353, 0.353, 0.353, 0.353}, -- Box {-0.495, -0.064, -0.064, 0.495, 0.064, 0.064}, -- Circle +-x {-0.483, -0.128, -0.128, 0.483, 0.128, 0.128}, {-0.462, -0.191, -0.191, 0.462, 0.191, 0.191}, {-0.433, -0.249, -0.249, 0.433, 0.249, 0.249}, {-0.397, -0.303, -0.303, 0.397, 0.303, 0.303}, {-0.305, -0.396, -0.305, 0.305, 0.396, 0.305}, -- Circle +-y {-0.250, -0.432, -0.250, 0.250, 0.432, 0.250}, {-0.191, -0.461, -0.191, 0.191, 0.461, 0.191}, {-0.130, -0.482, -0.130, 0.130, 0.482, 0.130}, {-0.066, -0.495, -0.066, 0.066, 0.495, 0.066}, {-0.064, -0.064, -0.495, 0.064, 0.064, 0.495}, -- Circle +-z {-0.128, -0.128, -0.483, 0.128, 0.128, 0.483}, {-0.191, -0.191, -0.462, 0.191, 0.191, 0.462}, {-0.249, -0.249, -0.433, 0.249, 0.249, 0.433}, {-0.303, -0.303, -0.397, 0.303, 0.303, 0.397}, } local SS_OFF = 0 local SS_DANGER = 1 local SS_CLEAR = 2 local reactor_siren = {} local function siren_set_state(pos, state) local hpos = minetest.hash_node_position(pos) local siren = reactor_siren[hpos] if not siren then if state == SS_OFF then return end siren = {state=SS_OFF} reactor_siren[hpos] = siren end if state == SS_DANGER and siren.state ~= SS_DANGER then if siren.handle then minetest.sound_stop(siren.handle) end siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48}) siren.state = SS_DANGER elseif state == SS_CLEAR then if siren.handle then minetest.sound_stop(siren.handle) end local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48}) siren.handle = clear_handle siren.state = SS_CLEAR minetest.after(10, function() if siren.handle ~= clear_handle then return end minetest.sound_stop(clear_handle) if reactor_siren[hpos] == siren then reactor_siren[hpos] = nil end end) elseif state == SS_OFF and siren.state ~= SS_OFF then if siren.handle then minetest.sound_stop(siren.handle) end reactor_siren[hpos] = nil end end local function siren_danger(pos, meta) meta:set_int("siren", 1) siren_set_state(pos, SS_DANGER) end local function siren_clear(pos, meta) if meta:get_int("siren") ~= 0 then siren_set_state(pos, SS_CLEAR) meta:set_int("siren", 0) end end --[[ The standard reactor structure consists of a 9x9x9 cube. A cross section through the middle: CCCC CCCC CBBB BBBC CBSS SSBC CBSWWWSBC CBSW#WSBC CBSW|WSBC CBSS|SSBC CBBB|BBBC CCCC|CCCC C = Concrete, B = Blast-resistant concrete, S = Stainless Steel, W = water node, # = reactor core, | = HV cable The man-hole and the HV cable are only in the middle, and the man-hole is optional. For the reactor to operate and not melt down, it insists on the inner 7x7x7 portion (from the core out to the blast-resistant concrete) being intact. Intactness only depends on the number of nodes of the right type in each layer. The water layer must have water in all but at most one node; the steel and blast-resistant concrete layers must have the right material in all but at most two nodes. The permitted gaps are meant for the cable and man-hole, but can actually be anywhere and contain anything. For the reactor to be useful, a cable must connect to the core, but it can go in any direction. The outer concrete layer of the standard structure is not required for the reactor to operate. It is noted here because it used to be mandatory, and for historical reasons (that it predates the implementation of radiation) it needs to continue being adequate shielding of legacy reactors. If it ever ceases to be adequate shielding for new reactors, legacy ones should be grandfathered. --]] local function reactor_structure_badness(pos) local vm = VoxelManip() local pos1 = vector.subtract(pos, 3) local pos2 = vector.add(pos, 3) local MinEdge, MaxEdge = vm:read_from_map(pos1, pos2) local data = vm:get_data() local area = VoxelArea:new({MinEdge=MinEdge, MaxEdge=MaxEdge}) local c_blast_concrete = minetest.get_content_id("technic:blast_resistant_concrete") local c_stainless_steel = minetest.get_content_id("technic:stainless_steel_block") local c_water_source = minetest.get_content_id("default:water_source") local c_water_flowing = minetest.get_content_id("default:water_flowing") local blastlayer, steellayer, waterlayer = 0, 0, 0 for z = pos1.z, pos2.z do for y = pos1.y, pos2.y do for x = pos1.x, pos2.x do local cid = data[area:index(x, y, z)] if x == pos1.x or x == pos2.x or y == pos1.y or y == pos2.y or z == pos1.z or z == pos2.z then if cid == c_blast_concrete then blastlayer = blastlayer + 1 end elseif x == pos1.x+1 or x == pos2.x-1 or y == pos1.y+1 or y == pos2.y-1 or z == pos1.z+1 or z == pos2.z-1 then if cid == c_stainless_steel then steellayer = steellayer + 1 end elseif x == pos1.x+2 or x == pos2.x-2 or y == pos1.y+2 or y == pos2.y-2 or z == pos1.z+2 or z == pos2.z-2 then if cid == c_water_source or cid == c_water_flowing then waterlayer = waterlayer + 1 end end end end end if waterlayer > 25 then waterlayer = 25 end if steellayer > 96 then steellayer = 96 end if blastlayer > 216 then blastlayer = 216 end return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer) end local function melt_down_reactor(pos) minetest.log("action", "A reactor melted down at "..minetest.pos_to_string(pos)) minetest.set_node(pos, {name="technic:corium_source"}) end minetest.register_abm({ nodenames = {"technic:hv_nuclear_reactor_core_active"}, interval = 4, chance = 1, action = function (pos, node) local meta = minetest.get_meta(pos) local badness = reactor_structure_badness(pos) local accum_badness = meta:get_int("structure_accumulated_badness") if badness == 0 then if accum_badness ~= 0 then meta:set_int("structure_accumulated_badness", accum_badness - 4) siren_clear(pos, meta) end else siren_danger(pos, meta) accum_badness = accum_badness + badness if accum_badness >= 25 then melt_down_reactor(pos) else meta:set_int("structure_accumulated_badness", accum_badness) end end end, }) local function run(pos, node) local meta = minetest.get_meta(pos) local burn_time = meta:get_int("burn_time") or 0 if burn_time >= burn_ticks or burn_time == 0 then local inv = meta:get_inventory() if not inv:is_empty("src") then local src_list = inv:get_list("src") local correct_fuel_count = 0 for _, src_stack in pairs(src_list) do if src_stack and src_stack:get_name() == fuel_type then correct_fuel_count = correct_fuel_count + 1 end end -- Check that the reactor is complete and has the correct fuel if correct_fuel_count == 6 and reactor_structure_badness(pos) == 0 then meta:set_int("burn_time", 1) technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active") meta:set_int("HV_EU_supply", power_supply) for idx, src_stack in pairs(src_list) do src_stack:take_item() inv:set_stack("src", idx, src_stack) end return end end meta:set_int("HV_EU_supply", 0) meta:set_int("burn_time", 0) meta:set_string("infotext", S("%s Idle"):format(reactor_desc)) technic.swap_node(pos, "technic:hv_nuclear_reactor_core") meta:set_int("structure_accumulated_badness", 0) siren_clear(pos, meta) elseif burn_time > 0 then burn_time = burn_time + 1 meta:set_int("burn_time", burn_time) local percent = math.floor(burn_time / burn_ticks * 100) meta:set_string("infotext", reactor_desc.." ("..percent.."%)") meta:set_int("HV_EU_supply", power_supply) end end minetest.register_node("technic:hv_nuclear_reactor_core", { description = reactor_desc, tiles = {"technic_hv_nuclear_reactor_core.png"}, groups = {cracky=1, technic_machine=1, technic_hv=1}, legacy_facedir_simple = true, sounds = default.node_sound_wood_defaults(), drawtype = "nodebox", paramtype = "light", stack_max = 1, node_box = { type = "fixed", fixed = node_box }, on_construct = function(pos) local meta = minetest.get_meta(pos) meta:set_string("infotext", reactor_desc) meta:set_string("formspec", reactor_formspec) local inv = meta:get_inventory() inv:set_size("src", 6) end, can_dig = technic.machine_can_dig, on_destruct = function(pos) siren_set_state(pos, SS_OFF) end, allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_move = technic.machine_inventory_move, technic_run = run, }) minetest.register_node("technic:hv_nuclear_reactor_core_active", { tiles = {"technic_hv_nuclear_reactor_core.png"}, groups = {cracky=1, technic_machine=1, technic_hv=1, radioactive=11000, not_in_creative_inventory=1}, legacy_facedir_simple = true, sounds = default.node_sound_wood_defaults(), drop = "technic:hv_nuclear_reactor_core", drawtype = "nodebox", light_source = 14, paramtype = "light", node_box = { type = "fixed", fixed = node_box }, can_dig = technic.machine_can_dig, after_dig_node = melt_down_reactor, on_destruct = function(pos) siren_set_state(pos, SS_OFF) end, allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_move = technic.machine_inventory_move, technic_run = run, technic_on_disable = function(pos, node) local timer = minetest.get_node_timer(pos) timer:start(1) end, on_timer = function(pos, node) local meta = minetest.get_meta(pos) -- Connected back? if meta:get_int("HV_EU_timeout") > 0 then return false end local burn_time = meta:get_int("burn_time") or 0 if burn_time >= burn_ticks or burn_time == 0 then meta:set_int("HV_EU_supply", 0) meta:set_int("burn_time", 0) technic.swap_node(pos, "technic:hv_nuclear_reactor_core") meta:set_int("structure_accumulated_badness", 0) siren_clear(pos, meta) return false end meta:set_int("burn_time", burn_time + 1) return true end, }) technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer) technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer) --[[ Radioactivity Radiation resistance represents the extent to which a material attenuates radiation passing through it; i.e., how good a radiation shield it is. This is identified per node type. For materials that exist in real life, the radiation resistance value that this system uses for a node type consisting of a solid cube of that material is the (approximate) number of halvings of ionising radiation that is achieved by a meter of the material in real life. This is approximately proportional to density, which provides a good way to estimate it. Homogeneous mixtures of materials have radiation resistance computed by a simple weighted mean. Note that the amount of attenuation that a material achieves in-game is not required to be (and is not) the same as the attenuation achieved in real life. Radiation resistance for a node type may be specified in the node definition, under the key "radiation_resistance". As an interim measure, until node definitions widely include this, this code knows a bunch of values for particular node types in several mods, and values for groups of node types. The node definition takes precedence if it specifies a value. Nodes for which no value at all is known are taken to provide no radiation resistance at all; this is appropriate for the majority of node types. Only node types consisting of a fairly homogeneous mass of material should report non-zero radiation resistance; anything with non-uniform geometry or complex internal structure should show no radiation resistance. Fractional resistance values are permitted. --]] local default_radiation_resistance_per_node = { ["default:brick"] = 13, ["default:bronzeblock"] = 45, ["default:clay"] = 15, ["default:coalblock"] = 9.6, ["default:cobble"] = 15, ["default:copperblock"] = 46, ["default:desert_cobble"] = 15, ["default:desert_sand"] = 10, ["default:desert_stone"] = 17, ["default:desert_stonebrick"] = 17, ["default:diamondblock"] = 24, ["default:dirt"] = 8.2, ["default:dirt_with_grass"] = 8.2, ["default:dirt_with_grass_footsteps"] = 8.2, ["default:dirt_with_snow"] = 8.2, ["default:glass"] = 17, ["default:goldblock"] = 170, ["default:gravel"] = 10, ["default:ice"] = 5.6, ["default:lava_flowing"] = 8.5, ["default:lava_source"] = 17, ["default:mese"] = 21, ["default:mossycobble"] = 15, ["default:nyancat"] = 1000, ["default:nyancat_rainbow"] = 1000, ["default:obsidian"] = 18, ["default:obsidian_glass"] = 18, ["default:sand"] = 10, ["default:sandstone"] = 15, ["default:sandstonebrick"] = 15, ["default:snowblock"] = 1.7, ["default:steelblock"] = 40, ["default:stone"] = 17, ["default:stone_with_coal"] = 16, ["default:stone_with_copper"] = 20, ["default:stone_with_diamond"] = 18, ["default:stone_with_gold"] = 34, ["default:stone_with_iron"] = 20, ["default:stone_with_mese"] = 17, ["default:stonebrick"] = 17, ["default:water_flowing"] = 2.8, ["default:water_source"] = 5.6, ["farming:desert_sand_soil"] = 10, ["farming:desert_sand_soil_wet"] = 10, ["farming:soil"] = 8.2, ["farming:soil_wet"] = 8.2, ["glooptest:akalin_crystal_glass"] = 21, ["glooptest:akalinblock"] = 40, ["glooptest:alatro_crystal_glass"] = 21, ["glooptest:alatroblock"] = 40, ["glooptest:amethystblock"] = 18, ["glooptest:arol_crystal_glass"] = 21, ["glooptest:crystal_glass"] = 21, ["glooptest:emeraldblock"] = 19, ["glooptest:heavy_crystal_glass"] = 21, ["glooptest:mineral_akalin"] = 20, ["glooptest:mineral_alatro"] = 20, ["glooptest:mineral_amethyst"] = 17, ["glooptest:mineral_arol"] = 20, ["glooptest:mineral_desert_coal"] = 16, ["glooptest:mineral_desert_iron"] = 20, ["glooptest:mineral_emerald"] = 17, ["glooptest:mineral_kalite"] = 20, ["glooptest:mineral_ruby"] = 18, ["glooptest:mineral_sapphire"] = 18, ["glooptest:mineral_talinite"] = 20, ["glooptest:mineral_topaz"] = 18, ["glooptest:reinforced_crystal_glass"] = 21, ["glooptest:rubyblock"] = 27, ["glooptest:sapphireblock"] = 27, ["glooptest:talinite_crystal_glass"] = 21, ["glooptest:taliniteblock"] = 40, ["glooptest:topazblock"] = 24, ["mesecons_extrawires:mese_powered"] = 21, ["moreblocks:cactus_brick"] = 13, ["moreblocks:cactus_checker"] = 8.5, ["moreblocks:circle_stone_bricks"] = 17, ["moreblocks:clean_glass"] = 17, ["moreblocks:coal_checker"] = 9.0, ["moreblocks:coal_glass"] = 17, ["moreblocks:coal_stone"] = 17, ["moreblocks:coal_stone_bricks"] = 17, ["moreblocks:glow_glass"] = 17, ["moreblocks:grey_bricks"] = 15, ["moreblocks:iron_checker"] = 11, ["moreblocks:iron_glass"] = 17, ["moreblocks:iron_stone"] = 17, ["moreblocks:iron_stone_bricks"] = 17, ["moreblocks:plankstone"] = 9.3, ["moreblocks:split_stone_tile"] = 15, ["moreblocks:split_stone_tile_alt"] = 15, ["moreblocks:stone_tile"] = 15, ["moreblocks:super_glow_glass"] = 17, ["moreblocks:tar"] = 7.0, ["moreblocks:wood_tile"] = 1.7, ["moreblocks:wood_tile_center"] = 1.7, ["moreblocks:wood_tile_down"] = 1.7, ["moreblocks:wood_tile_flipped"] = 1.7, ["moreblocks:wood_tile_full"] = 1.7, ["moreblocks:wood_tile_left"] = 1.7, ["moreblocks:wood_tile_right"] = 1.7, ["moreblocks:wood_tile_up"] = 1.7, ["moreores:mineral_mithril"] = 18, ["moreores:mineral_silver"] = 21, ["moreores:mineral_tin"] = 19, ["moreores:mithril_block"] = 26, ["moreores:silver_block"] = 53, ["moreores:tin_block"] = 37, ["snow:snow_brick"] = 2.8, ["technic:brass_block"] = 43, ["technic:carbon_steel_block"] = 40, ["technic:cast_iron_block"] = 40, ["technic:chernobylite_block"] = 40, ["technic:chromium_block"] = 37, ["technic:corium_flowing"] = 40, ["technic:corium_source"] = 80, ["technic:granite"] = 18, ["technic:lead_block"] = 80, ["technic:marble"] = 18, ["technic:marble_bricks"] = 18, ["technic:mineral_chromium"] = 19, ["technic:mineral_uranium"] = 71, ["technic:mineral_zinc"] = 19, ["technic:stainless_steel_block"] = 40, ["technic:zinc_block"] = 36, ["tnt:tnt"] = 11, ["tnt:tnt_burning"] = 11, } local default_radiation_resistance_per_group = { concrete = 16, tree = 3.4, uranium_block = 500, wood = 1.7, } local cache_radiation_resistance = {} local function node_radiation_resistance(node_name) local eff = cache_radiation_resistance[node_name] if eff then return eff end local def = minetest.registered_nodes[node_name] eff = def and def.radiation_resistance or default_radiation_resistance_per_node[node_name] if def and not eff then for g, v in pairs(def.groups) do if v > 0 and default_radiation_resistance_per_group[g] then eff = default_radiation_resistance_per_group[g] break end end end if not eff then eff = 0 end cache_radiation_resistance[node_name] = eff return eff end --[[ Radioactive nodes cause damage to nearby players. The damage effect depends on the intrinsic strength of the radiation source, the distance between the source and the player, and the shielding effect of the intervening material. These determine a rate of damage; total damage caused is the integral of this over time. In the absence of effective shielding, for a specific source the damage rate varies realistically in inverse proportion to the square of the distance. (Distance is measured to the player's abdomen, not to the nominal player position which corresponds to the foot.) However, if the player is inside a non-walkable (liquid or gaseous) radioactive node, the nominal distance could go to zero, yielding infinite damage. In that case, the player's body is displacing the radioactive material, so the effective distance should remain non-zero. We therefore apply a lower distance bound of sqrt(0.75), which is the maximum distance one can get from the node center within the node. A radioactive node is identified by being in the "radioactive" group, and the group value signifies the strength of the radiation source. The group value is 1000 times the distance from a node at which an unshielded player will be damaged by 0.25 HP/s. Or, equivalently, it is 2000 times the square root of the damage rate in HP/s that an unshielded player 1 node away will take. Shielding is assessed by adding the shielding values of all nodes between the source node and the player, ignoring the source node itself. As in reality, shielding causes exponential attenuation of radiation. However, the effect is scaled down relative to real life. A node with radiation resistance value R yields attenuation of sqrt(R) * 0.1 nepers. (In real life it would be about R * 0.69 nepers, by the definition of the radiation resistance values.) The sqrt part of this formula scales down the differences between shielding types, reflecting the game's simplification of making expensive materials such as gold readily available in cubes. The multiplicative factor in the formula scales down the difference between shielded and unshielded safe distances, avoiding the latter becoming impractically large. Damage is processed at rates down to 0.25 HP/s, which in the absence of shielding is attained at the distance specified by the "radioactive" group value. Computed damage rates below 0.25 HP/s result in no damage at all to the player. This gives the player an opportunity to be safe, and limits the range at which source/player interactions need to be considered. --]] local abdomen_offset = vector.new(0, 1, 0) local abdomen_offset_length = vector.length(abdomen_offset) local cache_scaled_shielding = {} local function dmg_player(pos, o, strength) local pl_pos = vector.add(o:getpos(), abdomen_offset) local shielding = 0 local dist = vector.distance(pos, pl_pos) for ray_pos in technic.trace_node_ray(pos, vector.direction(pos, pl_pos), dist) do if not vector.equals(ray_pos, pos) then local shield_name = minetest.get_node(ray_pos).name local shield_val = cache_scaled_shielding[sname] if not shield_val then shield_val = math.sqrt(node_radiation_resistance(shield_name)) * 0.025 cache_scaled_shielding[shield_name] = shield_val end shielding = shielding + shield_val end end local dmg = (0.25e-6 * strength * strength) / (math.max(0.75, dist * dist) * math.exp(shielding)) if dmg >= 0.25 then local dmg_int = math.floor(dmg) -- The closer you are to getting one more damage point, -- the more likely it will be added. if math.random() < dmg - dmg_int then dmg_int = dmg_int + 1 end if dmg_int > 0 then o:set_hp(math.max(o:get_hp() - dmg_int, 0)) end end end local function dmg_abm(pos, node) local strength = minetest.get_item_group(node.name, "radioactive") for _, o in pairs(minetest.get_objects_inside_radius(pos, strength * 0.001 + abdomen_offset_length)) do if o:is_player() then dmg_player(pos, o, strength) end end end if minetest.setting_getbool("enable_damage") then minetest.register_abm({ nodenames = {"group:radioactive"}, interval = 1, chance = 1, action = dmg_abm, }) end -- Radioactive materials that can result from destroying a reactor local griefing = technic.config:get_bool("enable_corium_griefing") for _, state in pairs({"flowing", "source"}) do minetest.register_node("technic:corium_"..state, { description = S(state == "source" and "Corium Source" or "Flowing Corium"), drawtype = (state == "source" and "liquid" or "flowingliquid"), [state == "source" and "tiles" or "special_tiles"] = {{ name = "technic_corium_"..state.."_animated.png", animation = { type = "vertical_frames", aspect_w = 16, aspect_h = 16, length = 3.0, }, }}, paramtype = "light", paramtype2 = (state == "flowing" and "flowingliquid" or nil), light_source = (state == "source" and 8 or 5), walkable = false, pointable = false, diggable = false, buildable_to = true, drop = "", drowning = 1, liquidtype = state, liquid_alternative_flowing = "technic:corium_flowing", liquid_alternative_source = "technic:corium_source", liquid_viscosity = LAVA_VISC, liquid_renewable = false, damage_per_second = 6, post_effect_color = {a=192, r=80, g=160, b=80}, groups = { liquid = 2, hot = 3, igniter = (griefing and 1 or 0), radioactive = (state == "source" and 32000 or 16000), not_in_creative_inventory = (state == "flowing" and 1 or nil), }, }) end if rawget(_G, "bucket") and bucket.register_liquid then bucket.register_liquid( "technic:corium_source", "technic:corium_flowing", "technic:bucket_corium", "technic_bucket_corium.png", "Corium Bucket" ) end minetest.register_node("technic:chernobylite_block", { description = S("Chernobylite Block"), tiles = {"technic_chernobylite_block.png"}, is_ground_content = true, groups = {cracky=1, radioactive=5000, level=2}, sounds = default.node_sound_stone_defaults(), light_source = 2, }) minetest.register_abm({ nodenames = {"group:water"}, neighbors = {"technic:corium_source"}, interval = 1, chance = 1, action = function(pos, node) minetest.remove_node(pos) end, }) minetest.register_abm({ nodenames = {"technic:corium_flowing"}, neighbors = {"group:water"}, interval = 1, chance = 1, action = function(pos, node) minetest.set_node(pos, {name="technic:chernobylite_block"}) end, }) minetest.register_abm({ nodenames = {"technic:corium_flowing"}, interval = 5, chance = (griefing and 10 or 1), action = function(pos, node) minetest.set_node(pos, {name="technic:chernobylite_block"}) end, }) if griefing then minetest.register_abm({ nodenames = {"technic:corium_source", "technic:corium_flowing"}, interval = 4, chance = 4, action = function(pos, node) for _, offset in ipairs({ vector.new(1,0,0), vector.new(-1,0,0), vector.new(0,0,1), vector.new(0,0,-1), vector.new(0,-1,0), }) do if math.random(8) == 1 then minetest.dig_node(vector.add(pos, offset)) end end end, }) end