-- SWITCHING STATION -- The switching station is the center of all power distribution on an electric network. -- The station will collect all produced power from producers (PR) and batteries (BA) -- and distribute it to receivers (RE) and depleted batteries (BA). -- -- It works like this: -- All PR,BA,RE nodes are indexed and tagged with the switching station. -- The tagging is to allow more stations to be built without allowing a cheat -- with duplicating power. -- All the RE nodes are queried for their current EU demand. Those which are off -- would require no or a small standby EU demand, while those which are on would -- require more. -- If the total demand is less than the available power they are all updated with the -- demand number. -- If any surplus exists from the PR nodes the batteries will be charged evenly with this. -- If the total demand requires draw on the batteries they will be discharged evenly. -- -- If the total demand is more than the available power all RE nodes will be shut down. -- We have a brown-out situation. -- -- Hence all the power distribution logic resides in this single node. -- -- Nodes connected to the network will have one or more of these parameters as meta data: -- _EU_supply : Exists for PR and BA node types. This is the EU value supplied by the node. Output -- _EU_demand : Exists for RE and BA node types. This is the EU value the node requires to run. Output -- _EU_input : Exists for RE and BA node types. This is the actual EU value the network can give the node. Input -- -- The reason the LV|MV|HV type is prepended toe meta data is because some machine could require several supplies to work. -- This way the supplies are separated per network. technic.networks = {} local S = technic.getter minetest.register_craft({ output = "technic:switching_station", recipe = { {"technic:cast_iron_ingot", "technic:lv_transformer", "technic:cast_iron_ingot"}, {"default:copper_ingot", "technic:lv_cable0", "default:copper_ingot"}, {"technic:cast_iron_ingot", "technic:lv_cable0", "technic:cast_iron_ingot"} } }) minetest.register_node("technic:switching_station",{ description = S("Switching Station"), tiles = {"technic_water_mill_top_active.png", "technic_water_mill_top_active.png", "technic_water_mill_top_active.png", "technic_water_mill_top_active.png", "technic_water_mill_top_active.png", "technic_water_mill_top_active.png"}, groups = {snappy=2, choppy=2, oddly_breakable_by_hand=2}, sounds = default.node_sound_wood_defaults(), drawtype = "nodebox", paramtype = "light", node_box = { type = "fixed", fixed = {-0.5, -0.5, -0.5, 0.5, 0.5, 0.5}, }, on_construct = function(pos) local meta = minetest.get_meta(pos) meta:set_string("infotext", S("Switching Station")) end, }) -------------------------------------------------- -- Functions to help the machines on the electrical network -------------------------------------------------- -- This one provides a timeout for a node in case it was disconnected from the network -- A node must be touched by the station continuously in order to function function technic.switching_station_timeout_count(pos, tier) local meta = minetest.get_meta(pos) local timeout = meta:get_int(tier.."_EU_timeout") if timeout == 0 then meta:set_int(tier.."_EU_input", 0) else meta:set_int(tier.."_EU_timeout", timeout - 1) end end -------------------------------------------------- -- Functions to traverse the electrical network -------------------------------------------------- -- Add a wire node to the LV/MV/HV network local add_new_cable_node = function(nodes, pos) -- Ignore if the node has already been added for i = 1, #nodes do if pos.x == nodes[i].x and pos.y == nodes[i].y and pos.z == nodes[i].z then return false end end table.insert(nodes, {x=pos.x, y=pos.y, z=pos.z, visited=1}) return true end -- Generic function to add found connected nodes to the right classification array local check_node_subp = function(PR_nodes, RE_nodes, BA_nodes, all_nodes, pos, machines, tier) local meta = minetest.get_meta(pos) local name = minetest.get_node(pos).name if technic.is_tier_cable(name, tier) then add_new_cable_node(all_nodes, pos) elseif machines[name] then --dprint(name.." is a "..machines[name]) if machines[name] == technic.producer then add_new_cable_node(PR_nodes, pos) elseif machines[name] == technic.receiver then add_new_cable_node(RE_nodes, pos) elseif machines[name] == technic.battery then add_new_cable_node(BA_nodes, pos) end meta:set_int(tier.."_EU_timeout", 2) -- Touch node end end -- Traverse a network given a list of machines and a cable type name local traverse_network = function(PR_nodes, RE_nodes, BA_nodes, all_nodes, i, machines, tier) local pos = all_nodes[i] local positions = { {x=pos.x+1, y=pos.y, z=pos.z}, {x=pos.x-1, y=pos.y, z=pos.z}, {x=pos.x, y=pos.y+1, z=pos.z}, {x=pos.x, y=pos.y-1, z=pos.z}, {x=pos.x, y=pos.y, z=pos.z+1}, {x=pos.x, y=pos.y, z=pos.z-1}} --print("ON") for i, cur_pos in pairs(positions) do check_node_subp(PR_nodes, RE_nodes, BA_nodes, all_nodes, cur_pos, machines, tier) end end local touch_nodes = function(list, tier) for _, pos in ipairs(list) do local meta = minetest.get_meta(pos) meta:set_int(tier.."_EU_timeout", 2) -- Touch node end end local get_network = function(pos1, tier) local cached = technic.networks[minetest.hash_node_position(pos1)] if cached and cached.tier == tier then touch_nodes(cached.PR_nodes, tier) touch_nodes(cached.BA_nodes, tier) touch_nodes(cached.RE_nodes, tier) return cached.PR_nodes, cached.BA_nodes, cached.RE_nodes end local i = 1 local PR_nodes = {} local BA_nodes = {} local RE_nodes = {} local all_nodes = {pos1} repeat traverse_network(PR_nodes, RE_nodes, BA_nodes, all_nodes, i, technic.machines[tier], tier) i = i + 1 until all_nodes[i] == nil technic.networks[minetest.hash_node_position(pos1)] = {tier = tier, PR_nodes = PR_nodes, RE_nodes = RE_nodes, BA_nodes = BA_nodes} return PR_nodes, BA_nodes, RE_nodes end ----------------------------------------------- -- The action code for the switching station -- ----------------------------------------------- minetest.register_abm({ nodenames = {"technic:switching_station"}, interval = 1, chance = 1, action = function(pos, node, active_object_count, active_object_count_wider) local meta = minetest.get_meta(pos) local meta1 = nil local pos1 = {} local PR_EU = 0 -- EUs from PR nodes local BA_PR_EU = 0 -- EUs from BA nodes (discharching) local BA_RE_EU = 0 -- EUs to BA nodes (charging) local RE_EU = 0 -- EUs to RE nodes local tier = "" local PR_nodes local BA_nodes local RE_nodes local machine_name = S("Switching Station") -- Which kind of network are we on: pos1 = {x=pos.x, y=pos.y-1, z=pos.z} local name = minetest.get_node(pos1).name local tier = technic.get_cable_tier(name) if tier then PR_nodes, BA_nodes, RE_nodes = get_network(pos1, tier) else --dprint("Not connected to a network") meta:set_string("infotext", S("%s Has No Network"):format(machine_name)) return end --dprint("nodes="..table.getn(all_nodes) -- .." PR="..table.getn(PR_nodes) -- .." BA="..table.getn(BA_nodes) -- .." RE="..table.getn(RE_nodes)) -- Strings for the meta data local eu_demand_str = tier.."_EU_demand" local eu_input_str = tier.."_EU_input" local eu_supply_str = tier.."_EU_supply" -- Get all the power from the PR nodes local PR_eu_supply = 0 -- Total power for _, pos1 in pairs(PR_nodes) do meta1 = minetest.get_meta(pos1) PR_eu_supply = PR_eu_supply + meta1:get_int(eu_supply_str) end --dprint("Total PR supply:"..PR_eu_supply) -- Get all the demand from the RE nodes local RE_eu_demand = 0 for _, pos1 in pairs(RE_nodes) do meta1 = minetest.get_meta(pos1) RE_eu_demand = RE_eu_demand + meta1:get_int(eu_demand_str) end --dprint("Total RE demand:"..RE_eu_demand) -- Get all the power from the BA nodes local BA_eu_supply = 0 for _, pos1 in pairs(BA_nodes) do meta1 = minetest.get_meta(pos1) BA_eu_supply = BA_eu_supply + meta1:get_int(eu_supply_str) end --dprint("Total BA supply:"..BA_eu_supply) -- Get all the demand from the BA nodes local BA_eu_demand = 0 for _, pos1 in pairs(BA_nodes) do meta1 = minetest.get_meta(pos1) BA_eu_demand = BA_eu_demand + meta1:get_int(eu_demand_str) end --dprint("Total BA demand:"..BA_eu_demand) meta:set_string("infotext", S("%s. Supply: %d Demand: %d"):format( machine_name, PR_eu_supply, RE_eu_demand)) -- If the PR supply is enough for the RE demand supply them all if PR_eu_supply >= RE_eu_demand then --dprint("PR_eu_supply"..PR_eu_supply.." >= RE_eu_demand"..RE_eu_demand) for _, pos1 in pairs(RE_nodes) do meta1 = minetest.get_meta(pos1) local eu_demand = meta1:get_int(eu_demand_str) meta1:set_int(eu_input_str, eu_demand) end -- We have a surplus, so distribute the rest equally to the BA nodes -- Let's calculate the factor of the demand PR_eu_supply = PR_eu_supply - RE_eu_demand local charge_factor = 0 -- Assume all batteries fully charged if BA_eu_demand > 0 then charge_factor = PR_eu_supply / BA_eu_demand end for n, pos1 in pairs(BA_nodes) do meta1 = minetest.get_meta(pos1) local eu_demand = meta1:get_int(eu_demand_str) meta1:set_int(eu_input_str, math.floor(eu_demand * charge_factor)) --dprint("Charging battery:"..math.floor(eu_demand*charge_factor)) end return end -- If the PR supply is not enough for the RE demand we will discharge the batteries too if PR_eu_supply + BA_eu_supply >= RE_eu_demand then --dprint("PR_eu_supply "..PR_eu_supply.."+BA_eu_supply "..BA_eu_supply.." >= RE_eu_demand"..RE_eu_demand) for _, pos1 in pairs(RE_nodes) do meta1 = minetest.get_meta(pos1) local eu_demand = meta1:get_int(eu_demand_str) meta1:set_int(eu_input_str, eu_demand) end -- We have a deficit, so distribute to the BA nodes -- Let's calculate the factor of the supply local charge_factor = 0 -- Assume all batteries depleted if BA_eu_supply > 0 then charge_factor = (PR_eu_supply - RE_eu_demand) / BA_eu_supply end for n,pos1 in pairs(BA_nodes) do meta1 = minetest.get_meta(pos1) local eu_supply = meta1:get_int(eu_supply_str) meta1:set_int(eu_input_str, math.floor(eu_supply * charge_factor)) --dprint("Discharging battery:"..math.floor(eu_supply*charge_factor)) end return end -- If the PR+BA supply is not enough for the RE demand: Power only the batteries local charge_factor = 0 -- Assume all batteries fully charged if BA_eu_demand > 0 then charge_factor = PR_eu_supply / BA_eu_demand end for n, pos1 in pairs(BA_nodes) do meta1 = minetest.get_meta(pos1) local eu_demand = meta1:get_int(eu_demand_str) meta1:set_int(eu_input_str, math.floor(eu_demand * charge_factor)) end for n, pos1 in pairs(RE_nodes) do meta1 = minetest.get_meta(pos1) meta1:set_int(eu_input_str, 0) end end, }) for tier, machines in pairs(technic.machines) do -- SPECIAL will not be traversed technic.register_machine(tier, "technic:switching_station", "SPECIAL") end