local digit_sep_esc do local sep = technic.config:get("digit_separator") sep = tonumber(sep) and string.char(sep) or sep or " " -- Escape for gsub for magic in ("().%+-*?[^$"):gmatch(".") do if sep == magic then sep = "%"..sep end end digit_sep_esc = sep end function technic.pretty_num(num) local str, k = tostring(num), nil repeat str, k = str:gsub("^(-?%d+)(%d%d%d)", "%1"..digit_sep_esc.."%2") until k == 0 return str end --- Same as minetest.swap_node, but only changes name -- and doesn't re-set if already set. function technic.swap_node(pos, name) local node = minetest.get_node(pos) if node.name ~= name then node.name = name minetest.swap_node(pos, node) end end --- Fully charge RE chargeable item. -- Must be defined early to reference in item definitions. function technic.refill_RE_charge(stack) local max_charge = technic.power_tools[stack:get_name()] if not max_charge then return stack end technic.set_RE_wear(stack, max_charge, max_charge) local meta = minetest.deserialize(stack:get_metadata()) or {} meta.charge = max_charge stack:set_metadata(minetest.serialize(meta)) return stack end -- If the node is loaded, returns it. If it isn't loaded, load it and return nil. function technic.get_or_load_node(pos) local node = minetest.get_node_or_nil(pos) if node then return node end local vm = VoxelManip() local MinEdge, MaxEdge = vm:read_from_map(pos, pos) return nil end technic.tube_inject_item = pipeworks.tube_inject_item or function(pos, start_pos, velocity, item) local tubed = pipeworks.tube_item(vector.new(pos), item) tubed:get_luaentity().start_pos = vector.new(start_pos) tubed:setvelocity(velocity) tubed:setacceleration(vector.new(0, 0, 0)) end --- Iterates over the node positions along the specified ray. -- The returned positions will not include the starting position. function technic.trace_node_ray(pos, dir, range) local x_step = dir.x > 0 and 1 or -1 local y_step = dir.y > 0 and 1 or -1 local z_step = dir.z > 0 and 1 or -1 local i = 1 return function(p) -- Approximation of where we should be if we weren't rounding -- to nodes. This moves forward a bit faster then we do. -- A correction is done below. local real_x = pos.x + (dir.x * i) local real_y = pos.y + (dir.y * i) local real_z = pos.z + (dir.z * i) -- How far off we've gotten from where we should be. local dx = math.abs(real_x - p.x) local dy = math.abs(real_y - p.y) local dz = math.abs(real_z - p.z) -- If the real position moves ahead too fast, stop it so we -- can catch up. If it gets too far ahead it will smooth -- out our movement too much and we won't turn fast enough. if dx + dy + dz < 2 then i = i + 1 end -- Step in whichever direction we're most off course in. if dx > dy then if dx > dz then p.x = p.x + x_step else p.z = p.z + z_step end elseif dy > dz then p.y = p.y + y_step else p.z = p.z + z_step end if vector.distance(pos, p) > range then return nil end return p end, vector.round(pos) end --- Like trace_node_ray, but includes extra positions close to the ray. function technic.trace_node_ray_fat(pos, dir, range) local x_step = dir.x > 0 and 1 or -1 local y_step = dir.y > 0 and 1 or -1 local z_step = dir.z > 0 and 1 or -1 local next_poses = {} local i = 1 return function(p) local ni, np = next(next_poses) if np then next_poses[ni] = nil return np end -- Approximation of where we should be if we weren't rounding -- to nodes. This moves forward a bit faster then we do. -- A correction is done below. local real_x = pos.x + (dir.x * i) local real_y = pos.y + (dir.y * i) local real_z = pos.z + (dir.z * i) -- How far off we've gotten from where we should be. local dx = math.abs(real_x - p.x) local dy = math.abs(real_y - p.y) local dz = math.abs(real_z - p.z) -- If the real position moves ahead too fast, stop it so we -- can catch up. If it gets too far ahead it will smooth -- out our movement too much and we won't turn fast enough. if dx + dy + dz < 2 then i = i + 1 end -- Step in whichever direction we're most off course in. local sx, sy, sz -- Whether we've already stepped along each axis if dx > dy then if dx > dz then sx = true p.x = p.x + x_step else sz = true p.z = p.z + z_step end elseif dy > dz then sy = true p.y = p.y + y_step else sz = true p.z = p.z + z_step end if vector.distance(pos, p) > range then return nil end -- Add other positions that we're significantly off on. -- We can just use fixed integer keys here because the -- table will be completely cleared before we reach this -- code block again. local dlen = math.sqrt(dx*dx + dy*dy + dz*dz) -- Normalized axis deltas local dxn, dyn, dzn = dx / dlen, dy / dlen, dz / dlen if not sx and dxn > 0.5 then next_poses[1] = vector.new(p.x + x_step, p.y, p.z) end if not sy and dyn > 0.5 then next_poses[2] = vector.new(p.x, p.y + y_step, p.z) end if not sz and dzn > 0.5 then next_poses[3] = vector.new(p.x, p.y, p.z + z_step) end return p end, vector.round(pos) end