-- The enriched uranium rod driven EU generator. -- A very large and advanced machine providing vast amounts of power. -- Very efficient but also expensive to run as it needs uranium. (10000EU 86400 ticks (one week)) -- Provides HV EUs that can be down converted as needed. -- -- The nuclear reactor core needs water and a protective shield to work. -- This is checked now and then and if the machine is tampered with... BOOM! local burn_ticks = 7 * 24 * 60 * 60 -- (seconds). local power_supply = 100000 -- EUs local fuel_type = "technic:uranium_fuel" -- The reactor burns this stuff local S = technic.getter if not vector.length_square then vector.length_square = function (v) return v.x*v.x + v.y*v.y + v.z*v.z end end -- FIXME: recipe must make more sense like a rod recepticle, steam chamber, HV generator? minetest.register_craft({ output = 'technic:hv_nuclear_reactor_core', recipe = { {'technic:carbon_plate', 'default:obsidian_glass', 'technic:carbon_plate'}, {'technic:composite_plate', 'technic:machine_casing', 'technic:composite_plate'}, {'technic:stainless_steel_ingot', 'technic:hv_cable0', 'technic:stainless_steel_ingot'}, } }) local generator_formspec = "invsize[8,9;]".. "label[0,0;"..S("Nuclear Reactor Rod Compartment").."]".. "list[current_name;src;2,1;3,2;]".. "list[current_player;main;0,5;8,4;]" -- "Boxy sphere" local nodebox = { { -0.353, -0.353, -0.353, 0.353, 0.353, 0.353 }, -- Box { -0.495, -0.064, -0.064, 0.495, 0.064, 0.064 }, -- Circle +-x { -0.483, -0.128, -0.128, 0.483, 0.128, 0.128 }, { -0.462, -0.191, -0.191, 0.462, 0.191, 0.191 }, { -0.433, -0.249, -0.249, 0.433, 0.249, 0.249 }, { -0.397, -0.303, -0.303, 0.397, 0.303, 0.303 }, { -0.305, -0.396, -0.305, 0.305, 0.396, 0.305 }, -- Circle +-y { -0.250, -0.432, -0.250, 0.250, 0.432, 0.250 }, { -0.191, -0.461, -0.191, 0.191, 0.461, 0.191 }, { -0.130, -0.482, -0.130, 0.130, 0.482, 0.130 }, { -0.066, -0.495, -0.066, 0.066, 0.495, 0.066 }, { -0.064, -0.064, -0.495, 0.064, 0.064, 0.495 }, -- Circle +-z { -0.128, -0.128, -0.483, 0.128, 0.128, 0.483 }, { -0.191, -0.191, -0.462, 0.191, 0.191, 0.462 }, { -0.249, -0.249, -0.433, 0.249, 0.249, 0.433 }, { -0.303, -0.303, -0.397, 0.303, 0.303, 0.397 }, } local reactor_siren = {} local function siren_set_state(pos, newstate) local hpos = minetest.hash_node_position(pos) local siren = reactor_siren[hpos] if not siren then if newstate == "off" then return end siren = {state="off"} reactor_siren[hpos] = siren end if newstate == "danger" and siren.state ~= "danger" then if siren.handle then minetest.sound_stop(siren.handle) end siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48}) siren.state = "danger" elseif newstate == "clear" then if siren.handle then minetest.sound_stop(siren.handle) end local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48}) siren.handle = clear_handle siren.state = "clear" minetest.after(10, function () if siren.handle == clear_handle then minetest.sound_stop(clear_handle) if reactor_siren[hpos] == siren then reactor_siren[hpos] = nil end end end) elseif newstate == "off" and siren.state ~= "off" then if siren.handle then minetest.sound_stop(siren.handle) end siren.handle = nil reactor_siren[hpos] = nil end end local function siren_danger(pos, meta) meta:set_int("siren", 1) siren_set_state(pos, "danger") end local function siren_clear(pos, meta) if meta:get_int("siren") ~= 0 then siren_set_state(pos, "clear") meta:set_int("siren", 0) end end -- The standard reactor structure consists of a 9x9x9 cube. A cross -- section through the middle: -- -- CCCC CCCC -- CBBB BBBC -- CBSS SSBC -- CBSWWWSBC -- CBSW#WSBC -- CBSW|WSBC -- CBSS|SSBC -- CBBB|BBBC -- CCCC|CCCC -- C = Concrete, B = Blast-resistant concrete, S = Stainless Steel, -- W = water node, # = reactor core, | = HV cable -- -- The man-hole and the HV cable are only in the middle, and the man-hole -- is optional. -- -- For the reactor to operate and not melt down, it insists on the inner -- 7x7x7 portion (from the core out to the blast-resistant concrete) -- being intact. Intactness only depends on the number of nodes of the -- right type in each layer. The water layer must have water in all but -- at most one node; the steel and blast-resistant concrete layers must -- have the right material in all but at most two nodes. The permitted -- gaps are meant for the cable and man-hole, but can actually be anywhere -- and contain anything. For the reactor to be useful, a cable must -- connect to the core, but it can go in any direction. -- -- The outer concrete layer of the standard structure is not required -- for the reactor to operate. It is noted here because it used to -- be mandatory, and for historical reasons (that it predates the -- implementation of radiation) it needs to continue being adequate -- shielding of legacy reactors. If it ever ceases to be adequate -- shielding for new reactors, legacy ones should be grandfathered. local reactor_structure_badness = function(pos) local vm = VoxelManip() local pos1 = vector.subtract(pos, 3) local pos2 = vector.add(pos, 3) local MinEdge, MaxEdge = vm:read_from_map(pos1, pos2) local data = vm:get_data() local area = VoxelArea:new({MinEdge=MinEdge, MaxEdge=MaxEdge}) local c_blast_concrete = minetest.get_content_id("technic:blast_resistant_concrete") local c_stainless_steel = minetest.get_content_id("technic:stainless_steel_block") local c_water_source = minetest.get_content_id("default:water_source") local c_water_flowing = minetest.get_content_id("default:water_flowing") local blastlayer, steellayer, waterlayer = 0, 0, 0 for z = pos1.z, pos2.z do for y = pos1.y, pos2.y do for x = pos1.x, pos2.x do local cid = data[area:index(x, y, z)] if x == pos1.x or x == pos2.x or y == pos1.y or y == pos2.y or z == pos1.z or z == pos2.z then if cid == c_blast_concrete then blastlayer = blastlayer + 1 end elseif x == pos1.x+1 or x == pos2.x-1 or y == pos1.y+1 or y == pos2.y-1 or z == pos1.z+1 or z == pos2.z-1 then if cid == c_stainless_steel then steellayer = steellayer + 1 end elseif x == pos1.x+2 or x == pos2.x-2 or y == pos1.y+2 or y == pos2.y-2 or z == pos1.z+2 or z == pos2.z-2 then if cid == c_water_source or cid == c_water_flowing then waterlayer = waterlayer + 1 end end end end end if waterlayer > 25 then waterlayer = 25 end if steellayer > 96 then steellayer = 96 end if blastlayer > 216 then blastlayer = 216 end return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer) end local function meltdown_reactor(pos) print("A reactor melted down at "..minetest.pos_to_string(pos)) minetest.set_node(pos, {name="technic:corium_source"}) end minetest.register_abm({ nodenames = {"technic:hv_nuclear_reactor_core_active"}, interval = 1, chance = 1, action = function (pos, node) local meta = minetest.get_meta(pos) local badness = reactor_structure_badness(pos) local accum_badness = meta:get_int("structure_accumulated_badness") if badness == 0 then if accum_badness ~= 0 then meta:set_int("structure_accumulated_badness", accum_badness - 1) siren_clear(pos, meta) end else siren_danger(pos, meta) accum_badness = accum_badness + badness if accum_badness >= 100 then meltdown_reactor(pos) else meta:set_int("structure_accumulated_badness", accum_badness) end end end, }) local run = function(pos, node) local meta = minetest.get_meta(pos) local machine_name = S("Nuclear %s Generator Core"):format("HV") local burn_time = meta:get_int("burn_time") or 0 if burn_time >= burn_ticks or burn_time == 0 then local inv = meta:get_inventory() if not inv:is_empty("src") then local srclist = inv:get_list("src") local correct_fuel_count = 0 for _, srcstack in pairs(srclist) do if srcstack then if srcstack:get_name() == fuel_type then correct_fuel_count = correct_fuel_count + 1 end end end -- Check that the reactor is complete as well -- as the correct number of correct fuel if correct_fuel_count == 6 and reactor_structure_badness(pos) == 0 then meta:set_int("burn_time", 1) technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active") meta:set_int("HV_EU_supply", power_supply) for idx, srcstack in pairs(srclist) do srcstack:take_item() inv:set_stack("src", idx, srcstack) end return end end meta:set_int("HV_EU_supply", 0) meta:set_int("burn_time", 0) meta:set_string("infotext", S("%s Idle"):format(machine_name)) technic.swap_node(pos, "technic:hv_nuclear_reactor_core") meta:set_int("structure_accumulated_badness", 0) siren_clear(pos, meta) elseif burn_time > 0 then burn_time = burn_time + 1 meta:set_int("burn_time", burn_time) local percent = math.floor(burn_time / burn_ticks * 100) meta:set_string("infotext", machine_name.." ("..percent.."%)") meta:set_int("HV_EU_supply", power_supply) end end minetest.register_node("technic:hv_nuclear_reactor_core", { description = S("Nuclear %s Generator Core"):format("HV"), tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"}, groups = {cracky=1, technic_machine=1}, legacy_facedir_simple = true, sounds = default.node_sound_wood_defaults(), drawtype="nodebox", paramtype = "light", stack_max = 1, node_box = { type = "fixed", fixed = nodebox }, on_construct = function(pos) local meta = minetest.get_meta(pos) meta:set_string("infotext", S("Nuclear %s Generator Core"):format("HV")) meta:set_int("HV_EU_supply", 0) -- Signal to the switching station that this device burns some -- sort of fuel and needs special handling meta:set_int("HV_EU_from_fuel", 1) meta:set_int("burn_time", 0) meta:set_string("formspec", generator_formspec) local inv = meta:get_inventory() inv:set_size("src", 6) end, can_dig = technic.machine_can_dig, on_destruct = function(pos) siren_set_state(pos, "off") end, allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_move = technic.machine_inventory_move, technic_run = run, }) minetest.register_node("technic:hv_nuclear_reactor_core_active", { tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"}, groups = {cracky=1, technic_machine=1, radioactive=11000, not_in_creative_inventory=1}, legacy_facedir_simple = true, sounds = default.node_sound_wood_defaults(), drop="technic:hv_nuclear_reactor_core", drawtype="nodebox", light_source = 15, paramtype = "light", node_box = { type = "fixed", fixed = nodebox }, can_dig = technic.machine_can_dig, after_dig_node = meltdown_reactor, on_destruct = function(pos) siren_set_state(pos, "off") end, allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_move = technic.machine_inventory_move, technic_run = run, technic_on_disable = function(pos, node) local timer = minetest.get_node_timer(pos) timer:start(1) end, on_timer = function(pos, node) local meta = minetest.get_meta(pos) -- Connected back? if meta:get_int("HV_EU_timeout") > 0 then return false end local burn_time = meta:get_int("burn_time") or 0 if burn_time >= burn_ticks or burn_time == 0 then meta:set_int("HV_EU_supply", 0) meta:set_int("burn_time", 0) technic.swap_node(pos, "technic:hv_nuclear_reactor_core") meta:set_int("structure_accumulated_badness", 0) siren_clear(pos, meta) return false end meta:set_int("burn_time", burn_time + 1) return true end, }) technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer) technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer) -- radioactivity -- Radiation resistance represents the extent to which a material -- attenuates radiation passing through it; i.e., how good a radiation -- shield it is. This is identified per node type. For materials that -- exist in real life, the radiation resistance value that this system -- uses for a node type consisting of a solid cube of that material is the -- (approximate) number of halvings of ionising radiation that is achieved -- by a metre of the material in real life. This is approximately -- proportional to density, which provides a good way to estimate it. -- Homogeneous mixtures of materials have radiation resistance computed -- by a simple weighted mean. Note that the amount of attenuation that -- a material achieves in-game is not required to be (and is not) the -- same as the attenuation achieved in real life. -- -- Radiation resistance for a node type may be specified in the node -- definition, under the key "radiation_resistance". As an interim -- measure, until node definitions widely include this, this code -- knows a bunch of values for particular node types in several mods, -- and values for groups of node types. The node definition takes -- precedence if it specifies a value. Nodes for which no value at -- all is known are taken to provide no radiation resistance at all; -- this is appropriate for the majority of node types. Only node types -- consisting of a fairly homogeneous mass of material should report -- non-zero radiation resistance; anything with non-uniform geometry -- or complex internal structure should show no radiation resistance. -- Fractional resistance values are permitted; two significant figures -- is the recommended precision. local default_radiation_resistance_per_node = { ["default:brick"] = 13, ["default:bronzeblock"] = 45, ["default:clay"] = 15, ["default:coalblock"] = 9.6, ["default:cobble"] = 15, ["default:copperblock"] = 46, ["default:desert_cobble"] = 15, ["default:desert_sand"] = 10, ["default:desert_stone"] = 17, ["default:desert_stonebrick"] = 17, ["default:diamondblock"] = 24, ["default:dirt"] = 8.2, ["default:dirt_with_grass"] = 8.2, ["default:dirt_with_grass_footsteps"] = 8.2, ["default:dirt_with_snow"] = 8.2, ["default:glass"] = 17, ["default:goldblock"] = 170, ["default:gravel"] = 10, ["default:ice"] = 5.6, ["default:lava_flowing"] = 8.5, ["default:lava_source"] = 17, ["default:mese"] = 21, ["default:mossycobble"] = 15, ["default:nyancat"] = 1000, ["default:nyancat_rainbow"] = 1000, ["default:obsidian"] = 18, ["default:obsidian_glass"] = 18, ["default:sand"] = 10, ["default:sandstone"] = 15, ["default:sandstonebrick"] = 15, ["default:snowblock"] = 1.7, ["default:steelblock"] = 40, ["default:stone"] = 17, ["default:stone_with_coal"] = 16, ["default:stone_with_copper"] = 20, ["default:stone_with_diamond"] = 18, ["default:stone_with_gold"] = 34, ["default:stone_with_iron"] = 20, ["default:stone_with_mese"] = 17, ["default:stonebrick"] = 17, ["default:water_flowing"] = 2.8, ["default:water_source"] = 5.6, ["farming:desert_sand_soil"] = 10, ["farming:desert_sand_soil_wet"] = 10, ["farming:soil"] = 8.2, ["farming:soil_wet"] = 8.2, ["glooptest:akalin_crystal_glass"] = 21, ["glooptest:akalinblock"] = 40, ["glooptest:alatro_crystal_glass"] = 21, ["glooptest:alatroblock"] = 40, ["glooptest:amethystblock"] = 18, ["glooptest:arol_crystal_glass"] = 21, ["glooptest:crystal_glass"] = 21, ["glooptest:emeraldblock"] = 19, ["glooptest:heavy_crystal_glass"] = 21, ["glooptest:mineral_akalin"] = 20, ["glooptest:mineral_alatro"] = 20, ["glooptest:mineral_amethyst"] = 17, ["glooptest:mineral_arol"] = 20, ["glooptest:mineral_desert_coal"] = 16, ["glooptest:mineral_desert_iron"] = 20, ["glooptest:mineral_emerald"] = 17, ["glooptest:mineral_kalite"] = 20, ["glooptest:mineral_ruby"] = 18, ["glooptest:mineral_sapphire"] = 18, ["glooptest:mineral_talinite"] = 20, ["glooptest:mineral_topaz"] = 18, ["glooptest:reinforced_crystal_glass"] = 21, ["glooptest:rubyblock"] = 27, ["glooptest:sapphireblock"] = 27, ["glooptest:talinite_crystal_glass"] = 21, ["glooptest:taliniteblock"] = 40, ["glooptest:topazblock"] = 24, ["mesecons_extrawires:mese_powered"] = 21, ["moreblocks:cactus_brick"] = 13, ["moreblocks:cactus_checker"] = 8.5, ["moreblocks:circle_stone_bricks"] = 17, ["moreblocks:clean_glass"] = 17, ["moreblocks:coal_checker"] = 9.0, ["moreblocks:coal_glass"] = 17, ["moreblocks:coal_stone"] = 17, ["moreblocks:coal_stone_bricks"] = 17, ["moreblocks:glow_glass"] = 17, ["moreblocks:grey_bricks"] = 15, ["moreblocks:iron_checker"] = 11, ["moreblocks:iron_glass"] = 17, ["moreblocks:iron_stone"] = 17, ["moreblocks:iron_stone_bricks"] = 17, ["moreblocks:plankstone"] = 9.3, ["moreblocks:split_stone_tile"] = 15, ["moreblocks:split_stone_tile_alt"] = 15, ["moreblocks:stone_tile"] = 15, ["moreblocks:super_glow_glass"] = 17, ["moreblocks:tar"] = 7.0, ["moreblocks:wood_tile"] = 1.7, ["moreblocks:wood_tile_center"] = 1.7, ["moreblocks:wood_tile_down"] = 1.7, ["moreblocks:wood_tile_flipped"] = 1.7, ["moreblocks:wood_tile_full"] = 1.7, ["moreblocks:wood_tile_left"] = 1.7, ["moreblocks:wood_tile_right"] = 1.7, ["moreblocks:wood_tile_up"] = 1.7, ["moreores:mineral_mithril"] = 18, ["moreores:mineral_silver"] = 21, ["moreores:mineral_tin"] = 19, ["moreores:mithril_block"] = 26, ["moreores:silver_block"] = 53, ["moreores:tin_block"] = 37, ["snow:snow_brick"] = 2.8, ["technic:brass_block"] = 43, ["technic:carbon_steel_block"] = 40, ["technic:cast_iron_block"] = 40, ["technic:chernobylite_block"] = 40, ["technic:chromium_block"] = 37, ["technic:corium_flowing"] = 40, ["technic:corium_source"] = 80, ["technic:granite"] = 18, ["technic:marble"] = 18, ["technic:marble_bricks"] = 18, ["technic:mineral_chromium"] = 19, ["technic:mineral_uranium"] = 71, ["technic:mineral_zinc"] = 19, ["technic:stainless_steel_block"] = 40, ["technic:zinc_block"] = 36, ["tnt:tnt"] = 11, ["tnt:tnt_burning"] = 11, } local default_radiation_resistance_per_group = { concrete = 16, tree = 3.4, uranium_block = 500, wood = 1.7, } local cache_radiation_resistance = {} local function node_radiation_resistance(nodename) local eff = cache_radiation_resistance[nodename] if eff then return eff end local def = minetest.registered_nodes[nodename] or {groups={}} eff = def.radiation_resistance or default_radiation_resistance_per_node[nodename] if not eff then for g, v in pairs(def.groups) do if v > 0 and default_radiation_resistance_per_group[g] then eff = default_radiation_resistance_per_group[g] break end end end if not eff then eff = 0 end cache_radiation_resistance[nodename] = eff return eff end -- Radioactive nodes cause damage to nearby players. The damage -- effect depends on the intrinsic strength of the radiation source, -- the distance between the source and the player, and the shielding -- effect of the intervening material. These determine a rate of damage; -- total damage caused is the integral of this over time. -- -- In the absence of effective shielding, for a specific source the -- damage rate varies realistically in inverse proportion to the square -- of the distance. (Distance is measured to the player's abdomen, -- not to the nominal player position which corresponds to the foot.) -- However, if the player is inside a non-walkable (liquid or gaseous) -- radioactive node, the nominal distance could go to zero, yielding -- infinite damage. In that case, the player's body is displacing the -- radioactive material, so the effective distance should remain non-zero. -- We therefore apply a lower distance bound of sqrt(0.75) m, which is -- the maximum distance one can get from the node centre within the node. -- -- A radioactive node is identified by being in the "radioactive" group, -- and the group value signifies the strength of the radiation source. -- The group value is the distance in millimetres from a node at which -- an unshielded player will be damaged by 0.25 HP/s. Or, equivalently, -- it is 2000 times the square root of the damage rate in HP/s that an -- unshielded player 1 m away will take. -- -- Shielding is assessed by sampling every 0.25 m along the path -- from the source to the player, ignoring the source node itself. -- The summed shielding values from the sampled nodes yield a measure -- of the total amount of shielding on the path. As in reality, -- shielding causes exponential attenuation of radiation. However, the -- effect is scaled down relative to real life. A metre of a node with -- radiation resistance value R yields attenuation of sqrt(R)*0.1 nepers. -- (In real life it would be about R*0.69 nepers, by the definition -- of the radiation resistance values.) The sqrt part of this formula -- scales down the differences between shielding types, reflecting the -- game's simplification of making expensive materials such as gold -- readily available in cubic metres. The multiplicative factor in the -- formula scales down the difference between shielded and unshielded -- safe distances, avoiding the latter becoming impractically large. -- -- Damage is processed at rates down to 0.25 HP/s, which in the absence of -- shielding is attained at the distance specified by the "radioactive" -- group value. Computed damage rates below 0.25 HP/s result in no -- damage at all to the player. This gives the player an opportunity -- to be safe, and limits the range at which source/player interactions -- need to be considered. local assumed_abdomen_offset = vector.new(0, 1, 0) local assumed_abdomen_offset_length = vector.length(assumed_abdomen_offset) local cache_scaled_shielding = {} local damage_enabled = minetest.setting_getbool("enable_damage") if damage_enabled then minetest.register_abm({ nodenames = {"group:radioactive"}, interval = 1, chance = 1, action = function (pos, node) local strength = minetest.registered_nodes[node.name].groups.radioactive for _, o in ipairs(minetest.get_objects_inside_radius(pos, strength*0.001 + assumed_abdomen_offset_length)) do if o:is_player() then local rel = vector.subtract(vector.add(o:getpos(), assumed_abdomen_offset), pos) local dist_sq = vector.length_square(rel) local dist = math.sqrt(dist_sq) local dirstep = dist == 0 and vector.new(0,0,0) or vector.divide(rel, dist*4) local intpos = pos local shielding = 0 for intdist = 0.25, dist, 0.25 do intpos = vector.add(intpos, dirstep) local intnodepos = vector.round(intpos) if not vector.equals(intnodepos, pos) then local sname = minetest.get_node(intnodepos).name local sval = cache_scaled_shielding[sname] if not sval then sval = math.sqrt(node_radiation_resistance(sname)) * -0.025 cache_scaled_shielding[sname] = sval end shielding = shielding + sval end end local dmg_rate = 0.25e-6 * strength*strength * math.exp(shielding) / math.max(0.75, dist_sq) if dmg_rate >= 0.25 then local dmg_int = math.floor(dmg_rate) if math.random() < dmg_rate-dmg_int then dmg_int = dmg_int + 1 end if dmg_int > 0 then o:set_hp(math.max(o:get_hp() - dmg_int, 0)) end end end end end, }) end -- radioactive materials that can result from destroying a reactor for _, state in ipairs({ "flowing", "source" }) do minetest.register_node("technic:corium_"..state, { description = S(state == "source" and "Corium Source" or "Flowing Corium"), drawtype = (state == "source" and "liquid" or "flowingliquid"), [state == "source" and "tiles" or "special_tiles"] = {{ name = "technic_corium_"..state.."_animated.png", animation = { type = "vertical_frames", aspect_w = 16, aspect_h = 16, length = 3.0, }, }}, paramtype = "light", paramtype2 = (state == "flowing" and "flowingliquid" or nil), light_source = (state == "source" and 8 or 5), walkable = false, pointable = false, diggable = false, buildable_to = true, drop = "", drowning = 1, liquidtype = state, liquid_alternative_flowing = "technic:corium_flowing", liquid_alternative_source = "technic:corium_source", liquid_viscosity = LAVA_VISC, liquid_renewable = false, damage_per_second = 6, post_effect_color = { a=192, r=80, g=160, b=80 }, groups = { liquid = 2, hot = 3, igniter = 1, radioactive = (state == "source" and 32000 or 16000), not_in_creative_inventory = (state == "flowing" and 1 or nil), }, }) end if bucket and bucket.register_liquid then bucket.register_liquid( "technic:corium_source", "technic:corium_flowing", "technic:bucket_corium", "technic_bucket_corium.png", "Corium Bucket" ) end minetest.register_node("technic:chernobylite_block", { description = S("Chernobylite Block"), tiles = { "technic_chernobylite_block.png" }, is_ground_content = true, groups = { cracky=1, radioactive=5000, level=2 }, sounds = default.node_sound_stone_defaults(), light_source = 2, }) minetest.register_abm({ nodenames = {"group:water"}, neighbors = {"technic:corium_source"}, interval = 1, chance = 1, action = function (pos, node) minetest.remove_node(pos) end, }) minetest.register_abm({ nodenames = {"technic:corium_flowing"}, neighbors = {"group:water"}, interval = 1, chance = 1, action = function (pos, node) minetest.set_node(pos, {name="technic:chernobylite_block"}) end, }) local griefing = technic.config:get_bool("enable_corium_griefing") minetest.register_abm({ nodenames = {"technic:corium_flowing"}, interval = 5, chance = (griefing and 10 or 1), action = function (pos, node) minetest.set_node(pos, {name="technic:chernobylite_block"}) end, }) if griefing then minetest.register_abm({ nodenames = { "technic:corium_source", "technic:corium_flowing" }, interval = 4, chance = 4, action = function (pos, node) for _, offset in ipairs({ vector.new(1,0,0), vector.new(-1,0,0), vector.new(0,0,1), vector.new(0,0,-1), vector.new(0,-1,0), }) do if math.random(8) == 1 then minetest.dig_node(vector.add(pos, offset)) end end end, }) end