1
0
mirror of https://github.com/minetest/irrlicht.git synced 2025-01-15 04:10:29 +01:00
irrlicht/source/Irrlicht/COpenGLSLMaterialRenderer.cpp

751 lines
20 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
// This file was originally written by William Finlayson. I (Nikolaus
// Gebhardt) did some minor modifications and changes to it and integrated it
// into Irrlicht. Thanks a lot to William for his work on this and that he gave
// me his permission to add it into Irrlicht using the zlib license.
// After Irrlicht 0.12, Michael Zoech did some improvements to this renderer, I
// merged this into Irrlicht 0.14, thanks to him for his work.
#include "COpenGLSLMaterialRenderer.h"
#ifdef _IRR_COMPILE_WITH_OPENGL_
#include "IGPUProgrammingServices.h"
#include "IShaderConstantSetCallBack.h"
#include "IMaterialRendererServices.h"
#include "IVideoDriver.h"
#include "os.h"
#include "COpenGLDriver.h"
#include "COpenGLCacheHandler.h"
#include "COpenGLMaterialRenderer.h"
#include "COpenGLCoreFeature.h"
namespace irr
{
namespace video
{
//! Constructor
COpenGLSLMaterialRenderer::COpenGLSLMaterialRenderer(video::COpenGLDriver* driver,
s32& outMaterialTypeNr, const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
2023-06-14 15:24:43 +02:00
: Driver(driver), CallBack(callback), Alpha(false), Blending(false), AlphaTest(false), Program(0), Program2(0), UserData(userData)
{
#ifdef _DEBUG
setDebugName("COpenGLSLMaterialRenderer");
#endif
switch (baseMaterial)
{
case EMT_TRANSPARENT_VERTEX_ALPHA:
case EMT_TRANSPARENT_ALPHA_CHANNEL:
Alpha = true;
break;
case EMT_ONETEXTURE_BLEND:
Blending = true;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
AlphaTest = true;
break;
default:
break;
}
if (CallBack)
CallBack->grab();
if (!Driver->queryFeature(EVDF_ARB_GLSL))
return;
init(outMaterialTypeNr, vertexShaderProgram, pixelShaderProgram, geometryShaderProgram);
}
//! constructor only for use by derived classes who want to
//! create a fall back material for example.
COpenGLSLMaterialRenderer::COpenGLSLMaterialRenderer(COpenGLDriver* driver,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
2023-06-14 15:24:43 +02:00
: Driver(driver), CallBack(callback), Alpha(false), Blending(false), AlphaTest(false), Program(0), Program2(0), UserData(userData)
{
switch (baseMaterial)
{
case EMT_TRANSPARENT_VERTEX_ALPHA:
case EMT_TRANSPARENT_ALPHA_CHANNEL:
Alpha = true;
break;
case EMT_ONETEXTURE_BLEND:
Blending = true;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
AlphaTest = true;
break;
default:
break;
}
if (CallBack)
CallBack->grab();
}
//! Destructor
COpenGLSLMaterialRenderer::~COpenGLSLMaterialRenderer()
{
if (CallBack)
CallBack->drop();
if (Program)
{
GLhandleARB shaders[8];
GLint count;
Driver->extGlGetAttachedObjects(Program, 8, &count, shaders);
// avoid bugs in some drivers, which return larger numbers
// use int variable to avoid compiler problems with template
int mincount=core::min_((int)count,8);
for (int i=0; i<mincount; ++i)
Driver->extGlDeleteObject(shaders[i]);
Driver->extGlDeleteObject(Program);
Program = 0;
}
if (Program2)
{
GLuint shaders[8];
GLint count;
Driver->extGlGetAttachedShaders(Program2, 8, &count, shaders);
// avoid bugs in some drivers, which return larger numbers
// use int variable to avoid compiler problems with template
int mincount=core::min_((int)count,8);
for (int i=0; i<mincount; ++i)
Driver->extGlDeleteShader(shaders[i]);
Driver->extGlDeleteProgram(Program2);
Program2 = 0;
}
UniformInfo.clear();
}
void COpenGLSLMaterialRenderer::init(s32& outMaterialTypeNr,
const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
const c8* geometryShaderProgram,
scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut)
{
outMaterialTypeNr = -1;
if (!createProgram())
return;
#if defined(GL_ARB_vertex_shader) && defined (GL_ARB_fragment_shader)
if (vertexShaderProgram)
if (!createShader(GL_VERTEX_SHADER_ARB, vertexShaderProgram))
return;
if (pixelShaderProgram)
if (!createShader(GL_FRAGMENT_SHADER_ARB, pixelShaderProgram))
return;
#endif
#if defined(GL_ARB_geometry_shader4) || defined(GL_EXT_geometry_shader4) || defined(GL_NV_geometry_program4) || defined(GL_NV_geometry_shader4)
if (geometryShaderProgram && Driver->queryFeature(EVDF_GEOMETRY_SHADER))
{
if (!createShader(GL_GEOMETRY_SHADER_EXT, geometryShaderProgram))
return;
#if defined(GL_ARB_geometry_shader4) || defined(GL_EXT_geometry_shader4) || defined(GL_NV_geometry_shader4)
if (Program2) // Geometry shaders are supported only in OGL2.x+ drivers.
{
Driver->extGlProgramParameteri(Program2, GL_GEOMETRY_INPUT_TYPE_EXT, Driver->primitiveTypeToGL(inType));
Driver->extGlProgramParameteri(Program2, GL_GEOMETRY_OUTPUT_TYPE_EXT, Driver->primitiveTypeToGL(outType));
if (verticesOut==0)
Driver->extGlProgramParameteri(Program2, GL_GEOMETRY_VERTICES_OUT_EXT, Driver->MaxGeometryVerticesOut);
else
Driver->extGlProgramParameteri(Program2, GL_GEOMETRY_VERTICES_OUT_EXT, core::min_(verticesOut, Driver->MaxGeometryVerticesOut));
}
#elif defined(GL_NV_geometry_program4)
if (verticesOut==0)
Driver->extGlProgramVertexLimit(GL_GEOMETRY_PROGRAM_NV, Driver->MaxGeometryVerticesOut);
else
Driver->extGlProgramVertexLimit(GL_GEOMETRY_PROGRAM_NV, core::min_(verticesOut, Driver->MaxGeometryVerticesOut));
#endif
}
#endif
if (!linkProgram())
return;
// register myself as new material
outMaterialTypeNr = Driver->addMaterialRenderer(this);
}
bool COpenGLSLMaterialRenderer::OnRender(IMaterialRendererServices* service,
E_VERTEX_TYPE vtxtype)
{
// call callback to set shader constants
if (CallBack && (Program||Program2))
CallBack->OnSetConstants(this, UserData);
return true;
}
void COpenGLSLMaterialRenderer::OnSetMaterial(const video::SMaterial& material,
const video::SMaterial& lastMaterial,
bool resetAllRenderstates,
video::IMaterialRendererServices* services)
{
if (Driver->getFixedPipelineState() == COpenGLDriver::EOFPS_ENABLE)
Driver->setFixedPipelineState(COpenGLDriver::EOFPS_ENABLE_TO_DISABLE);
else
Driver->setFixedPipelineState(COpenGLDriver::EOFPS_DISABLE);
COpenGLCacheHandler* cacheHandler = Driver->getCacheHandler();
if (material.MaterialType != lastMaterial.MaterialType || resetAllRenderstates)
{
if (Program2)
Driver->irrGlUseProgram(Program2);
else if (Program)
Driver->extGlUseProgramObject(Program);
}
Driver->setBasicRenderStates(material, lastMaterial, resetAllRenderstates);
if (Alpha)
{
cacheHandler->setBlend(true);
cacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
cacheHandler->setAlphaTest(true);
cacheHandler->setAlphaFunc(GL_GREATER, 0.f);
}
else if (Blending)
{
E_BLEND_FACTOR srcRGBFact,dstRGBFact,srcAlphaFact,dstAlphaFact;
E_MODULATE_FUNC modulate;
u32 alphaSource;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulate, alphaSource, material.MaterialTypeParam);
if (Driver->queryFeature(EVDF_BLEND_SEPARATE))
{
cacheHandler->setBlendFuncSeparate(Driver->getGLBlend(srcRGBFact), Driver->getGLBlend(dstRGBFact),
Driver->getGLBlend(srcAlphaFact), Driver->getGLBlend(dstAlphaFact));
}
else
{
cacheHandler->setBlendFunc(Driver->getGLBlend(srcRGBFact), Driver->getGLBlend(dstRGBFact));
}
cacheHandler->setBlend(true);
}
else if (AlphaTest)
{
cacheHandler->setAlphaTest(true);
cacheHandler->setAlphaFunc(GL_GREATER, 0.5f);
}
if (CallBack)
CallBack->OnSetMaterial(material);
}
void COpenGLSLMaterialRenderer::OnUnsetMaterial()
{
if (Program)
Driver->extGlUseProgramObject(0);
if (Program2)
Driver->irrGlUseProgram(0);
COpenGLCacheHandler* cacheHandler = Driver->getCacheHandler();
2023-06-14 15:24:43 +02:00
if (Alpha || Blending)
{
cacheHandler->setBlend(false);
}
if (Alpha || AlphaTest)
{
cacheHandler->setAlphaTest(false);
}
}
//! Returns if the material is transparent.
bool COpenGLSLMaterialRenderer::isTransparent() const
{
2023-06-14 15:24:43 +02:00
return (Alpha || Blending);
}
bool COpenGLSLMaterialRenderer::createProgram()
{
if (Driver->Version>=200)
Program2 = Driver->extGlCreateProgram();
else
Program = Driver->extGlCreateProgramObject();
return true;
}
bool COpenGLSLMaterialRenderer::createShader(GLenum shaderType, const char* shader)
{
if (Program2)
{
GLuint shaderHandle = Driver->extGlCreateShader(shaderType);
Driver->extGlShaderSource(shaderHandle, 1, &shader, NULL);
Driver->extGlCompileShader(shaderHandle);
GLint status = 0;
#ifdef GL_VERSION_2_0
Driver->extGlGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &status);
#endif
if (status != GL_TRUE)
{
core::stringc typeInfo("shaderType: ");
typeInfo += core::stringc((unsigned long)shaderType);
os::Printer::log("GLSL (> 2.x) shader failed to compile", typeInfo.c_str(), ELL_ERROR);
// check error message and log it
GLint maxLength=0;
GLint length;
#ifdef GL_VERSION_2_0
Driver->extGlGetShaderiv(shaderHandle, GL_INFO_LOG_LENGTH,
&maxLength);
#endif
if (maxLength)
{
GLchar *infoLog = new GLchar[maxLength];
Driver->extGlGetShaderInfoLog(shaderHandle, maxLength, &length, infoLog);
os::Printer::log(reinterpret_cast<const c8*>(infoLog), ELL_ERROR);
delete [] infoLog;
}
return false;
}
Driver->extGlAttachShader(Program2, shaderHandle);
}
else
{
GLhandleARB shaderHandle = Driver->extGlCreateShaderObject(shaderType);
Driver->extGlShaderSourceARB(shaderHandle, 1, &shader, NULL);
Driver->extGlCompileShaderARB(shaderHandle);
GLint status = 0;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(shaderHandle, GL_OBJECT_COMPILE_STATUS_ARB, &status);
#endif
if (!status)
{
core::stringc typeInfo("shaderType: ");
typeInfo += core::stringc((unsigned long)shaderType);
os::Printer::log("GLSL shader failed to compile", typeInfo.c_str(), ELL_ERROR);
// check error message and log it
GLint maxLength=0;
GLsizei length;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(shaderHandle,
GL_OBJECT_INFO_LOG_LENGTH_ARB, &maxLength);
#endif
if (maxLength)
{
GLcharARB *infoLog = new GLcharARB[maxLength];
Driver->extGlGetInfoLog(shaderHandle, maxLength, &length, infoLog);
os::Printer::log(reinterpret_cast<const c8*>(infoLog), ELL_ERROR);
delete [] infoLog;
}
return false;
}
Driver->extGlAttachObject(Program, shaderHandle);
}
return true;
}
bool COpenGLSLMaterialRenderer::linkProgram()
{
if (Program2)
{
Driver->extGlLinkProgram(Program2);
GLint status = 0;
#ifdef GL_VERSION_2_0
Driver->extGlGetProgramiv(Program2, GL_LINK_STATUS, &status);
#endif
if (!status)
{
os::Printer::log("GLSL (> 2.x) shader program failed to link", ELL_ERROR);
// check error message and log it
GLint maxLength=0;
GLsizei length;
#ifdef GL_VERSION_2_0
Driver->extGlGetProgramiv(Program2, GL_INFO_LOG_LENGTH, &maxLength);
#endif
if (maxLength)
{
GLchar *infoLog = new GLchar[maxLength];
Driver->extGlGetProgramInfoLog(Program2, maxLength, &length, infoLog);
os::Printer::log(reinterpret_cast<const c8*>(infoLog), ELL_ERROR);
delete [] infoLog;
}
return false;
}
// get uniforms information
GLint num = 0;
#ifdef GL_VERSION_2_0
Driver->extGlGetProgramiv(Program2, GL_ACTIVE_UNIFORMS, &num);
#endif
if (num == 0)
{
// no uniforms
return true;
}
GLint maxlen = 0;
#ifdef GL_VERSION_2_0
Driver->extGlGetProgramiv(Program2, GL_ACTIVE_UNIFORM_MAX_LENGTH, &maxlen);
#endif
if (maxlen == 0)
{
os::Printer::log("GLSL (> 2.x): failed to retrieve uniform information", ELL_ERROR);
return false;
}
// seems that some implementations use an extra null terminator
++maxlen;
c8 *buf = new c8[maxlen];
UniformInfo.clear();
UniformInfo.reallocate(num);
for (GLint i=0; i < num; ++i)
{
SUniformInfo ui;
memset(buf, 0, maxlen);
GLint size;
Driver->extGlGetActiveUniform(Program2, i, maxlen, 0, &size, &ui.type, reinterpret_cast<GLchar*>(buf));
ui.name = buf;
ui.location = Driver->extGlGetUniformLocation(Program2, buf);
UniformInfo.push_back(ui);
}
delete [] buf;
}
else
{
Driver->extGlLinkProgramARB(Program);
GLint status = 0;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(Program, GL_OBJECT_LINK_STATUS_ARB, &status);
#endif
if (!status)
{
os::Printer::log("GLSL shader program failed to link", ELL_ERROR);
// check error message and log it
GLint maxLength=0;
GLsizei length;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(Program,
GL_OBJECT_INFO_LOG_LENGTH_ARB, &maxLength);
#endif
if (maxLength)
{
GLcharARB *infoLog = new GLcharARB[maxLength];
Driver->extGlGetInfoLog(Program, maxLength, &length, infoLog);
os::Printer::log(reinterpret_cast<const c8*>(infoLog), ELL_ERROR);
delete [] infoLog;
}
return false;
}
// get uniforms information
GLint num = 0;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(Program, GL_OBJECT_ACTIVE_UNIFORMS_ARB, &num);
#endif
if (num == 0)
{
// no uniforms
return true;
}
GLint maxlen = 0;
#ifdef GL_ARB_shader_objects
Driver->extGlGetObjectParameteriv(Program, GL_OBJECT_ACTIVE_UNIFORM_MAX_LENGTH_ARB, &maxlen);
#endif
if (maxlen == 0)
{
os::Printer::log("GLSL: failed to retrieve uniform information", ELL_ERROR);
return false;
}
// seems that some implementations use an extra null terminator
++maxlen;
c8 *buf = new c8[maxlen];
UniformInfo.clear();
UniformInfo.reallocate(num);
for (int i=0; i < num; ++i)
{
SUniformInfo ui;
memset(buf, 0, maxlen);
GLint size;
Driver->extGlGetActiveUniformARB(Program, i, maxlen, 0, &size, &ui.type, reinterpret_cast<GLcharARB*>(buf));
ui.name = buf;
ui.location = Driver->extGlGetUniformLocationARB(Program, buf);
UniformInfo.push_back(ui);
}
delete [] buf;
}
return true;
}
void COpenGLSLMaterialRenderer::setBasicRenderStates(const SMaterial& material,
const SMaterial& lastMaterial,
bool resetAllRenderstates)
{
// forward
Driver->setBasicRenderStates(material, lastMaterial, resetAllRenderstates);
}
s32 COpenGLSLMaterialRenderer::getVertexShaderConstantID(const c8* name)
{
return getPixelShaderConstantID(name);
}
s32 COpenGLSLMaterialRenderer::getPixelShaderConstantID(const c8* name)
{
for (u32 i = 0; i < UniformInfo.size(); ++i)
{
if (UniformInfo[i].name == name)
return i;
}
return -1;
}
void COpenGLSLMaterialRenderer::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
os::Printer::log("Cannot set constant, please use high level shader call instead.", ELL_WARNING);
}
void COpenGLSLMaterialRenderer::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
os::Printer::log("Cannot set constant, use high level shader call.", ELL_WARNING);
}
bool COpenGLSLMaterialRenderer::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
return setPixelShaderConstant(index, floats, count);
}
bool COpenGLSLMaterialRenderer::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
bool COpenGLSLMaterialRenderer::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
bool COpenGLSLMaterialRenderer::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
if(index < 0 || UniformInfo[index].location < 0)
return false;
bool status = true;
switch (UniformInfo[index].type)
{
case GL_FLOAT:
Driver->extGlUniform1fv(UniformInfo[index].location, count, floats);
break;
case GL_FLOAT_VEC2:
Driver->extGlUniform2fv(UniformInfo[index].location, count/2, floats);
break;
case GL_FLOAT_VEC3:
Driver->extGlUniform3fv(UniformInfo[index].location, count/3, floats);
break;
case GL_FLOAT_VEC4:
Driver->extGlUniform4fv(UniformInfo[index].location, count/4, floats);
break;
case GL_FLOAT_MAT2:
Driver->extGlUniformMatrix2fv(UniformInfo[index].location, count/4, false, floats);
break;
case GL_FLOAT_MAT2x3:
Driver->extGlUniformMatrix2x3fv(UniformInfo[index].location, count/6, false, floats);
break;
case GL_FLOAT_MAT2x4:
Driver->extGlUniformMatrix2x4fv(UniformInfo[index].location, count/8, false, floats);
break;
case GL_FLOAT_MAT3x2:
Driver->extGlUniformMatrix3x2fv(UniformInfo[index].location, count/6, false, floats);
break;
case GL_FLOAT_MAT3:
Driver->extGlUniformMatrix3fv(UniformInfo[index].location, count/9, false, floats);
break;
case GL_FLOAT_MAT3x4:
Driver->extGlUniformMatrix3x4fv(UniformInfo[index].location, count/12, false, floats);
break;
case GL_FLOAT_MAT4x2:
Driver->extGlUniformMatrix4x2fv(UniformInfo[index].location, count/8, false, floats);
break;
case GL_FLOAT_MAT4x3:
Driver->extGlUniformMatrix4x3fv(UniformInfo[index].location, count/12, false, floats);
break;
case GL_FLOAT_MAT4:
Driver->extGlUniformMatrix4fv(UniformInfo[index].location, count/16, false, floats);
break;
case GL_SAMPLER_1D:
case GL_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_SAMPLER_CUBE:
case GL_SAMPLER_1D_SHADOW:
case GL_SAMPLER_2D_SHADOW:
{
if(floats)
{
const GLint id = static_cast<GLint>(*floats);
Driver->extGlUniform1iv(UniformInfo[index].location, 1, &id);
}
else
status = false;
}
break;
default:
status = false;
break;
}
return status;
}
bool COpenGLSLMaterialRenderer::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
if(index < 0 || UniformInfo[index].location < 0)
return false;
bool status = true;
switch (UniformInfo[index].type)
{
case GL_INT:
case GL_BOOL:
Driver->extGlUniform1iv(UniformInfo[index].location, count, reinterpret_cast<const GLint*>(ints));
break;
case GL_INT_VEC2:
case GL_BOOL_VEC2:
Driver->extGlUniform2iv(UniformInfo[index].location, count/2, reinterpret_cast<const GLint*>(ints));
break;
case GL_INT_VEC3:
case GL_BOOL_VEC3:
Driver->extGlUniform3iv(UniformInfo[index].location, count/3, reinterpret_cast<const GLint*>(ints));
break;
case GL_INT_VEC4:
case GL_BOOL_VEC4:
Driver->extGlUniform4iv(UniformInfo[index].location, count/4, reinterpret_cast<const GLint*>(ints));
break;
case GL_SAMPLER_1D:
case GL_SAMPLER_2D:
case GL_SAMPLER_3D:
case GL_SAMPLER_CUBE:
case GL_SAMPLER_1D_SHADOW:
case GL_SAMPLER_2D_SHADOW:
Driver->extGlUniform1iv(UniformInfo[index].location, 1, reinterpret_cast<const GLint*>(ints));
break;
default:
status = false;
break;
}
return status;
}
bool COpenGLSLMaterialRenderer::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
if(index < 0 || UniformInfo[index].location < 0)
return false;
bool status = true;
switch (UniformInfo[index].type)
{
case GL_UNSIGNED_INT:
Driver->extGlUniform1uiv(UniformInfo[index].location, count, reinterpret_cast<const GLuint*>(ints));
break;
#if defined(GL_VERSION_3_0)
case GL_UNSIGNED_INT_VEC2:
Driver->extGlUniform2uiv(UniformInfo[index].location, count/2, reinterpret_cast<const GLuint*>(ints));
break;
case GL_UNSIGNED_INT_VEC3:
Driver->extGlUniform3uiv(UniformInfo[index].location, count/3, reinterpret_cast<const GLuint*>(ints));
break;
case GL_UNSIGNED_INT_VEC4:
Driver->extGlUniform4uiv(UniformInfo[index].location, count/4, reinterpret_cast<const GLuint*>(ints));
break;
#endif
default:
status = false;
break;
}
return status;
}
IVideoDriver* COpenGLSLMaterialRenderer::getVideoDriver()
{
return Driver;
}
} // end namespace video
} // end namespace irr
#endif