irrlicht/source/Irrlicht/CTRTextureGouraudNoZ2.cpp

808 lines
17 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_T0
#undef IPOL_T1
// define render case
#ifdef BURNINGVIDEO_RENDERER_FAST
#define SUBTEXEL
#define INVERSE_W
#else
#define SUBTEXEL
#define INVERSE_W
#endif
//#define USE_ZBUFFER
#define IPOL_W
//#define CMP_W
//#define WRITE_W
//#define IPOL_C0
#define IPOL_T0
//#define IPOL_T1
#if BURNING_MATERIAL_MAX_COLORS < 1
#undef IPOL_C0
#endif
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
burning_namespace_start
class CTRTextureGouraudNoZ2 : public IBurningShader
{
public:
//! constructor
CTRTextureGouraudNoZ2(CBurningVideoDriver* driver);
//! draws an indexed triangle list
virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) IRR_OVERRIDE;
virtual void OnSetMaterial(const SBurningShaderMaterial& material) IRR_OVERRIDE;
virtual bool canWireFrame() IRR_OVERRIDE { return true; }
private:
// fragment shader
typedef void (CTRTextureGouraudNoZ2::* tFragmentShader) ();
void fragment_linear();
void fragment_nearest();
tFragmentShader fragmentShader;
};
//! constructor
CTRTextureGouraudNoZ2::CTRTextureGouraudNoZ2(CBurningVideoDriver* driver)
: IBurningShader(driver)
{
#ifdef _DEBUG
setDebugName("CTRTextureGouraudNoZ2");
#endif
fragmentShader = &CTRTextureGouraudNoZ2::fragment_linear;
}
/*!
*/
void CTRTextureGouraudNoZ2::OnSetMaterial(const SBurningShaderMaterial& material)
{
if (material.org.TextureLayer[0].BilinearFilter ||
material.org.TextureLayer[0].TrilinearFilter ||
material.org.TextureLayer[0].AnisotropicFilter
)
{
fragmentShader = &CTRTextureGouraudNoZ2::fragment_linear;
}
else
{
fragmentShader = &CTRTextureGouraudNoZ2::fragment_nearest;
}
}
/*!
*/
void CTRTextureGouraudNoZ2::fragment_linear()
{
tVideoSample* dst;
#ifdef USE_ZBUFFER
fp24* z;
#endif
s32 xStart;
s32 xEnd;
s32 dx;
#ifdef SUBTEXEL
f32 subPixel;
#endif
#ifdef IPOL_Z
f32 slopeZ;
#endif
#ifdef IPOL_W
fp24 slopeW;
#endif
#ifdef IPOL_C0
sVec4 slopeC;
#endif
#ifdef IPOL_T0
sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
#endif
// apply top-left fill-convention, left
xStart = fill_convention_left(line.x[0]);
xEnd = fill_convention_right(line.x[1]);
dx = xEnd - xStart;
if (dx < 0)
return;
// slopes
const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]);
#ifdef IPOL_Z
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
#endif
#ifdef IPOL_W
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
#endif
#ifdef IPOL_C0
slopeC = (line.c[1] - line.c[0]) * invDeltaX;
#endif
#ifdef IPOL_T0
slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
#endif
#ifdef IPOL_T1
slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
#endif
#ifdef SUBTEXEL
subPixel = ((f32) xStart) - line.x[0];
#ifdef IPOL_Z
line.z[0] += slopeZ * subPixel;
#endif
#ifdef IPOL_W
line.w[0] += slopeW * subPixel;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC * subPixel;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0] * subPixel;
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1] * subPixel;
#endif
#endif
SOFTWARE_DRIVER_2_CLIPCHECK;
dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart;
#ifdef USE_ZBUFFER
z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart;
#endif
f32 inversew = FIX_POINT_F32_MUL;
tFixPoint tx0;
tFixPoint ty0;
tFixPoint r0, g0, b0;
for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
//if test active only first pixel
if ((0 == EdgeTestPass) & (i > line.x_edgetest)) break;
#ifdef CMP_Z
if (line.z[0] < z[i])
#endif
#ifdef CMP_W
if (line.w[0] >= z[i])
#endif
if_scissor_test_x
{
#ifdef INVERSE_W
inversew = fix_inverse32(line.w[0]);
#endif
tx0 = tofix(line.t[0][0].x,inversew);
ty0 = tofix(line.t[0][0].y,inversew);
//skybox
//dst[i] = getTexel_plain ( &IT[0], tx0, ty0 );
getSample_texture(r0, g0, b0, IT + 0, tx0, ty0);
dst[i] = fix_to_sample(r0, g0, b0);
#ifdef WRITE_Z
z[i] = line.z[0];
#endif
#ifdef WRITE_W
z[i] = line.w[0];
#endif
}
#ifdef IPOL_Z
line.z[0] += slopeZ;
#endif
#ifdef IPOL_W
line.w[0] += slopeW;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0];
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1];
#endif
}
}
/*!
*/
void CTRTextureGouraudNoZ2::fragment_nearest()
{
tVideoSample* dst;
#ifdef USE_ZBUFFER
fp24* z;
#endif
s32 xStart;
s32 xEnd;
s32 dx;
#ifdef SUBTEXEL
f32 subPixel;
#endif
#ifdef IPOL_Z
f32 slopeZ;
#endif
#ifdef IPOL_W
fp24 slopeW;
#endif
#ifdef IPOL_C0
sVec4 slopeC;
#endif
#ifdef IPOL_T0
sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
#endif
// apply top-left fill-convention, left
xStart = fill_convention_left(line.x[0]);
xEnd = fill_convention_right(line.x[1]);
dx = xEnd - xStart;
if (dx < 0)
return;
// slopes
const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]);
#ifdef IPOL_Z
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
#endif
#ifdef IPOL_W
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
#endif
#ifdef IPOL_C0
slopeC = (line.c[1] - line.c[0]) * invDeltaX;
#endif
#ifdef IPOL_T0
slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
#endif
#ifdef IPOL_T1
slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
#endif
#ifdef SUBTEXEL
subPixel = ((f32)xStart) - line.x[0];
#ifdef IPOL_Z
line.z[0] += slopeZ * subPixel;
#endif
#ifdef IPOL_W
line.w[0] += slopeW * subPixel;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC * subPixel;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0] * subPixel;
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1] * subPixel;
#endif
#endif
SOFTWARE_DRIVER_2_CLIPCHECK;
dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart;
#ifdef USE_ZBUFFER
z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart;
#endif
f32 inversew = FIX_POINT_F32_MUL;
tFixPoint tx0;
tFixPoint ty0;
//tFixPoint r0, g0, b0;
for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
#ifdef CMP_Z
if (line.z[0] < z[i])
#endif
#ifdef CMP_W
if (line.w[0] >= z[i])
#endif
//scissor_test_x
{
#ifdef INVERSE_W
inversew = fix_inverse32(line.w[0]);
#endif
tx0 = tofix(line.t[0][0].x, inversew);
ty0 = tofix(line.t[0][0].y, inversew);
//skybox
dst[i] = getTexel_plain(&IT[0], tx0, ty0);
//getSample_texture ( r0, g0, b0, IT+0, tx0, ty0 );
//dst[i] = fix_to_sample( r0, g0, b0 );
#ifdef WRITE_Z
z[i] = line.z[0];
#endif
#ifdef WRITE_W
z[i] = line.w[0];
#endif
}
#ifdef IPOL_Z
line.z[0] += slopeZ;
#endif
#ifdef IPOL_W
line.w[0] += slopeW;
#endif
#ifdef IPOL_C0
line.c[0] += slopeC;
#endif
#ifdef IPOL_T0
line.t[0][0] += slopeT[0];
#endif
#ifdef IPOL_T1
line.t[1][0] += slopeT[1];
#endif
}
}
void CTRTextureGouraudNoZ2::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
{
// sort on height, y
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
if (F32_A_GREATER_B(b->Pos.y, c->Pos.y)) swapVertexPointer(&b, &c);
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
// calculate delta y of the edges
scan.invDeltaY[0] = fill_step_y(ca);
scan.invDeltaY[1] = fill_step_y(ba);
scan.invDeltaY[2] = fill_step_y(cb);
if (F32_LOWER_EQUAL_0(scan.invDeltaY[0]))
return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = (temp[0] * temp[3] - temp[1] * temp[2]) < 0.f ? 1 : 0;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if (F32_GREATER_0(scan.invDeltaY[1]))
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[1] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_top(a->Pos.y);
yEnd = fill_convention_down(b->Pos.y);
#ifdef SUBTEXEL
subPixel = ((f32)yStart) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]);
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
if_interlace_scanline
if_scissor_test_y
(this->*fragmentShader) ();
if (EdgeTestPass & edge_test_first_line) break;
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
// rasterize lower sub-triangle
if (F32_GREATER_0(scan.invDeltaY[2]))
{
// advance to middle point
if (F32_GREATER_0(scan.invDeltaY[1]))
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[1] = b->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_top(b->Pos.y);
yEnd = fill_convention_down(c->Pos.y);
#ifdef SUBTEXEL
subPixel = ((f32)yStart) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]);
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
if_interlace_scanline
if_scissor_test_y
(this->*fragmentShader) ();
if (EdgeTestPass & edge_test_first_line) break;
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
}
burning_namespace_end
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
burning_namespace_start
//! creates a flat triangle renderer
IBurningShader* createTRTextureGouraudNoZ2(CBurningVideoDriver* driver)
{
// ETR_TEXTURE_GOURAUD_NOZ
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CTRTextureGouraudNoZ2(driver);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
burning_namespace_end