irrlicht/source/Irrlicht/CAttributeImpl.h

2094 lines
44 KiB
C
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CAttributes.h"
#include "fast_atof.h"
#include "ITexture.h"
#include "IVideoDriver.h"
namespace irr
{
namespace io
{
/*
Basic types, check documentation in IAttribute.h to see how they generally work.
*/
// Attribute implemented for boolean values
class CBoolAttribute : public IAttribute
{
public:
CBoolAttribute(const char* name, bool value)
{
Name = name;
setBool(value);
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return BoolValue ? 1 : 0;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return BoolValue ? 1.0f : 0.0f;
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return BoolValue;
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
return core::stringw( BoolValue ? L"true" : L"false" );
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
BoolValue = (intValue != 0);
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
BoolValue = (floatValue != 0);
}
virtual void setBool(bool boolValue) _IRR_OVERRIDE_
{
BoolValue = boolValue;
}
virtual void setString(const char* string) _IRR_OVERRIDE_
{
BoolValue = strcmp(string, "true") == 0;
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_BOOL;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"bool";
}
bool BoolValue;
};
// Attribute implemented for integers
class CIntAttribute : public IAttribute
{
public:
CIntAttribute(const char* name, s32 value)
{
Name = name;
setInt(value);
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return Value;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return (f32)Value;
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return (Value != 0);
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
return core::stringw(Value);
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
Value = intValue;
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
Value = (s32)floatValue;
};
virtual void setString(const char* text) _IRR_OVERRIDE_
{
Value = atoi(text);
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_INT;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"int";
}
s32 Value;
};
// Attribute implemented for floats
class CFloatAttribute : public IAttribute
{
public:
CFloatAttribute(const char* name, f32 value)
{
Name = name;
setFloat(value);
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return (s32)Value;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return Value;
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return (Value != 0);
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
return core::stringw((double)Value);
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
Value = (f32)intValue;
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
Value = floatValue;
}
virtual void setString(const char* text) _IRR_OVERRIDE_
{
Value = core::fast_atof(text);
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_FLOAT;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"float";
}
f32 Value;
};
/*
Types which can be represented as a list of numbers
*/
// Base class for all attributes which are a list of numbers-
// vectors, colors, positions, triangles, etc
class CNumbersAttribute : public IAttribute
{
public:
CNumbersAttribute(const char* name, video::SColorf value) :
ValueI(), ValueF(), Count(4), IsFloat(true)
{
Name = name;
ValueF.push_back(value.r);
ValueF.push_back(value.g);
ValueF.push_back(value.b);
ValueF.push_back(value.a);
}
CNumbersAttribute(const char* name, video::SColor value) :
ValueI(), ValueF(), Count(4), IsFloat(false)
{
Name = name;
ValueI.push_back(value.getRed());
ValueI.push_back(value.getGreen());
ValueI.push_back(value.getBlue());
ValueI.push_back(value.getAlpha());
}
CNumbersAttribute(const char* name, const core::vector3df& value) :
ValueI(), ValueF(), Count(3), IsFloat(true)
{
Name = name;
ValueF.push_back(value.X);
ValueF.push_back(value.Y);
ValueF.push_back(value.Z);
}
CNumbersAttribute(const char* name, const core::rect<s32>& value) :
ValueI(), ValueF(), Count(4), IsFloat(false)
{
Name = name;
ValueI.push_back(value.UpperLeftCorner.X);
ValueI.push_back(value.UpperLeftCorner.Y);
ValueI.push_back(value.LowerRightCorner.X);
ValueI.push_back(value.LowerRightCorner.Y);
}
CNumbersAttribute(const char* name, const core::rect<f32>& value) :
ValueI(), ValueF(), Count(4), IsFloat(true)
{
Name = name;
ValueF.push_back(value.UpperLeftCorner.X);
ValueF.push_back(value.UpperLeftCorner.Y);
ValueF.push_back(value.LowerRightCorner.X);
ValueF.push_back(value.LowerRightCorner.Y);
}
CNumbersAttribute(const char* name, const core::matrix4& value) :
ValueI(), ValueF(), Count(16), IsFloat(true)
{
Name = name;
for (s32 r=0; r<4; ++r)
for (s32 c=0; c<4; ++c)
ValueF.push_back(value(r,c));
}
CNumbersAttribute(const char* name, const core::quaternion& value) :
ValueI(), ValueF(), Count(4), IsFloat(true)
{
Name = name;
ValueF.push_back(value.X);
ValueF.push_back(value.Y);
ValueF.push_back(value.Z);
ValueF.push_back(value.W);
}
CNumbersAttribute(const char* name, const core::aabbox3d<f32>& value) :
ValueI(), ValueF(), Count(6), IsFloat(true)
{
Name = name;
ValueF.push_back(value.MinEdge.X);
ValueF.push_back(value.MinEdge.Y);
ValueF.push_back(value.MinEdge.Z);
ValueF.push_back(value.MaxEdge.X);
ValueF.push_back(value.MaxEdge.Y);
ValueF.push_back(value.MaxEdge.Z);
}
CNumbersAttribute(const char* name, const core::plane3df& value) :
ValueI(), ValueF(), Count(4), IsFloat(true)
{
Name = name;
ValueF.push_back(value.Normal.X);
ValueF.push_back(value.Normal.Y);
ValueF.push_back(value.Normal.Z);
ValueF.push_back(value.D);
}
CNumbersAttribute(const char* name, const core::triangle3df& value) :
ValueI(), ValueF(), Count(9), IsFloat(true)
{
Name = name;
ValueF.push_back(value.pointA.X);
ValueF.push_back(value.pointA.Y);
ValueF.push_back(value.pointA.Z);
ValueF.push_back(value.pointB.X);
ValueF.push_back(value.pointB.Y);
ValueF.push_back(value.pointB.Z);
ValueF.push_back(value.pointC.X);
ValueF.push_back(value.pointC.Y);
ValueF.push_back(value.pointC.Z);
}
CNumbersAttribute(const char* name, const core::vector2df& value) :
ValueI(), ValueF(), Count(2), IsFloat(true)
{
Name = name;
ValueF.push_back(value.X);
ValueF.push_back(value.Y);
}
CNumbersAttribute(const char* name, const core::vector2di& value) :
ValueI(), ValueF(), Count(2), IsFloat(false)
{
Name = name;
ValueI.push_back(value.X);
ValueI.push_back(value.Y);
}
CNumbersAttribute(const char* name, const core::line2di& value) :
ValueI(), ValueF(), Count(4), IsFloat(false)
{
Name = name;
ValueI.push_back(value.start.X);
ValueI.push_back(value.start.Y);
ValueI.push_back(value.end.X);
ValueI.push_back(value.end.Y);
}
CNumbersAttribute(const char* name, const core::line2df& value) :
ValueI(), ValueF(), Count(4), IsFloat(true)
{
Name = name;
ValueF.push_back(value.start.X);
ValueF.push_back(value.start.Y);
ValueF.push_back(value.end.X);
ValueF.push_back(value.end.Y);
}
CNumbersAttribute(const char* name, const core::line3df& value) :
ValueI(), ValueF(), Count(6), IsFloat(true)
{
Name = name;
ValueF.push_back(value.start.X);
ValueF.push_back(value.start.Y);
ValueF.push_back(value.start.Z);
ValueF.push_back(value.end.X);
ValueF.push_back(value.end.Y);
ValueF.push_back(value.end.Z);
}
CNumbersAttribute(const char* name, const core::dimension2du& value) :
ValueI(), ValueF(), Count(2), IsFloat(false)
{
Name = name;
ValueI.push_back(value.Width);
ValueI.push_back(value.Height);
}
CNumbersAttribute(const char* name, const core::dimension2df& value) :
ValueI(), ValueF(), Count(2), IsFloat(true)
{
Name = name;
ValueF.push_back(value.Width);
ValueF.push_back(value.Height);
}
// getting values
virtual s32 getInt() const _IRR_OVERRIDE_
{
if (Count==0)
return 0;
if (IsFloat)
return (s32)ValueF[0];
else
return ValueI[0];
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
if (Count==0)
return 0.0f;
if (IsFloat)
return ValueF[0];
else
return (f32)ValueI[0];
}
virtual bool getBool() const _IRR_OVERRIDE_
{
// return true if any number is nonzero
bool ret=false;
for (u32 i=0; i < Count; ++i)
if ( IsFloat ? (ValueF[i] != 0) : (ValueI[i] != 0) )
{
ret=true;
break;
}
return ret;
}
virtual core::stringc getString() const _IRR_OVERRIDE_
{
core::stringc outstr;
for (u32 i=0; i <Count; ++i)
{
if (IsFloat)
outstr += ValueF[i];
else
outstr += ValueI[i];
if (i < Count-1)
outstr += ", ";
}
return outstr;
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
core::stringw outstr;
for (u32 i=0; i <Count; ++i)
{
if (IsFloat)
outstr += ValueF[i];
else
outstr += ValueI[i];
if (i < Count-1)
outstr += L", ";
}
return outstr;
}
virtual core::position2di getPosition() const _IRR_OVERRIDE_
{
core::position2di p;
if (IsFloat)
{
p.X = (s32)(Count > 0 ? ValueF[0] : 0);
p.Y = (s32)(Count > 1 ? ValueF[1] : 0);
}
else
{
p.X = Count > 0 ? ValueI[0] : 0;
p.Y = Count > 1 ? ValueI[1] : 0;
}
return p;
}
virtual core::vector3df getVector() const _IRR_OVERRIDE_
{
core::vector3df v;
if (IsFloat)
{
v.X = Count > 0 ? ValueF[0] : 0;
v.Y = Count > 1 ? ValueF[1] : 0;
v.Z = Count > 2 ? ValueF[2] : 0;
}
else
{
v.X = (f32)(Count > 0 ? ValueI[0] : 0);
v.Y = (f32)(Count > 1 ? ValueI[1] : 0);
v.Z = (f32)(Count > 2 ? ValueI[2] : 0);
}
return v;
}
virtual core::vector2df getVector2d() const _IRR_OVERRIDE_
{
core::vector2df v;
if (IsFloat)
{
v.X = Count > 0 ? ValueF[0] : 0;
v.Y = Count > 1 ? ValueF[1] : 0;
}
else
{
v.X = (f32)(Count > 0 ? ValueI[0] : 0);
v.Y = (f32)(Count > 1 ? ValueI[1] : 0);
}
return v;
}
virtual video::SColorf getColorf() const _IRR_OVERRIDE_
{
video::SColorf c;
if (IsFloat)
{
c.setColorComponentValue(0, Count > 0 ? ValueF[0] : 0);
c.setColorComponentValue(1, Count > 1 ? ValueF[1] : 0);
c.setColorComponentValue(2, Count > 2 ? ValueF[2] : 0);
c.setColorComponentValue(3, Count > 3 ? ValueF[3] : 0);
}
else
{
c.setColorComponentValue(0, Count > 0 ? (f32)(ValueI[0]) / 255.0f : 0);
c.setColorComponentValue(1, Count > 1 ? (f32)(ValueI[1]) / 255.0f : 0);
c.setColorComponentValue(2, Count > 2 ? (f32)(ValueI[2]) / 255.0f : 0);
c.setColorComponentValue(3, Count > 3 ? (f32)(ValueI[3]) / 255.0f : 0);
}
return c;
}
virtual video::SColor getColor() const _IRR_OVERRIDE_
{
return getColorf().toSColor();
}
virtual core::rect<s32> getRect() const _IRR_OVERRIDE_
{
core::rect<s32> r;
if (IsFloat)
{
r.UpperLeftCorner.X = (s32)(Count > 0 ? ValueF[0] : 0);
r.UpperLeftCorner.Y = (s32)(Count > 1 ? ValueF[1] : 0);
r.LowerRightCorner.X = (s32)(Count > 2 ? ValueF[2] : r.UpperLeftCorner.X);
r.LowerRightCorner.Y = (s32)(Count > 3 ? ValueF[3] : r.UpperLeftCorner.Y);
}
else
{
r.UpperLeftCorner.X = Count > 0 ? ValueI[0] : 0;
r.UpperLeftCorner.Y = Count > 1 ? ValueI[1] : 0;
r.LowerRightCorner.X = Count > 2 ? ValueI[2] : r.UpperLeftCorner.X;
r.LowerRightCorner.Y = Count > 3 ? ValueI[3] : r.UpperLeftCorner.Y;
}
return r;
}
virtual core::dimension2du getDimension2d() const _IRR_OVERRIDE_
{
core::dimension2d<u32> dim;
if (IsFloat)
{
dim.Width = (u32)(Count > 0 ? ValueF[0] : 0);
dim.Height = (u32)(Count > 1 ? ValueF[1] : 0);
}
else
{
dim.Width = (u32)(Count > 0 ? ValueI[0] : 0);
dim.Height = (u32)(Count > 1 ? ValueI[1] : 0);
}
return dim;
}
virtual core::matrix4 getMatrix() const _IRR_OVERRIDE_
{
core::matrix4 ret;
if (IsFloat)
{
for (u32 r=0; r<4; ++r)
for (u32 c=0; c<4; ++c)
if (Count > c+r*4)
ret(r,c) = ValueF[c+r*4];
}
else
{
for (u32 r=0; r<4; ++r)
for (u32 c=0; c<4; ++c)
if (Count > c+r*4)
ret(r,c) = (f32)ValueI[c+r*4];
}
return ret;
}
virtual core::quaternion getQuaternion() const _IRR_OVERRIDE_
{
core::quaternion ret;
if (IsFloat)
{
ret.X = Count > 0 ? ValueF[0] : 0.0f;
ret.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.Z = Count > 2 ? ValueF[2] : 0.0f;
ret.W = Count > 3 ? ValueF[3] : 0.0f;
}
else
{
ret.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.Z = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.W = Count > 3 ? (f32)ValueI[3] : 0.0f;
}
return ret;
}
virtual core::triangle3df getTriangle() const _IRR_OVERRIDE_
{
core::triangle3df ret;
if (IsFloat)
{
ret.pointA.X = Count > 0 ? ValueF[0] : 0.0f;
ret.pointA.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.pointA.Z = Count > 2 ? ValueF[2] : 0.0f;
ret.pointB.X = Count > 3 ? ValueF[3] : 0.0f;
ret.pointB.Y = Count > 4 ? ValueF[4] : 0.0f;
ret.pointB.Z = Count > 5 ? ValueF[5] : 0.0f;
ret.pointC.X = Count > 6 ? ValueF[6] : 0.0f;
ret.pointC.Y = Count > 7 ? ValueF[7] : 0.0f;
ret.pointC.Z = Count > 8 ? ValueF[8] : 0.0f;
}
else
{
ret.pointA.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.pointA.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.pointA.Z = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.pointB.X = Count > 3 ? (f32)ValueI[3] : 0.0f;
ret.pointB.Y = Count > 4 ? (f32)ValueI[4] : 0.0f;
ret.pointB.Z = Count > 5 ? (f32)ValueI[5] : 0.0f;
ret.pointC.X = Count > 6 ? (f32)ValueI[6] : 0.0f;
ret.pointC.Y = Count > 7 ? (f32)ValueI[7] : 0.0f;
ret.pointC.Z = Count > 8 ? (f32)ValueI[8] : 0.0f;
}
return ret;
}
virtual core::plane3df getPlane() const _IRR_OVERRIDE_
{
core::plane3df ret;
if (IsFloat)
{
ret.Normal.X = Count > 0 ? ValueF[0] : 0.0f;
ret.Normal.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.Normal.Z = Count > 2 ? ValueF[2] : 0.0f;
ret.D = Count > 3 ? ValueF[3] : 0.0f;
}
else
{
ret.Normal.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.Normal.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.Normal.Z = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.D = Count > 3 ? (f32)ValueI[3] : 0.0f;
}
return ret;
}
virtual core::aabbox3df getBBox() const _IRR_OVERRIDE_
{
core::aabbox3df ret;
if (IsFloat)
{
ret.MinEdge.X = Count > 0 ? ValueF[0] : 0.0f;
ret.MinEdge.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.MinEdge.Z = Count > 2 ? ValueF[2] : 0.0f;
ret.MaxEdge.X = Count > 3 ? ValueF[3] : 0.0f;
ret.MaxEdge.Y = Count > 4 ? ValueF[4] : 0.0f;
ret.MaxEdge.Z = Count > 5 ? ValueF[5] : 0.0f;
}
else
{
ret.MinEdge.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.MinEdge.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.MinEdge.Z = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.MaxEdge.X = Count > 3 ? (f32)ValueI[3] : 0.0f;
ret.MaxEdge.Y = Count > 4 ? (f32)ValueI[4] : 0.0f;
ret.MaxEdge.Z = Count > 5 ? (f32)ValueI[5] : 0.0f;
}
return ret;
}
virtual core::line2df getLine2d() const _IRR_OVERRIDE_
{
core::line2df ret;
if (IsFloat)
{
ret.start.X = Count > 0 ? ValueF[0] : 0.0f;
ret.start.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.end.X = Count > 2 ? ValueF[2] : 0.0f;
ret.end.Y = Count > 3 ? ValueF[3] : 0.0f;
}
else
{
ret.start.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.start.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.end.X = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.end.Y = Count > 3 ? (f32)ValueI[3] : 0.0f;
}
return ret;
}
virtual core::line3df getLine3d() const _IRR_OVERRIDE_
{
core::line3df ret;
if (IsFloat)
{
ret.start.X = Count > 0 ? ValueF[0] : 0.0f;
ret.start.Y = Count > 1 ? ValueF[1] : 0.0f;
ret.start.Z = Count > 2 ? ValueF[2] : 0.0f;
ret.end.X = Count > 3 ? ValueF[3] : 0.0f;
ret.end.Y = Count > 4 ? ValueF[4] : 0.0f;
ret.end.Z = Count > 5 ? ValueF[5] : 0.0f;
}
else
{
ret.start.X = Count > 0 ? (f32)ValueI[0] : 0.0f;
ret.start.Y = Count > 1 ? (f32)ValueI[1] : 0.0f;
ret.start.Z = Count > 2 ? (f32)ValueI[2] : 0.0f;
ret.end.X = Count > 3 ? (f32)ValueI[3] : 0.0f;
ret.end.Y = Count > 4 ? (f32)ValueI[4] : 0.0f;
ret.end.Z = Count > 5 ? (f32)ValueI[5] : 0.0f;
}
return ret;
}
//! get float array
virtual core::array<f32> getFloatArray()
{
if (!IsFloat)
{
ValueF.clear();
for (u32 i=0; i<Count; ++i)
ValueF.push_back( (f32) ValueI[i] );
}
return ValueF;
}
//! get int array
virtual core::array<s32> getIntArray()
{
if (IsFloat)
{
ValueI.clear();
for (u32 i=0; i<Count; ++i)
ValueI.push_back( (s32) ValueF[i] );
}
return ValueI;
}
// setting values
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
// set all values
for (u32 i=0; i < Count; ++i)
if (IsFloat)
ValueF[i] = (f32)intValue;
else
ValueI[i] = intValue;
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
// set all values
for (u32 i=0; i < Count; ++i)
if (IsFloat)
ValueF[i] = floatValue;
else
ValueI[i] = (s32)floatValue;
}
virtual void setBool(bool boolValue) _IRR_OVERRIDE_
{
setInt( boolValue ? 1 : 0);
}
virtual void setString(const char* text) _IRR_OVERRIDE_
{
// parse text
const char* P = (const char*)text;
reset();
u32 i=0;
for ( i=0; i<Count && *P; ++i )
{
while(*P && P[0]!='-' && ( P[0]==' ' || (P[0] < '0' || P[0] > '9') ) )
++P;
// set value
if ( *P)
{
if (IsFloat)
{
f32 c = 0;
P = core::fast_atof_move(P, c);
ValueF[i] = c;
}
else
{
// todo: fix this to read ints properly
f32 c = 0;
P = core::fast_atof_move(P, c);
ValueI[i] = (s32)c;
}
}
}
// todo: warning message
//if (i < Count-1)
//{
//
//}
}
virtual void setPosition(const core::position2di& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)v.X;
if (Count > 1) ValueF[1] = (f32)v.Y;
}
else
{
if (Count > 0) ValueI[0] = v.X;
if (Count > 1) ValueI[1] = v.Y;
}
}
virtual void setVector(const core::vector3df& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = v.X;
if (Count > 1) ValueF[1] = v.Y;
if (Count > 2) ValueF[2] = v.Z;
}
else
{
if (Count > 0) ValueI[0] = (s32)v.X;
if (Count > 1) ValueI[1] = (s32)v.Y;
if (Count > 2) ValueI[2] = (s32)v.Z;
}
}
virtual void setColor(video::SColorf color) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = color.r;
if (Count > 1) ValueF[1] = color.g;
if (Count > 2) ValueF[2] = color.b;
if (Count > 3) ValueF[3] = color.a;
}
else
{
if (Count > 0) ValueI[0] = (s32)(color.r * 255);
if (Count > 1) ValueI[1] = (s32)(color.g * 255);
if (Count > 2) ValueI[2] = (s32)(color.b * 255);
if (Count > 3) ValueI[3] = (s32)(color.a * 255);
}
}
virtual void setColor(video::SColor color) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)color.getRed() / 255.0f;
if (Count > 1) ValueF[1] = (f32)color.getGreen() / 255.0f;
if (Count > 2) ValueF[2] = (f32)color.getBlue() / 255.0f;
if (Count > 3) ValueF[3] = (f32)color.getAlpha() / 255.0f;
}
else
{
if (Count > 0) ValueI[0] = color.getRed();
if (Count > 1) ValueI[1] = color.getGreen();
if (Count > 2) ValueI[2] = color.getBlue();
if (Count > 3) ValueI[3] = color.getAlpha();
}
}
virtual void setRect(const core::rect<s32>& value) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)value.UpperLeftCorner.X;
if (Count > 1) ValueF[1] = (f32)value.UpperLeftCorner.Y;
if (Count > 2) ValueF[2] = (f32)value.LowerRightCorner.X;
if (Count > 3) ValueF[3] = (f32)value.LowerRightCorner.Y;
}
else
{
if (Count > 0) ValueI[0] = value.UpperLeftCorner.X;
if (Count > 1) ValueI[1] = value.UpperLeftCorner.Y;
if (Count > 2) ValueI[2] = value.LowerRightCorner.X;
if (Count > 3) ValueI[3] = value.LowerRightCorner.Y;
}
}
virtual void setMatrix(const core::matrix4& value) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
for (u32 r=0; r<4; ++r)
for (u32 c=0; c<4; ++c)
if (Count > c+r*4)
ValueF[c+r*4] = value(r,c);
}
else
{
for (u32 r=0; r<4; ++r)
for (u32 c=0; c<4; ++c)
if (Count > c+r*4)
ValueI[c+r*4] = (s32)value(r,c);
}
}
virtual void setQuaternion(const core::quaternion& value) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = value.X;
if (Count > 1) ValueF[1] = value.Y;
if (Count > 2) ValueF[2] = value.Z;
if (Count > 3) ValueF[3] = value.W;
}
else
{
if (Count > 0) ValueI[0] = (s32)value.X;
if (Count > 1) ValueI[1] = (s32)value.Y;
if (Count > 2) ValueI[2] = (s32)value.Z;
if (Count > 3) ValueI[3] = (s32)value.W;
}
}
virtual void setBoundingBox(const core::aabbox3d<f32>& value)
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = value.MinEdge.X;
if (Count > 1) ValueF[1] = value.MinEdge.Y;
if (Count > 2) ValueF[2] = value.MinEdge.Z;
if (Count > 3) ValueF[3] = value.MaxEdge.X;
if (Count > 4) ValueF[4] = value.MaxEdge.Y;
if (Count > 5) ValueF[5] = value.MaxEdge.Z;
}
else
{
if (Count > 0) ValueI[0] = (s32)value.MinEdge.X;
if (Count > 1) ValueI[1] = (s32)value.MinEdge.Y;
if (Count > 2) ValueI[2] = (s32)value.MinEdge.Z;
if (Count > 3) ValueI[3] = (s32)value.MaxEdge.X;
if (Count > 4) ValueI[4] = (s32)value.MaxEdge.Y;
if (Count > 5) ValueI[5] = (s32)value.MaxEdge.Z;
}
}
virtual void setPlane(const core::plane3df& value) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = value.Normal.X;
if (Count > 1) ValueF[1] = value.Normal.Y;
if (Count > 2) ValueF[2] = value.Normal.Z;
if (Count > 3) ValueF[3] = value.D;
}
else
{
if (Count > 0) ValueI[0] = (s32)value.Normal.X;
if (Count > 1) ValueI[1] = (s32)value.Normal.Y;
if (Count > 2) ValueI[2] = (s32)value.Normal.Z;
if (Count > 3) ValueI[3] = (s32)value.D;
}
}
virtual void setTriangle3d(const core::triangle3df& value)
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = value.pointA.X;
if (Count > 1) ValueF[1] = value.pointA.Y;
if (Count > 2) ValueF[2] = value.pointA.Z;
if (Count > 3) ValueF[3] = value.pointB.X;
if (Count > 4) ValueF[4] = value.pointB.Y;
if (Count > 5) ValueF[5] = value.pointB.Z;
if (Count > 6) ValueF[6] = value.pointC.X;
if (Count > 7) ValueF[7] = value.pointC.Y;
if (Count > 8) ValueF[8] = value.pointC.Z;
}
else
{
if (Count > 0) ValueI[0] = (s32)value.pointA.X;
if (Count > 1) ValueI[1] = (s32)value.pointA.Y;
if (Count > 2) ValueI[2] = (s32)value.pointA.Z;
if (Count > 3) ValueI[3] = (s32)value.pointB.X;
if (Count > 4) ValueI[4] = (s32)value.pointB.Y;
if (Count > 5) ValueI[5] = (s32)value.pointB.Z;
if (Count > 6) ValueI[6] = (s32)value.pointC.X;
if (Count > 7) ValueI[7] = (s32)value.pointC.Y;
if (Count > 8) ValueI[8] = (s32)value.pointC.Z;
}
}
virtual void setVector2d(const core::vector2df& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = v.X;
if (Count > 1) ValueF[1] = v.Y;
}
else
{
if (Count > 0) ValueI[0] = (s32)v.X;
if (Count > 1) ValueI[1] = (s32)v.Y;
}
}
virtual void setVector2d(const core::vector2di& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)v.X;
if (Count > 1) ValueF[1] = (f32)v.Y;
}
else
{
if (Count > 0) ValueI[0] = v.X;
if (Count > 1) ValueI[1] = v.Y;
}
}
virtual void setLine2d(const core::line2di& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)v.start.X;
if (Count > 1) ValueF[1] = (f32)v.start.Y;
if (Count > 2) ValueF[2] = (f32)v.end.X;
if (Count > 3) ValueF[3] = (f32)v.end.Y;
}
else
{
if (Count > 0) ValueI[0] = v.start.X;
if (Count > 1) ValueI[1] = v.start.Y;
if (Count > 2) ValueI[2] = v.end.X;
if (Count > 3) ValueI[3] = v.end.Y;
}
}
virtual void setLine2d(const core::line2df& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = v.start.X;
if (Count > 1) ValueF[1] = v.start.Y;
if (Count > 2) ValueF[2] = v.end.X;
if (Count > 3) ValueF[3] = v.end.Y;
}
else
{
if (Count > 0) ValueI[0] = (s32)v.start.X;
if (Count > 1) ValueI[1] = (s32)v.start.Y;
if (Count > 2) ValueI[2] = (s32)v.end.X;
if (Count > 3) ValueI[3] = (s32)v.end.Y;
}
}
virtual void setDimension2d(const core::dimension2du& v) _IRR_OVERRIDE_
{
reset();
if (IsFloat)
{
if (Count > 0) ValueF[0] = (f32)v.Width;
if (Count > 1) ValueF[1] = (f32)v.Height;
}
else
{
if (Count > 0) ValueI[0] = (s32)v.Width;
if (Count > 1) ValueI[1] = (s32)v.Height;
}
}
//! set float array
virtual void setFloatArray(core::array<f32> &vals)
{
reset();
for (u32 i=0; i<vals.size() && i<Count; ++i)
{
if (IsFloat)
ValueF[i] = vals[i];
else
ValueI[i] = (s32)vals[i];
}
}
//! set int array
virtual void setIntArray(core::array<s32> &vals)
{
reset();
for (u32 i=0; i<vals.size() && i<Count; ++i)
{
if (IsFloat)
ValueF[i] = (f32)vals[i];
else
ValueI[i] = vals[i];
}
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
if (IsFloat)
return EAT_FLOATARRAY;
else
return EAT_INTARRAY;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
if (IsFloat)
return L"floatlist";
else
return L"intlist";
}
protected:
//! clear all values
void reset()
{
if (IsFloat)
for (u32 i=0; i < Count; ++i)
ValueF[i] = 0.0f;
else
for (u32 i=0; i < Count; ++i)
ValueI[i] = 0;
}
core::array<s32> ValueI;
core::array<f32> ValueF;
u32 Count;
bool IsFloat;
};
// Attribute implemented for floating point colors
class CColorfAttribute : public CNumbersAttribute
{
public:
CColorfAttribute(const char* name, video::SColorf value) : CNumbersAttribute(name, value) {}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return getColor().color;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return (f32)getColor().color;
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
video::SColorf c = video::SColor(intValue);
ValueF[0] = c.r;
ValueF[1] = c.g;
ValueF[2] = c.b;
ValueF[3] = c.a;
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
setInt((s32)floatValue);
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_COLORF;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"colorf";
}
};
// Attribute implemented for colors
class CColorAttribute : public CNumbersAttribute
{
public:
CColorAttribute(const char* name, const video::SColorf& value) : CNumbersAttribute(name, value) {}
CColorAttribute(const char* name, const video::SColor& value) : CNumbersAttribute(name, value) {}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return getColor().color;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return (f32)getColor().color;
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
video::SColorf c = video::SColor(intValue);
ValueF[0] = c.r;
ValueF[1] = c.g;
ValueF[2] = c.b;
ValueF[3] = c.a;
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
setInt((s32)floatValue);
}
virtual core::stringc getString() const _IRR_OVERRIDE_
{
char tmp[10];
const video::SColor c = getColor();
sprintf(tmp, "%02x%02x%02x%02x", c.getAlpha(), c.getRed(), c.getGreen(), c.getBlue());
return core::stringc(tmp);
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
char tmp[10];
const video::SColor c = getColor();
sprintf(tmp, "%02x%02x%02x%02x", c.getAlpha(), c.getRed(), c.getGreen(), c.getBlue());
return core::stringw(tmp);
}
virtual void setString(const char* text) _IRR_OVERRIDE_
{
u32 c;
int characters;
const int items = sscanf(text, "%08x%n", &c, &characters);
if (items != 1 || characters != 8 )
{
CNumbersAttribute::setString(text);
}
else
setColor(c);
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_COLOR;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"color";
}
};
// Attribute implemented for 3d vectors
class CVector3DAttribute : public CNumbersAttribute
{
public:
CVector3DAttribute(const char* name, const core::vector3df& value) : CNumbersAttribute(name, value) {}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_VECTOR3D;
}
virtual core::matrix4 getMatrix() const _IRR_OVERRIDE_
{
core::matrix4 ret;
ret.makeIdentity();
ret.setTranslation( core::vector3df(ValueF[0],ValueF[1],ValueF[2]) );
return ret;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"vector3d";
}
};
// Attribute implemented for 2d vectors
class CVector2DAttribute : public CNumbersAttribute
{
public:
CVector2DAttribute(const char* name, const core::vector2df& value) : CNumbersAttribute(name, value) {}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_VECTOR2D;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"vector2d";
}
};
// Attribute implemented for 2d vectors
class CPosition2DAttribute : public CNumbersAttribute
{
public:
CPosition2DAttribute(const char* name, const core::position2di& value) : CNumbersAttribute(name, value) {}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_POSITION2D;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"position";
}
};
// Attribute implemented for rectangles
class CRectAttribute : public CNumbersAttribute
{
public:
CRectAttribute(const char* name, const core::rect<s32>& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_RECT;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"rect";
}
};
// Attribute implemented for dimension
class CDimension2dAttribute : public CNumbersAttribute
{
public:
CDimension2dAttribute (const char* name, const core::dimension2d<u32>& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_DIMENSION2D;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"dimension2d";
}
};
// Attribute implemented for matrices
class CMatrixAttribute : public CNumbersAttribute
{
public:
CMatrixAttribute(const char* name, const core::matrix4& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_MATRIX;
}
virtual core::quaternion getQuaternion() const _IRR_OVERRIDE_
{
return core::quaternion(getMatrix());
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"matrix";
}
};
// Attribute implemented for quaternions
class CQuaternionAttribute : public CNumbersAttribute
{
public:
CQuaternionAttribute(const char* name, const core::quaternion& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_QUATERNION;
}
virtual core::matrix4 getMatrix() const _IRR_OVERRIDE_
{
return getQuaternion().getMatrix();
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"quaternion";
}
};
// Attribute implemented for bounding boxes
class CBBoxAttribute : public CNumbersAttribute
{
public:
CBBoxAttribute(const char* name, const core::aabbox3df& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_BBOX;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"box3d";
}
};
// Attribute implemented for planes
class CPlaneAttribute : public CNumbersAttribute
{
public:
CPlaneAttribute(const char* name, const core::plane3df& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_PLANE;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"plane";
}
};
// Attribute implemented for triangles
class CTriangleAttribute : public CNumbersAttribute
{
public:
CTriangleAttribute(const char* name, const core::triangle3df& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_TRIANGLE3D;
}
virtual core::plane3df getPlane() const _IRR_OVERRIDE_
{
return getTriangle().getPlane();
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"triangle";
}
};
// Attribute implemented for 2d lines
class CLine2dAttribute : public CNumbersAttribute
{
public:
CLine2dAttribute(const char* name, const core::line2df& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_LINE2D;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"line2d";
}
};
// Attribute implemented for 3d lines
class CLine3dAttribute : public CNumbersAttribute
{
public:
CLine3dAttribute(const char* name, const core::line3df& value) : CNumbersAttribute(name, value) { }
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_LINE3D;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"line3d";
}
};
// vector2df
// dimension2du
/*
Special attributes
*/
// Attribute implemented for enumeration literals
class CEnumAttribute : public IAttribute
{
public:
CEnumAttribute(const char* name, const char* value, const char* const* literals)
{
Name = name;
setEnum(value, literals);
}
virtual void setEnum(const char* enumValue, const char* const* enumerationLiterals) _IRR_OVERRIDE_
{
u32 literalCount = 0;
if (enumerationLiterals)
{
s32 i;
for (i=0; enumerationLiterals[i]; ++i)
++literalCount;
EnumLiterals.reallocate(literalCount);
for (i=0; enumerationLiterals[i]; ++i)
EnumLiterals.push_back(enumerationLiterals[i]);
}
setString(enumValue);
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
for (u32 i=0; i < EnumLiterals.size(); ++i)
{
if (Value.equals_ignore_case(EnumLiterals[i]))
{
return (s32)i;
}
}
return -1;
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
return (f32)getInt();
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return (getInt() != 0); // does not make a lot of sense, I know
}
virtual core::stringc getString() const _IRR_OVERRIDE_
{
return Value;
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
return core::stringw(Value.c_str());
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
if (intValue>=0 && intValue<(s32)EnumLiterals.size())
Value = EnumLiterals[intValue];
else
Value = "";
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
setInt((s32)floatValue);
};
virtual void setString(const char* text) _IRR_OVERRIDE_
{
Value = text;
}
virtual const char* getEnum() const _IRR_OVERRIDE_
{
return Value.c_str();
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_ENUM;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"enum";
}
core::stringc Value;
core::array<core::stringc> EnumLiterals;
};
// Attribute implemented for strings
class CStringAttribute : public IAttribute
{
public:
CStringAttribute(const char* name, const char* value)
{
IsStringW=false;
Name = name;
setString(value);
}
CStringAttribute(const char* name, const wchar_t* value)
{
IsStringW = true;
Name = name;
setString(value);
}
CStringAttribute(const char* name, void* binaryData, s32 lengthInBytes)
{
IsStringW=false;
Name = name;
setBinary(binaryData, lengthInBytes);
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
if (IsStringW)
return atoi(core::stringc(ValueW.c_str()).c_str());
else
return atoi(Value.c_str());
}
virtual f32 getFloat() const _IRR_OVERRIDE_
{
if (IsStringW)
return core::fast_atof(core::stringc(ValueW.c_str()).c_str());
else
return core::fast_atof(Value.c_str());
}
virtual bool getBool() const _IRR_OVERRIDE_
{
if (IsStringW)
return ValueW.equals_ignore_case(L"true");
else
return Value.equals_ignore_case("true");
}
virtual core::stringc getString() const _IRR_OVERRIDE_
{
if (IsStringW)
return core::stringc(ValueW.c_str());
else
return Value;
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
if (IsStringW)
return ValueW;
else
return core::stringw(Value.c_str());
}
virtual void setInt(s32 intValue) _IRR_OVERRIDE_
{
if (IsStringW)
ValueW = core::stringw(intValue);
else
Value = core::stringc(intValue);
}
virtual void setFloat(f32 floatValue) _IRR_OVERRIDE_
{
if (IsStringW)
{
ValueW = core::stringw((double)floatValue);
}
else
{
Value = core::stringc((double)floatValue);
}
};
virtual void setString(const char* text) _IRR_OVERRIDE_
{
if (IsStringW)
ValueW = core::stringw(text);
else
Value = text;
}
virtual void setString(const wchar_t* text) _IRR_OVERRIDE_
{
if (IsStringW)
ValueW = text;
else
Value = core::stringc(text);
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_STRING;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"string";
}
virtual void getBinary(void* outdata, s32 maxLength) const _IRR_OVERRIDE_
{
const s32 dataSize = maxLength;
c8* datac8 = (c8*)(outdata);
s32 p = 0;
const c8* dataString = Value.c_str();
for (s32 i=0; i<dataSize; ++i)
datac8[i] = 0;
while(dataString[p] && p<dataSize)
{
s32 v = getByteFromHex((c8)dataString[p*2]) * 16;
if (dataString[(p*2)+1])
v += getByteFromHex((c8)dataString[(p*2)+1]);
datac8[p] = v;
++p;
}
};
virtual void setBinary(void* data, s32 maxLength) _IRR_OVERRIDE_
{
const s32 dataSize = maxLength;
const c8* datac8 = (c8*)(data);
char tmp[3];
tmp[2] = 0;
Value = "";
for (s32 b=0; b<dataSize; ++b)
{
getHexStrFromByte(datac8[b], tmp);
Value.append(tmp);
}
};
bool IsStringW;
core::stringc Value;
core::stringw ValueW;
protected:
static inline s32 getByteFromHex(c8 h)
{
if (h >= '0' && h <='9')
return h-'0';
if (h >= 'a' && h <='f')
return h-'a' + 10;
return 0;
}
static inline void getHexStrFromByte(c8 byte, c8* out)
{
s32 b = (byte & 0xf0) >> 4;
for (s32 i=0; i<2; ++i)
{
if (b >=0 && b <= 9)
out[i] = b+'0';
if (b >=10 && b <= 15)
out[i] = (b-10)+'a';
b = byte & 0x0f;
}
}
};
// Attribute implemented for binary data
class CBinaryAttribute : public CStringAttribute
{
public:
CBinaryAttribute(const char* name, void* binaryData, s32 lengthInBytes)
: CStringAttribute(name, binaryData, lengthInBytes)
{
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_BINARY;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"binary";
}
};
// Attribute implemented for texture references
class CTextureAttribute : public IAttribute
{
public:
CTextureAttribute(const char* name, video::ITexture* value, video::IVideoDriver* driver, const io::path& filename)
: Value(0), Driver(driver), OverrideName(filename)
{
if (Driver)
Driver->grab();
Name = name;
setTexture(value);
}
virtual ~CTextureAttribute()
{
if (Driver)
Driver->drop();
if (Value)
Value->drop();
}
virtual video::ITexture* getTexture() const _IRR_OVERRIDE_
{
return Value;
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return (Value != 0);
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
// (note: don't try to put all this in some ?: operators, or c++ builder will choke)
if ( OverrideName.size() )
return core::stringw(OverrideName);
if ( Value )
return core::stringw(Value->getName().getPath().c_str());
return core::stringw();
}
virtual core::stringc getString() const _IRR_OVERRIDE_
{
// since texture names can be stringw we are careful with the types
if ( OverrideName.size() )
return core::stringc(OverrideName);
if ( Value )
return core::stringc(Value->getName().getPath().c_str());
return core::stringc();
}
virtual void setString(const char* text) _IRR_OVERRIDE_
{
if (Driver)
{
if (text && *text)
{
setTexture(Driver->getTexture(text));
OverrideName=text;
}
else
setTexture(0);
}
}
virtual void setTexture(video::ITexture* texture, const path& filename) _IRR_OVERRIDE_
{
OverrideName = filename;
setTexture(texture);
};
void setTexture(video::ITexture* value)
{
if ( value == Value )
return;
if (Value)
Value->drop();
Value = value;
if (Value)
Value->grab();
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_TEXTURE;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"texture";
}
video::ITexture* Value;
video::IVideoDriver* Driver;
io::path OverrideName;
};
// Attribute implemented for array of stringw
class CStringWArrayAttribute : public IAttribute
{
public:
CStringWArrayAttribute(const char* name, const core::array<core::stringw>& value)
{
Name = name;
setArray(value);
}
virtual core::array<core::stringw> getArray() const _IRR_OVERRIDE_
{
return Value;
}
virtual void setArray(const core::array<core::stringw>& value) _IRR_OVERRIDE_
{
Value = value;
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_STRINGWARRAY;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"stringwarray";
}
core::array<core::stringw> Value;
};
// Attribute implemented for user pointers
class CUserPointerAttribute : public IAttribute
{
public:
CUserPointerAttribute(const char* name, void* value)
{
Name = name;
Value = value;
}
virtual s32 getInt() const _IRR_OVERRIDE_
{
return *static_cast<s32*>(Value);
}
virtual bool getBool() const _IRR_OVERRIDE_
{
return (Value != 0);
}
virtual core::stringw getStringW() const _IRR_OVERRIDE_
{
wchar_t buf[32];
swprintf_irr(buf, 32, L"%p", Value);
return core::stringw(buf);
}
virtual void setString(const char* text) _IRR_OVERRIDE_
{
size_t val = 0;
switch ( sizeof(void*) )
{
case 4:
{
unsigned int tmp; // not using an irrlicht type - sscanf with %x needs always unsigned int
sscanf(text, "%x", &tmp);
val = (size_t)tmp;
}
break;
case 8:
{
#ifdef _MSC_VER
const unsigned __int64 tmp = _strtoui64(text, NULL, 16);
#else
const unsigned long long tmp = strtoull(text, NULL, 16);
#endif
val = (size_t)tmp;
}
break;
}
Value = (void *)val;
}
virtual E_ATTRIBUTE_TYPE getType() const _IRR_OVERRIDE_
{
return EAT_USER_POINTER;
}
virtual void setUserPointer(void* v) _IRR_OVERRIDE_
{
Value = v;
}
virtual void* getUserPointer() const _IRR_OVERRIDE_
{
return Value;
}
virtual const wchar_t* getTypeString() const _IRR_OVERRIDE_
{
return L"userPointer";
}
void* Value;
};
// todo: CGUIFontAttribute
} // end namespace io
} // end namespace irr