irrlicht/source/Irrlicht/COpenGLCoreCacheHandler.h

644 lines
15 KiB
C
Raw Normal View History

// Copyright (C) 2015 Patryk Nadrowski
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __C_OGLCORE_CACHE_HANDLER_H_INCLUDED__
#define __C_OGLCORE_CACHE_HANDLER_H_INCLUDED__
#include "SMaterial.h"
#include "ITexture.h"
namespace irr
{
namespace video
{
enum ESetTextureActive
{
EST_ACTIVE_ALWAYS, // texture unit always active after set call
EST_ACTIVE_ON_CHANGE // texture unit only active after call when texture changed in cache
};
template <class TOpenGLDriver, class TOpenGLTexture>
class COpenGLCoreCacheHandler
{
class STextureCache
{
public:
STextureCache(COpenGLCoreCacheHandler& cacheHandler, E_DRIVER_TYPE driverType, u32 textureCount) :
CacheHandler(cacheHandler), DriverType(driverType), TextureCount(textureCount)
{
for (u32 i = 0; i < MATERIAL_MAX_TEXTURES; ++i)
{
Texture[i] = 0;
}
}
~STextureCache()
{
clear();
}
const TOpenGLTexture* operator[](int index) const
{
if (static_cast<u32>(index) < MATERIAL_MAX_TEXTURES)
return Texture[static_cast<u32>(index)];
return 0;
}
const TOpenGLTexture* get(u32 index) const
{
if (index < MATERIAL_MAX_TEXTURES)
return Texture[index];
return 0;
}
bool set(u32 index, const ITexture* texture, ESetTextureActive esa=EST_ACTIVE_ALWAYS)
{
bool status = false;
E_DRIVER_TYPE type = DriverType;
if (index < MATERIAL_MAX_TEXTURES && index < TextureCount)
{
if ( esa == EST_ACTIVE_ALWAYS )
CacheHandler.setActiveTexture(GL_TEXTURE0 + index);
const TOpenGLTexture* prevTexture = Texture[index];
if (texture != prevTexture)
{
if ( esa == EST_ACTIVE_ON_CHANGE )
CacheHandler.setActiveTexture(GL_TEXTURE0 + index);
if (texture)
{
type = texture->getDriverType();
if (type == DriverType)
{
texture->grab();
const TOpenGLTexture* curTexture = static_cast<const TOpenGLTexture*>(texture);
const GLenum curTextureType = curTexture->getOpenGLTextureType();
const GLenum prevTextureType = (prevTexture) ? prevTexture->getOpenGLTextureType() : curTextureType;
if (curTextureType != prevTextureType)
{
glBindTexture(prevTextureType, 0);
#if ( defined(IRR_COMPILE_GL_COMMON) || defined(IRR_COMPILE_GLES_COMMON) )
glDisable(prevTextureType);
glEnable(curTextureType);
#endif
}
#if ( defined(IRR_COMPILE_GL_COMMON) || defined(IRR_COMPILE_GLES_COMMON) )
else if (!prevTexture)
glEnable(curTextureType);
#endif
glBindTexture(curTextureType, static_cast<const TOpenGLTexture*>(texture)->getOpenGLTextureName());
}
else
{
texture = 0;
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
os::Printer::log("Texture type", irr::core::stringc((int)type), ELL_ERROR);
os::Printer::log("Driver (or cache handler) type", irr::core::stringc((int)DriverType), ELL_ERROR);
}
}
if (!texture && prevTexture)
{
const GLenum prevTextureType = prevTexture->getOpenGLTextureType();
glBindTexture(prevTextureType, 0);
#if ( defined(IRR_COMPILE_GL_COMMON) || defined(IRR_COMPILE_GLES_COMMON) )
glDisable(prevTextureType);
#endif
}
Texture[index] = static_cast<const TOpenGLTexture*>(texture);
if (prevTexture)
prevTexture->drop();
}
status = true;
}
return (status && type == DriverType);
}
void remove(ITexture* texture)
{
if (!texture)
return;
for (u32 i = 0; i < MATERIAL_MAX_TEXTURES; ++i)
{
if (Texture[i] == texture)
{
Texture[i] = 0;
texture->drop();
}
}
}
void clear()
{
for (u32 i = 0; i < MATERIAL_MAX_TEXTURES; ++i)
{
if (Texture[i])
{
const TOpenGLTexture* prevTexture = Texture[i];
Texture[i] = 0;
prevTexture->drop();
}
}
}
private:
COpenGLCoreCacheHandler& CacheHandler;
E_DRIVER_TYPE DriverType;
const TOpenGLTexture* Texture[MATERIAL_MAX_TEXTURES];
u32 TextureCount;
};
public:
COpenGLCoreCacheHandler(TOpenGLDriver* driver) :
Driver(driver),
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4355) // Warning: "'this' : used in base member initializer list. ". It's OK, we don't use the reference in STextureCache constructor.
#endif
TextureCache(STextureCache(*this, driver->getDriverType(), driver->getFeature().MaxTextureUnits)),
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
FrameBufferCount(0), BlendEquation(0), BlendSourceRGB(0),
BlendDestinationRGB(0), BlendSourceAlpha(0), BlendDestinationAlpha(0), Blend(0), BlendEquationInvalid(false), BlendFuncInvalid(false), BlendInvalid(false),
ColorMask(0), ColorMaskInvalid(false), CullFaceMode(GL_BACK), CullFace(false), DepthFunc(GL_LESS), DepthMask(true), DepthTest(false), FrameBufferID(0),
ProgramID(0), ActiveTexture(GL_TEXTURE0), ViewportX(0), ViewportY(0)
{
const COpenGLCoreFeature& feature = Driver->getFeature();
FrameBufferCount = core::max_(static_cast<GLuint>(1), static_cast<GLuint>(feature.MultipleRenderTarget));
BlendEquation = new GLenum[FrameBufferCount];
BlendSourceRGB = new GLenum[FrameBufferCount];
BlendDestinationRGB = new GLenum[FrameBufferCount];
BlendSourceAlpha = new GLenum[FrameBufferCount];
BlendDestinationAlpha = new GLenum[FrameBufferCount];
Blend = new bool[FrameBufferCount];
ColorMask = new u8[FrameBufferCount];
// Initial OpenGL values from specification.
if (feature.BlendOperation)
{
Driver->irrGlBlendEquation(GL_FUNC_ADD);
}
for (u32 i = 0; i < FrameBufferCount; ++i)
{
BlendEquation[i] = GL_FUNC_ADD;
BlendSourceRGB[i] = GL_ONE;
BlendDestinationRGB[i] = GL_ZERO;
BlendSourceAlpha[i] = GL_ONE;
BlendDestinationAlpha[i] = GL_ZERO;
Blend[i] = false;
ColorMask[i] = ECP_ALL;
}
glBlendFunc(GL_ONE, GL_ZERO);
glDisable(GL_BLEND);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glCullFace(CullFaceMode);
glDisable(GL_CULL_FACE);
glDepthFunc(DepthFunc);
glDepthMask(GL_TRUE);
glDisable(GL_DEPTH_TEST);
Driver->irrGlActiveTexture(ActiveTexture);
#if ( defined(IRR_COMPILE_GL_COMMON) || defined(IRR_COMPILE_GLES_COMMON) )
glDisable(GL_TEXTURE_2D);
#endif
const core::dimension2d<u32> ScreenSize = Driver->getScreenSize();
ViewportWidth = ScreenSize.Width;
ViewportHeight = ScreenSize.Height;
glViewport(ViewportX, ViewportY, ViewportWidth, ViewportHeight);
}
virtual ~COpenGLCoreCacheHandler()
{
delete[] BlendEquation;
delete[] BlendSourceRGB;
delete[] BlendDestinationRGB;
delete[] BlendSourceAlpha;
delete[] BlendDestinationAlpha;
delete[] Blend;
delete[] ColorMask;
}
E_DRIVER_TYPE getDriverType() const
{
return Driver->getDriverType();
}
STextureCache& getTextureCache()
{
return TextureCache;
}
// Blending calls.
void setBlendEquation(GLenum mode)
{
if (BlendEquation[0] != mode || BlendEquationInvalid)
{
Driver->irrGlBlendEquation(mode);
for (GLuint i = 0; i < FrameBufferCount; ++i)
BlendEquation[i] = mode;
BlendEquationInvalid = false;
}
}
void setBlendEquationIndexed(GLuint index, GLenum mode)
{
if (index < FrameBufferCount && BlendEquation[index] != mode)
{
Driver->irrGlBlendEquationIndexed(index, mode);
BlendEquation[index] = mode;
BlendEquationInvalid = true;
}
}
void setBlendFunc(GLenum source, GLenum destination)
{
if (BlendSourceRGB[0] != source || BlendDestinationRGB[0] != destination ||
BlendSourceAlpha[0] != source || BlendDestinationAlpha[0] != destination ||
BlendFuncInvalid)
{
glBlendFunc(source, destination);
for (GLuint i = 0; i < FrameBufferCount; ++i)
{
BlendSourceRGB[i] = source;
BlendDestinationRGB[i] = destination;
BlendSourceAlpha[i] = source;
BlendDestinationAlpha[i] = destination;
}
BlendFuncInvalid = false;
}
}
void setBlendFuncSeparate(GLenum sourceRGB, GLenum destinationRGB, GLenum sourceAlpha, GLenum destinationAlpha)
{
if (sourceRGB != sourceAlpha || destinationRGB != destinationAlpha)
{
if (BlendSourceRGB[0] != sourceRGB || BlendDestinationRGB[0] != destinationRGB ||
BlendSourceAlpha[0] != sourceAlpha || BlendDestinationAlpha[0] != destinationAlpha ||
BlendFuncInvalid)
{
Driver->irrGlBlendFuncSeparate(sourceRGB, destinationRGB, sourceAlpha, destinationAlpha);
for (GLuint i = 0; i < FrameBufferCount; ++i)
{
BlendSourceRGB[i] = sourceRGB;
BlendDestinationRGB[i] = destinationRGB;
BlendSourceAlpha[i] = sourceAlpha;
BlendDestinationAlpha[i] = destinationAlpha;
}
BlendFuncInvalid = false;
}
}
else
{
setBlendFunc(sourceRGB, destinationRGB);
}
}
void setBlendFuncIndexed(GLuint index, GLenum source, GLenum destination)
{
if (index < FrameBufferCount && (BlendSourceRGB[index] != source || BlendDestinationRGB[index] != destination ||
BlendSourceAlpha[index] != source || BlendDestinationAlpha[index] != destination))
{
Driver->irrGlBlendFuncIndexed(index, source, destination);
BlendSourceRGB[index] = source;
BlendDestinationRGB[index] = destination;
BlendSourceAlpha[index] = source;
BlendDestinationAlpha[index] = destination;
BlendFuncInvalid = true;
}
}
void setBlendFuncSeparateIndexed(GLuint index, GLenum sourceRGB, GLenum destinationRGB, GLenum sourceAlpha, GLenum destinationAlpha)
{
if (sourceRGB != sourceAlpha || destinationRGB != destinationAlpha)
{
if (index < FrameBufferCount && (BlendSourceRGB[index] != sourceRGB || BlendDestinationRGB[index] != destinationRGB ||
BlendSourceAlpha[index] != sourceAlpha || BlendDestinationAlpha[index] != destinationAlpha))
{
Driver->irrGlBlendFuncSeparateIndexed(index, sourceRGB, destinationRGB, sourceAlpha, destinationAlpha);
BlendSourceRGB[index] = sourceRGB;
BlendDestinationRGB[index] = destinationRGB;
BlendSourceAlpha[index] = sourceAlpha;
BlendDestinationAlpha[index] = destinationAlpha;
BlendFuncInvalid = true;
}
}
else
{
setBlendFuncIndexed(index, sourceRGB, destinationRGB);
}
}
void setBlend(bool enable)
{
if (Blend[0] != enable || BlendInvalid)
{
if (enable)
glEnable(GL_BLEND);
else
glDisable(GL_BLEND);
for (GLuint i = 0; i < FrameBufferCount; ++i)
Blend[i] = enable;
BlendInvalid = false;
}
}
void setBlendIndexed(GLuint index, bool enable)
{
if (index < FrameBufferCount && Blend[index] != enable)
{
if (enable)
Driver->irrGlEnableIndexed(GL_BLEND, index);
else
Driver->irrGlDisableIndexed(GL_BLEND, index);
Blend[index] = enable;
BlendInvalid = true;
}
}
// Color Mask.
void getColorMask(u8& mask)
{
mask = ColorMask[0];
}
void setColorMask(u8 mask)
{
if (ColorMask[0] != mask || ColorMaskInvalid)
{
glColorMask((mask & ECP_RED) ? GL_TRUE : GL_FALSE, (mask & ECP_GREEN) ? GL_TRUE : GL_FALSE, (mask & ECP_BLUE) ? GL_TRUE : GL_FALSE, (mask & ECP_ALPHA) ? GL_TRUE : GL_FALSE);
for (GLuint i = 0; i < FrameBufferCount; ++i)
ColorMask[i] = mask;
ColorMaskInvalid = false;
}
}
void setColorMaskIndexed(GLuint index, u8 mask)
{
if (index < FrameBufferCount && ColorMask[index] != mask)
{
Driver->irrGlColorMaskIndexed(index, (mask & ECP_RED) ? GL_TRUE : GL_FALSE, (mask & ECP_GREEN) ? GL_TRUE : GL_FALSE, (mask & ECP_BLUE) ? GL_TRUE : GL_FALSE, (mask & ECP_ALPHA) ? GL_TRUE : GL_FALSE);
ColorMask[index] = mask;
ColorMaskInvalid = true;
}
}
// Cull face calls.
void setCullFaceFunc(GLenum mode)
{
if (CullFaceMode != mode)
{
glCullFace(mode);
CullFaceMode = mode;
}
}
void setCullFace(bool enable)
{
if (CullFace != enable)
{
if (enable)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
CullFace = enable;
}
}
// Depth calls.
void setDepthFunc(GLenum mode)
{
if (DepthFunc != mode)
{
glDepthFunc(mode);
DepthFunc = mode;
}
}
void getDepthMask(bool& depth)
{
depth = DepthMask;
}
void setDepthMask(bool enable)
{
if (DepthMask != enable)
{
if (enable)
glDepthMask(GL_TRUE);
else
glDepthMask(GL_FALSE);
DepthMask = enable;
}
}
void getDepthTest(bool& enable)
{
enable = DepthTest;
}
void setDepthTest(bool enable)
{
if (DepthTest != enable)
{
if (enable)
glEnable(GL_DEPTH_TEST);
else
glDisable(GL_DEPTH_TEST);
DepthTest = enable;
}
}
// FBO calls.
void getFBO(GLuint& frameBufferID) const
{
frameBufferID = FrameBufferID;
}
void setFBO(GLuint frameBufferID)
{
if (FrameBufferID != frameBufferID)
{
Driver->irrGlBindFramebuffer(GL_FRAMEBUFFER, frameBufferID);
FrameBufferID = frameBufferID;
}
}
// Shaders calls.
void getProgram(GLuint& programID) const
{
programID = ProgramID;
}
void setProgram(GLuint programID)
{
if (ProgramID != programID)
{
Driver->irrGlUseProgram(programID);
ProgramID = programID;
}
}
// Texture calls.
void getActiveTexture(GLenum& texture) const
{
texture = ActiveTexture;
}
void setActiveTexture(GLenum texture)
{
if (ActiveTexture != texture)
{
Driver->irrGlActiveTexture(texture);
ActiveTexture = texture;
}
}
// Viewport calls.
void getViewport(GLint& viewportX, GLint& viewportY, GLsizei& viewportWidth, GLsizei& viewportHeight) const
{
viewportX = ViewportX;
viewportY = ViewportY;
viewportWidth = ViewportWidth;
viewportHeight = ViewportHeight;
}
void setViewport(GLint viewportX, GLint viewportY, GLsizei viewportWidth, GLsizei viewportHeight)
{
if (ViewportX != viewportX || ViewportY != viewportY || ViewportWidth != viewportWidth || ViewportHeight != viewportHeight)
{
glViewport(viewportX, viewportY, viewportWidth, viewportHeight);
ViewportX = viewportX;
ViewportY = viewportY;
ViewportWidth = viewportWidth;
ViewportHeight = viewportHeight;
}
}
//! Compare material to current cache and update it when there are differences
// Some material renderers do change the cache beyond the original material settings
// This corrects the material to represent the current cache state again.
void correctCacheMaterial(irr::video::SMaterial& material)
{
// Fix textures which got removed
for ( u32 i=0; i < MATERIAL_MAX_TEXTURES; ++i )
{
if ( material.TextureLayers[i].Texture && !TextureCache[i] )
{
material.TextureLayers[i].Texture = 0;
}
}
}
protected:
TOpenGLDriver* Driver;
STextureCache TextureCache;
GLuint FrameBufferCount;
GLenum* BlendEquation;
GLenum* BlendSourceRGB;
GLenum* BlendDestinationRGB;
GLenum* BlendSourceAlpha;
GLenum* BlendDestinationAlpha;
bool* Blend;
bool BlendEquationInvalid;
bool BlendFuncInvalid;
bool BlendInvalid;
u8* ColorMask;
bool ColorMaskInvalid;
GLenum CullFaceMode;
bool CullFace;
GLenum DepthFunc;
bool DepthMask;
bool DepthTest;
GLuint FrameBufferID;
GLuint ProgramID;
GLenum ActiveTexture;
GLint ViewportX;
GLint ViewportY;
GLsizei ViewportWidth;
GLsizei ViewportHeight;
};
}
}
#endif