mirror of
https://github.com/minetest/irrlicht.git
synced 2025-07-02 00:00:26 +02:00
Import irrlicht 1.8.4 release
This commit is contained in:
348
source/Irrlicht/jpeglib/cjpeg.1
Normal file
348
source/Irrlicht/jpeglib/cjpeg.1
Normal file
@ -0,0 +1,348 @@
|
||||
.TH CJPEG 1 "28 August 2011"
|
||||
.SH NAME
|
||||
cjpeg \- compress an image file to a JPEG file
|
||||
.SH SYNOPSIS
|
||||
.B cjpeg
|
||||
[
|
||||
.I options
|
||||
]
|
||||
[
|
||||
.I filename
|
||||
]
|
||||
.LP
|
||||
.SH DESCRIPTION
|
||||
.LP
|
||||
.B cjpeg
|
||||
compresses the named image file, or the standard input if no file is
|
||||
named, and produces a JPEG/JFIF file on the standard output.
|
||||
The currently supported input file formats are: PPM (PBMPLUS color
|
||||
format), PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster
|
||||
Toolkit format). (RLE is supported only if the URT library is available.)
|
||||
.SH OPTIONS
|
||||
All switch names may be abbreviated; for example,
|
||||
.B \-grayscale
|
||||
may be written
|
||||
.B \-gray
|
||||
or
|
||||
.BR \-gr .
|
||||
Most of the "basic" switches can be abbreviated to as little as one letter.
|
||||
Upper and lower case are equivalent (thus
|
||||
.B \-BMP
|
||||
is the same as
|
||||
.BR \-bmp ).
|
||||
British spellings are also accepted (e.g.,
|
||||
.BR \-greyscale ),
|
||||
though for brevity these are not mentioned below.
|
||||
.PP
|
||||
The basic switches are:
|
||||
.TP
|
||||
.BI \-quality " N[,...]"
|
||||
Scale quantization tables to adjust image quality. Quality is 0 (worst) to
|
||||
100 (best); default is 75. (See below for more info.)
|
||||
.TP
|
||||
.B \-grayscale
|
||||
Create monochrome JPEG file from color input. Be sure to use this switch when
|
||||
compressing a grayscale BMP file, because
|
||||
.B cjpeg
|
||||
isn't bright enough to notice whether a BMP file uses only shades of gray.
|
||||
By saying
|
||||
.BR \-grayscale ,
|
||||
you'll get a smaller JPEG file that takes less time to process.
|
||||
.TP
|
||||
.B \-rgb
|
||||
Create RGB JPEG file.
|
||||
Using this switch suppresses the conversion from RGB
|
||||
colorspace input to the default YCbCr JPEG colorspace.
|
||||
Use this switch in combination with the
|
||||
.BI \-block " N"
|
||||
switch (see below) for lossless JPEG coding.
|
||||
.TP
|
||||
.B \-optimize
|
||||
Perform optimization of entropy encoding parameters. Without this, default
|
||||
encoding parameters are used.
|
||||
.B \-optimize
|
||||
usually makes the JPEG file a little smaller, but
|
||||
.B cjpeg
|
||||
runs somewhat slower and needs much more memory. Image quality and speed of
|
||||
decompression are unaffected by
|
||||
.BR \-optimize .
|
||||
.TP
|
||||
.B \-progressive
|
||||
Create progressive JPEG file (see below).
|
||||
.TP
|
||||
.BI \-scale " M/N"
|
||||
Scale the output image by a factor M/N. Currently supported scale factors are
|
||||
M/N with all N from 1 to 16, where M is the destination DCT size, which is 8
|
||||
by default (see
|
||||
.BI \-block " N"
|
||||
switch below).
|
||||
.TP
|
||||
.B \-targa
|
||||
Input file is Targa format. Targa files that contain an "identification"
|
||||
field will not be automatically recognized by
|
||||
.BR cjpeg ;
|
||||
for such files you must specify
|
||||
.B \-targa
|
||||
to make
|
||||
.B cjpeg
|
||||
treat the input as Targa format.
|
||||
For most Targa files, you won't need this switch.
|
||||
.PP
|
||||
The
|
||||
.B \-quality
|
||||
switch lets you trade off compressed file size against quality of the
|
||||
reconstructed image: the higher the quality setting, the larger the JPEG file,
|
||||
and the closer the output image will be to the original input. Normally you
|
||||
want to use the lowest quality setting (smallest file) that decompresses into
|
||||
something visually indistinguishable from the original image. For this
|
||||
purpose the quality setting should be between 50 and 95; the default of 75 is
|
||||
often about right. If you see defects at
|
||||
.B \-quality
|
||||
75, then go up 5 or 10 counts at a time until you are happy with the output
|
||||
image. (The optimal setting will vary from one image to another.)
|
||||
.PP
|
||||
.B \-quality
|
||||
100 will generate a quantization table of all 1's, minimizing loss in the
|
||||
quantization step (but there is still information loss in subsampling, as well
|
||||
as roundoff error). This setting is mainly of interest for experimental
|
||||
purposes. Quality values above about 95 are
|
||||
.B not
|
||||
recommended for normal use; the compressed file size goes up dramatically for
|
||||
hardly any gain in output image quality.
|
||||
.PP
|
||||
In the other direction, quality values below 50 will produce very small files
|
||||
of low image quality. Settings around 5 to 10 might be useful in preparing an
|
||||
index of a large image library, for example. Try
|
||||
.B \-quality
|
||||
2 (or so) for some amusing Cubist effects. (Note: quality
|
||||
values below about 25 generate 2-byte quantization tables, which are
|
||||
considered optional in the JPEG standard.
|
||||
.B cjpeg
|
||||
emits a warning message when you give such a quality value, because some
|
||||
other JPEG programs may be unable to decode the resulting file. Use
|
||||
.B \-baseline
|
||||
if you need to ensure compatibility at low quality values.)
|
||||
.PP
|
||||
The
|
||||
.B \-quality
|
||||
option has been extended in IJG version 7 for support of separate quality
|
||||
settings for luminance and chrominance (or in general, for every provided
|
||||
quantization table slot). This feature is useful for high-quality
|
||||
applications which cannot accept the damage of color data by coarse
|
||||
subsampling settings. You can now easily reduce the color data amount more
|
||||
smoothly with finer control without separate subsampling. The resulting file
|
||||
is fully compliant with standard JPEG decoders.
|
||||
Note that the
|
||||
.B \-quality
|
||||
ratings refer to the quantization table slots, and that the last value is
|
||||
replicated if there are more q-table slots than parameters. The default
|
||||
q-table slots are 0 for luminance and 1 for chrominance with default tables as
|
||||
given in the JPEG standard. This is compatible with the old behaviour in case
|
||||
that only one parameter is given, which is then used for both luminance and
|
||||
chrominance (slots 0 and 1). More or custom quantization tables can be set
|
||||
with
|
||||
.B \-qtables
|
||||
and assigned to components with
|
||||
.B \-qslots
|
||||
parameter (see the "wizard" switches below).
|
||||
.B Caution:
|
||||
You must explicitly add
|
||||
.BI \-sample " 1x1"
|
||||
for efficient separate color
|
||||
quality selection, since the default value used by library is 2x2!
|
||||
.PP
|
||||
The
|
||||
.B \-progressive
|
||||
switch creates a "progressive JPEG" file. In this type of JPEG file, the data
|
||||
is stored in multiple scans of increasing quality. If the file is being
|
||||
transmitted over a slow communications link, the decoder can use the first
|
||||
scan to display a low-quality image very quickly, and can then improve the
|
||||
display with each subsequent scan. The final image is exactly equivalent to a
|
||||
standard JPEG file of the same quality setting, and the total file size is
|
||||
about the same --- often a little smaller.
|
||||
.PP
|
||||
Switches for advanced users:
|
||||
.TP
|
||||
.B \-arithmetic
|
||||
Use arithmetic coding.
|
||||
.B Caution:
|
||||
arithmetic coded JPEG is not yet widely implemented, so many decoders will be
|
||||
unable to view an arithmetic coded JPEG file at all.
|
||||
.TP
|
||||
.BI \-block " N"
|
||||
Set DCT block size. All N from 1 to 16 are possible.
|
||||
Default is 8 (baseline format).
|
||||
Larger values produce higher compression,
|
||||
smaller values produce higher quality
|
||||
(exact DCT stage possible with 1 or 2; with the default quality of 75 and
|
||||
default Luminance qtable the DCT+Quantization stage is lossless for N=1).
|
||||
.B Caution:
|
||||
An implementation of the JPEG SmartScale extension is required for this
|
||||
feature. SmartScale enabled JPEG is not yet widely implemented, so many
|
||||
decoders will be unable to view a SmartScale extended JPEG file at all.
|
||||
.TP
|
||||
.B \-dct int
|
||||
Use integer DCT method (default).
|
||||
.TP
|
||||
.B \-dct fast
|
||||
Use fast integer DCT (less accurate).
|
||||
.TP
|
||||
.B \-dct float
|
||||
Use floating-point DCT method.
|
||||
The float method is very slightly more accurate than the int method, but is
|
||||
much slower unless your machine has very fast floating-point hardware. Also
|
||||
note that results of the floating-point method may vary slightly across
|
||||
machines, while the integer methods should give the same results everywhere.
|
||||
The fast integer method is much less accurate than the other two.
|
||||
.TP
|
||||
.B \-nosmooth
|
||||
Don't use high-quality downsampling.
|
||||
.TP
|
||||
.BI \-restart " N"
|
||||
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
|
||||
attached to the number.
|
||||
.B \-restart 0
|
||||
(the default) means no restart markers.
|
||||
.TP
|
||||
.BI \-smooth " N"
|
||||
Smooth the input image to eliminate dithering noise. N, ranging from 1 to
|
||||
100, indicates the strength of smoothing. 0 (the default) means no smoothing.
|
||||
.TP
|
||||
.BI \-maxmemory " N"
|
||||
Set limit for amount of memory to use in processing large images. Value is
|
||||
in thousands of bytes, or millions of bytes if "M" is attached to the
|
||||
number. For example,
|
||||
.B \-max 4m
|
||||
selects 4000000 bytes. If more space is needed, temporary files will be used.
|
||||
.TP
|
||||
.BI \-outfile " name"
|
||||
Send output image to the named file, not to standard output.
|
||||
.TP
|
||||
.B \-verbose
|
||||
Enable debug printout. More
|
||||
.BR \-v 's
|
||||
give more output. Also, version information is printed at startup.
|
||||
.TP
|
||||
.B \-debug
|
||||
Same as
|
||||
.BR \-verbose .
|
||||
.PP
|
||||
The
|
||||
.B \-restart
|
||||
option inserts extra markers that allow a JPEG decoder to resynchronize after
|
||||
a transmission error. Without restart markers, any damage to a compressed
|
||||
file will usually ruin the image from the point of the error to the end of the
|
||||
image; with restart markers, the damage is usually confined to the portion of
|
||||
the image up to the next restart marker. Of course, the restart markers
|
||||
occupy extra space. We recommend
|
||||
.B \-restart 1
|
||||
for images that will be transmitted across unreliable networks such as Usenet.
|
||||
.PP
|
||||
The
|
||||
.B \-smooth
|
||||
option filters the input to eliminate fine-scale noise. This is often useful
|
||||
when converting dithered images to JPEG: a moderate smoothing factor of 10 to
|
||||
50 gets rid of dithering patterns in the input file, resulting in a smaller
|
||||
JPEG file and a better-looking image. Too large a smoothing factor will
|
||||
visibly blur the image, however.
|
||||
.PP
|
||||
Switches for wizards:
|
||||
.TP
|
||||
.B \-baseline
|
||||
Force baseline-compatible quantization tables to be generated. This clamps
|
||||
quantization values to 8 bits even at low quality settings. (This switch is
|
||||
poorly named, since it does not ensure that the output is actually baseline
|
||||
JPEG. For example, you can use
|
||||
.B \-baseline
|
||||
and
|
||||
.B \-progressive
|
||||
together.)
|
||||
.TP
|
||||
.BI \-qtables " file"
|
||||
Use the quantization tables given in the specified text file.
|
||||
.TP
|
||||
.BI \-qslots " N[,...]"
|
||||
Select which quantization table to use for each color component.
|
||||
.TP
|
||||
.BI \-sample " HxV[,...]"
|
||||
Set JPEG sampling factors for each color component.
|
||||
.TP
|
||||
.BI \-scans " file"
|
||||
Use the scan script given in the specified text file.
|
||||
.PP
|
||||
The "wizard" switches are intended for experimentation with JPEG. If you
|
||||
don't know what you are doing, \fBdon't use them\fR. These switches are
|
||||
documented further in the file wizard.txt.
|
||||
.SH EXAMPLES
|
||||
.LP
|
||||
This example compresses the PPM file foo.ppm with a quality factor of
|
||||
60 and saves the output as foo.jpg:
|
||||
.IP
|
||||
.B cjpeg \-quality
|
||||
.I 60 foo.ppm
|
||||
.B >
|
||||
.I foo.jpg
|
||||
.SH HINTS
|
||||
Color GIF files are not the ideal input for JPEG; JPEG is really intended for
|
||||
compressing full-color (24-bit) images. In particular, don't try to convert
|
||||
cartoons, line drawings, and other images that have only a few distinct
|
||||
colors. GIF works great on these, JPEG does not. If you want to convert a
|
||||
GIF to JPEG, you should experiment with
|
||||
.BR cjpeg 's
|
||||
.B \-quality
|
||||
and
|
||||
.B \-smooth
|
||||
options to get a satisfactory conversion.
|
||||
.B \-smooth 10
|
||||
or so is often helpful.
|
||||
.PP
|
||||
Avoid running an image through a series of JPEG compression/decompression
|
||||
cycles. Image quality loss will accumulate; after ten or so cycles the image
|
||||
may be noticeably worse than it was after one cycle. It's best to use a
|
||||
lossless format while manipulating an image, then convert to JPEG format when
|
||||
you are ready to file the image away.
|
||||
.PP
|
||||
The
|
||||
.B \-optimize
|
||||
option to
|
||||
.B cjpeg
|
||||
is worth using when you are making a "final" version for posting or archiving.
|
||||
It's also a win when you are using low quality settings to make very small
|
||||
JPEG files; the percentage improvement is often a lot more than it is on
|
||||
larger files. (At present,
|
||||
.B \-optimize
|
||||
mode is always selected when generating progressive JPEG files.)
|
||||
.SH ENVIRONMENT
|
||||
.TP
|
||||
.B JPEGMEM
|
||||
If this environment variable is set, its value is the default memory limit.
|
||||
The value is specified as described for the
|
||||
.B \-maxmemory
|
||||
switch.
|
||||
.B JPEGMEM
|
||||
overrides the default value specified when the program was compiled, and
|
||||
itself is overridden by an explicit
|
||||
.BR \-maxmemory .
|
||||
.SH SEE ALSO
|
||||
.BR djpeg (1),
|
||||
.BR jpegtran (1),
|
||||
.BR rdjpgcom (1),
|
||||
.BR wrjpgcom (1)
|
||||
.br
|
||||
.BR ppm (5),
|
||||
.BR pgm (5)
|
||||
.br
|
||||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
|
||||
Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
|
||||
.SH AUTHOR
|
||||
Independent JPEG Group
|
||||
.SH BUGS
|
||||
GIF input files are no longer supported, to avoid the Unisys LZW patent.
|
||||
(Conversion of GIF files to JPEG is usually a bad idea anyway.)
|
||||
.PP
|
||||
Not all variants of BMP and Targa file formats are supported.
|
||||
.PP
|
||||
The
|
||||
.B \-targa
|
||||
switch is not a bug, it's a feature. (It would be a bug if the Targa format
|
||||
designers had not been clueless.)
|
Reference in New Issue
Block a user