mirror of
https://github.com/minetest/irrlicht.git
synced 2025-07-02 00:00:26 +02:00
Reformat the code, using:
find -type f | # list all regular files grep -E '\.(h|cpp|mm)$' | # filter for source files grep -v '/mt_' | # filter out generated files grep -v '/vendor/' | # and vendored GL grep -v '/test/image_loader_test.cpp' | # and this file (has giant literals arrays) xargs -n 1 -P $(nproc) clang-format -i # reformat everything Co-authored-by: numzero <numzer0@yandex.ru>
This commit is contained in:
@ -14,7 +14,6 @@ namespace irr
|
||||
namespace core
|
||||
{
|
||||
|
||||
|
||||
//! 2d vector template class with lots of operators and methods.
|
||||
/** As of Irrlicht 1.6, this class supersedes position2d, which should
|
||||
be considered deprecated. */
|
||||
@ -23,87 +22,148 @@ class vector2d
|
||||
{
|
||||
public:
|
||||
//! Default constructor (null vector)
|
||||
constexpr vector2d() : X(0), Y(0) {}
|
||||
constexpr vector2d() :
|
||||
X(0), Y(0) {}
|
||||
//! Constructor with two different values
|
||||
constexpr vector2d(T nx, T ny) : X(nx), Y(ny) {}
|
||||
constexpr vector2d(T nx, T ny) :
|
||||
X(nx), Y(ny) {}
|
||||
//! Constructor with the same value for both members
|
||||
explicit constexpr vector2d(T n) : X(n), Y(n) {}
|
||||
explicit constexpr vector2d(T n) :
|
||||
X(n), Y(n) {}
|
||||
|
||||
constexpr vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
|
||||
constexpr vector2d(const dimension2d<T> &other) :
|
||||
X(other.Width), Y(other.Height) {}
|
||||
|
||||
// operators
|
||||
|
||||
vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
|
||||
|
||||
vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
|
||||
|
||||
vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
|
||||
vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
|
||||
vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
|
||||
vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
|
||||
vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
|
||||
vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this; }
|
||||
|
||||
vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
|
||||
vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
|
||||
vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
|
||||
vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
|
||||
vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
|
||||
vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this; }
|
||||
|
||||
vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
|
||||
vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
|
||||
vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
|
||||
vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
|
||||
|
||||
vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
|
||||
vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
|
||||
vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
|
||||
vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
|
||||
|
||||
T& operator [](u32 index)
|
||||
vector2d<T> &operator=(const dimension2d<T> &other)
|
||||
{
|
||||
_IRR_DEBUG_BREAK_IF(index>1) // access violation
|
||||
|
||||
return *(&X+index);
|
||||
X = other.Width;
|
||||
Y = other.Height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const T& operator [](u32 index) const
|
||||
vector2d<T> operator+(const vector2d<T> &other) const { return vector2d<T>(X + other.X, Y + other.Y); }
|
||||
vector2d<T> operator+(const dimension2d<T> &other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
|
||||
vector2d<T> &operator+=(const vector2d<T> &other)
|
||||
{
|
||||
_IRR_DEBUG_BREAK_IF(index>1) // access violation
|
||||
X += other.X;
|
||||
Y += other.Y;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
|
||||
vector2d<T> &operator+=(const T v)
|
||||
{
|
||||
X += v;
|
||||
Y += v;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> &operator+=(const dimension2d<T> &other)
|
||||
{
|
||||
X += other.Width;
|
||||
Y += other.Height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
return *(&X+index);
|
||||
vector2d<T> operator-(const vector2d<T> &other) const { return vector2d<T>(X - other.X, Y - other.Y); }
|
||||
vector2d<T> operator-(const dimension2d<T> &other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
|
||||
vector2d<T> &operator-=(const vector2d<T> &other)
|
||||
{
|
||||
X -= other.X;
|
||||
Y -= other.Y;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
|
||||
vector2d<T> &operator-=(const T v)
|
||||
{
|
||||
X -= v;
|
||||
Y -= v;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> &operator-=(const dimension2d<T> &other)
|
||||
{
|
||||
X -= other.Width;
|
||||
Y -= other.Height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
vector2d<T> operator*(const vector2d<T> &other) const { return vector2d<T>(X * other.X, Y * other.Y); }
|
||||
vector2d<T> &operator*=(const vector2d<T> &other)
|
||||
{
|
||||
X *= other.X;
|
||||
Y *= other.Y;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
|
||||
vector2d<T> &operator*=(const T v)
|
||||
{
|
||||
X *= v;
|
||||
Y *= v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
vector2d<T> operator/(const vector2d<T> &other) const { return vector2d<T>(X / other.X, Y / other.Y); }
|
||||
vector2d<T> &operator/=(const vector2d<T> &other)
|
||||
{
|
||||
X /= other.X;
|
||||
Y /= other.Y;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
|
||||
vector2d<T> &operator/=(const T v)
|
||||
{
|
||||
X /= v;
|
||||
Y /= v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
T &operator[](u32 index)
|
||||
{
|
||||
_IRR_DEBUG_BREAK_IF(index > 1) // access violation
|
||||
|
||||
return *(&X + index);
|
||||
}
|
||||
|
||||
const T &operator[](u32 index) const
|
||||
{
|
||||
_IRR_DEBUG_BREAK_IF(index > 1) // access violation
|
||||
|
||||
return *(&X + index);
|
||||
}
|
||||
|
||||
//! sort in order X, Y.
|
||||
constexpr bool operator<=(const vector2d<T>&other) const
|
||||
constexpr bool operator<=(const vector2d<T> &other) const
|
||||
{
|
||||
return !(*this > other);
|
||||
}
|
||||
|
||||
//! sort in order X, Y.
|
||||
constexpr bool operator>=(const vector2d<T>&other) const
|
||||
constexpr bool operator>=(const vector2d<T> &other) const
|
||||
{
|
||||
return !(*this < other);
|
||||
}
|
||||
|
||||
//! sort in order X, Y.
|
||||
constexpr bool operator<(const vector2d<T>&other) const
|
||||
constexpr bool operator<(const vector2d<T> &other) const
|
||||
{
|
||||
return X < other.X || (X == other.X && Y < other.Y);
|
||||
}
|
||||
|
||||
//! sort in order X, Y.
|
||||
constexpr bool operator>(const vector2d<T>&other) const
|
||||
constexpr bool operator>(const vector2d<T> &other) const
|
||||
{
|
||||
return X > other.X || (X == other.X && Y > other.Y);
|
||||
}
|
||||
|
||||
constexpr bool operator==(const vector2d<T>& other) const {
|
||||
constexpr bool operator==(const vector2d<T> &other) const
|
||||
{
|
||||
return X == other.X && Y == other.Y;
|
||||
}
|
||||
|
||||
constexpr bool operator!=(const vector2d<T>& other) const {
|
||||
constexpr bool operator!=(const vector2d<T> &other) const
|
||||
{
|
||||
return !(*this == other);
|
||||
}
|
||||
|
||||
@ -113,50 +173,59 @@ public:
|
||||
/** Takes floating point rounding errors into account.
|
||||
\param other Vector to compare with.
|
||||
\return True if the two vector are (almost) equal, else false. */
|
||||
bool equals(const vector2d<T>& other) const
|
||||
bool equals(const vector2d<T> &other) const
|
||||
{
|
||||
return core::equals(X, other.X) && core::equals(Y, other.Y);
|
||||
}
|
||||
|
||||
vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
|
||||
vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
|
||||
vector2d<T> &set(T nx, T ny)
|
||||
{
|
||||
X = nx;
|
||||
Y = ny;
|
||||
return *this;
|
||||
}
|
||||
vector2d<T> &set(const vector2d<T> &p)
|
||||
{
|
||||
X = p.X;
|
||||
Y = p.Y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
//! Gets the length of the vector.
|
||||
/** \return The length of the vector. */
|
||||
T getLength() const { return core::squareroot( X*X + Y*Y ); }
|
||||
T getLength() const { return core::squareroot(X * X + Y * Y); }
|
||||
|
||||
//! Get the squared length of this vector
|
||||
/** This is useful because it is much faster than getLength().
|
||||
\return The squared length of the vector. */
|
||||
T getLengthSQ() const { return X*X + Y*Y; }
|
||||
T getLengthSQ() const { return X * X + Y * Y; }
|
||||
|
||||
//! Get the dot product of this vector with another.
|
||||
/** \param other Other vector to take dot product with.
|
||||
\return The dot product of the two vectors. */
|
||||
T dotProduct(const vector2d<T>& other) const
|
||||
T dotProduct(const vector2d<T> &other) const
|
||||
{
|
||||
return X*other.X + Y*other.Y;
|
||||
return X * other.X + Y * other.Y;
|
||||
}
|
||||
|
||||
//! check if this vector is parallel to another vector
|
||||
bool nearlyParallel( const vector2d<T> & other, const T factor = relativeErrorFactor<T>()) const
|
||||
bool nearlyParallel(const vector2d<T> &other, const T factor = relativeErrorFactor<T>()) const
|
||||
{
|
||||
// https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
|
||||
// if a || b then a.x/a.y = b.x/b.y (similar triangles)
|
||||
// if a || b then either both x are 0 or both y are 0.
|
||||
|
||||
return equalsRelative( X*other.Y, other.X* Y, factor)
|
||||
&& // a bit counterintuitive, but makes sure that
|
||||
// only y or only x are 0, and at same time deals
|
||||
// with the case where one vector is zero vector.
|
||||
(X*other.X + Y*other.Y) != 0;
|
||||
return equalsRelative(X * other.Y, other.X * Y, factor) && // a bit counterintuitive, but makes sure that
|
||||
// only y or only x are 0, and at same time deals
|
||||
// with the case where one vector is zero vector.
|
||||
(X * other.X + Y * other.Y) != 0;
|
||||
}
|
||||
|
||||
//! Gets distance from another point.
|
||||
/** Here, the vector is interpreted as a point in 2-dimensional space.
|
||||
\param other Other vector to measure from.
|
||||
\return Distance from other point. */
|
||||
T getDistanceFrom(const vector2d<T>& other) const
|
||||
T getDistanceFrom(const vector2d<T> &other) const
|
||||
{
|
||||
return vector2d<T>(X - other.X, Y - other.Y).getLength();
|
||||
}
|
||||
@ -165,7 +234,7 @@ public:
|
||||
/** Here, the vector is interpreted as a point in 2-dimensional space.
|
||||
\param other Other vector to measure from.
|
||||
\return Squared distance from other point. */
|
||||
T getDistanceFromSQ(const vector2d<T>& other) const
|
||||
T getDistanceFromSQ(const vector2d<T> &other) const
|
||||
{
|
||||
return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
|
||||
}
|
||||
@ -174,7 +243,7 @@ public:
|
||||
/** \param degrees Amount of degrees to rotate by, anticlockwise.
|
||||
\param center Rotation center.
|
||||
\return This vector after transformation. */
|
||||
vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
|
||||
vector2d<T> &rotateBy(f64 degrees, const vector2d<T> ¢er = vector2d<T>())
|
||||
{
|
||||
degrees *= DEGTORAD64;
|
||||
const f64 cs = cos(degrees);
|
||||
@ -183,7 +252,7 @@ public:
|
||||
X -= center.X;
|
||||
Y -= center.Y;
|
||||
|
||||
set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
|
||||
set((T)(X * cs - Y * sn), (T)(X * sn + Y * cs));
|
||||
|
||||
X += center.X;
|
||||
Y += center.Y;
|
||||
@ -193,12 +262,12 @@ public:
|
||||
//! Normalize the vector.
|
||||
/** The null vector is left untouched.
|
||||
\return Reference to this vector, after normalization. */
|
||||
vector2d<T>& normalize()
|
||||
vector2d<T> &normalize()
|
||||
{
|
||||
f32 length = (f32)(X*X + Y*Y);
|
||||
if ( length == 0 )
|
||||
f32 length = (f32)(X * X + Y * Y);
|
||||
if (length == 0)
|
||||
return *this;
|
||||
length = core::reciprocal_squareroot ( length );
|
||||
length = core::reciprocal_squareroot(length);
|
||||
X = (T)(X * length);
|
||||
Y = (T)(Y * length);
|
||||
return *this;
|
||||
@ -212,20 +281,18 @@ public:
|
||||
{
|
||||
if (Y == 0)
|
||||
return X < 0 ? 180 : 0;
|
||||
else
|
||||
if (X == 0)
|
||||
else if (X == 0)
|
||||
return Y < 0 ? 270 : 90;
|
||||
|
||||
if ( Y > 0)
|
||||
if (Y > 0)
|
||||
if (X > 0)
|
||||
return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
|
||||
return atan((irr::f64)Y / (irr::f64)X) * RADTODEG64;
|
||||
else
|
||||
return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
|
||||
return 180.0 - atan((irr::f64)Y / -(irr::f64)X) * RADTODEG64;
|
||||
else if (X > 0)
|
||||
return 360.0 - atan(-(irr::f64)Y / (irr::f64)X) * RADTODEG64;
|
||||
else
|
||||
if (X > 0)
|
||||
return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
|
||||
else
|
||||
return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
|
||||
return 180.0 + atan(-(irr::f64)Y / -(irr::f64)X) * RADTODEG64;
|
||||
}
|
||||
|
||||
//! Calculates the angle of this vector in degrees in the counter trigonometric sense.
|
||||
@ -240,19 +307,16 @@ public:
|
||||
|
||||
// don't use getLength here to avoid precision loss with s32 vectors
|
||||
// avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
|
||||
const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
|
||||
const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
|
||||
const f64 tmp = core::clamp(Y / sqrt((f64)(X * X + Y * Y)), -1.0, 1.0);
|
||||
const f64 angle = atan(core::squareroot(1 - tmp * tmp) / tmp) * RADTODEG64;
|
||||
|
||||
if (X>0 && Y>0)
|
||||
if (X > 0 && Y > 0)
|
||||
return angle + 270;
|
||||
else
|
||||
if (X>0 && Y<0)
|
||||
else if (X > 0 && Y < 0)
|
||||
return angle + 90;
|
||||
else
|
||||
if (X<0 && Y<0)
|
||||
else if (X < 0 && Y < 0)
|
||||
return 90 - angle;
|
||||
else
|
||||
if (X<0 && Y>0)
|
||||
else if (X < 0 && Y > 0)
|
||||
return 270 - angle;
|
||||
|
||||
return angle;
|
||||
@ -261,20 +325,20 @@ public:
|
||||
//! Calculates the angle between this vector and another one in degree.
|
||||
/** \param b Other vector to test with.
|
||||
\return Returns a value between 0 and 90. */
|
||||
inline f64 getAngleWith(const vector2d<T>& b) const
|
||||
inline f64 getAngleWith(const vector2d<T> &b) const
|
||||
{
|
||||
f64 tmp = (f64)(X*b.X + Y*b.Y);
|
||||
f64 tmp = (f64)(X * b.X + Y * b.Y);
|
||||
|
||||
if (tmp == 0.0)
|
||||
return 90.0;
|
||||
|
||||
tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
|
||||
tmp = tmp / core::squareroot((f64)((X * X + Y * Y) * (b.X * b.X + b.Y * b.Y)));
|
||||
if (tmp < 0.0)
|
||||
tmp = -tmp;
|
||||
if ( tmp > 1.0 ) // avoid floating-point trouble
|
||||
if (tmp > 1.0) // avoid floating-point trouble
|
||||
tmp = 1.0;
|
||||
|
||||
return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
|
||||
return atan(sqrt(1 - tmp * tmp) / tmp) * RADTODEG64;
|
||||
}
|
||||
|
||||
//! Returns if this vector interpreted as a point is on a line between two other points.
|
||||
@ -282,7 +346,7 @@ public:
|
||||
\param begin Beginning vector to compare between.
|
||||
\param end Ending vector to compare between.
|
||||
\return True if this vector is between begin and end, false if not. */
|
||||
bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
|
||||
bool isBetweenPoints(const vector2d<T> &begin, const vector2d<T> &end) const
|
||||
{
|
||||
// . end
|
||||
// /
|
||||
@ -293,13 +357,10 @@ public:
|
||||
// -
|
||||
// . this point (am I inside or outside)?
|
||||
//
|
||||
if (begin.X != end.X)
|
||||
{
|
||||
if (begin.X != end.X) {
|
||||
return ((begin.X <= X && X <= end.X) ||
|
||||
(begin.X >= X && X >= end.X));
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
return ((begin.Y <= Y && Y <= end.Y) ||
|
||||
(begin.Y >= Y && Y >= end.Y));
|
||||
}
|
||||
@ -310,10 +371,10 @@ public:
|
||||
\param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
|
||||
Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
|
||||
\return An interpolated vector. This vector is not modified. */
|
||||
vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
|
||||
vector2d<T> getInterpolated(const vector2d<T> &other, f64 d) const
|
||||
{
|
||||
const f64 inv = 1.0f - d;
|
||||
return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
|
||||
return vector2d<T>((T)(other.X * inv + X * d), (T)(other.Y * inv + Y * d));
|
||||
}
|
||||
|
||||
//! Creates a quadratically interpolated vector between this and two other vectors.
|
||||
@ -322,7 +383,7 @@ public:
|
||||
\param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
|
||||
Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
|
||||
\return An interpolated vector. This vector is not modified. */
|
||||
vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
|
||||
vector2d<T> getInterpolated_quadratic(const vector2d<T> &v2, const vector2d<T> &v3, f64 d) const
|
||||
{
|
||||
// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
|
||||
const f64 inv = 1.0f - d;
|
||||
@ -330,8 +391,8 @@ public:
|
||||
const f64 mul1 = 2.0f * d * inv;
|
||||
const f64 mul2 = d * d;
|
||||
|
||||
return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
|
||||
(T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
|
||||
return vector2d<T>((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
|
||||
(T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
|
||||
}
|
||||
|
||||
/*! Test if this point and another 2 points taken as triplet
|
||||
@ -339,7 +400,7 @@ public:
|
||||
to check winding order in triangles for 2D meshes.
|
||||
\return 0 if points are colinear, 1 if clockwise, 2 if anticlockwise
|
||||
*/
|
||||
s32 checkOrientation( const vector2d<T> & b, const vector2d<T> & c) const
|
||||
s32 checkOrientation(const vector2d<T> &b, const vector2d<T> &c) const
|
||||
{
|
||||
// Example of clockwise points
|
||||
//
|
||||
@ -351,27 +412,28 @@ public:
|
||||
// +---------------> X
|
||||
|
||||
T val = (b.Y - Y) * (c.X - b.X) -
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
|
||||
if (val == 0) return 0; // colinear
|
||||
if (val == 0)
|
||||
return 0; // colinear
|
||||
|
||||
return (val > 0) ? 1 : 2; // clock or counterclock wise
|
||||
}
|
||||
|
||||
/*! Returns true if points (a,b,c) are clockwise on the X,Y plane*/
|
||||
inline bool areClockwise( const vector2d<T> & b, const vector2d<T> & c) const
|
||||
inline bool areClockwise(const vector2d<T> &b, const vector2d<T> &c) const
|
||||
{
|
||||
T val = (b.Y - Y) * (c.X - b.X) -
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
|
||||
return val > 0;
|
||||
}
|
||||
|
||||
/*! Returns true if points (a,b,c) are counterclockwise on the X,Y plane*/
|
||||
inline bool areCounterClockwise( const vector2d<T> & b, const vector2d<T> & c) const
|
||||
inline bool areCounterClockwise(const vector2d<T> &b, const vector2d<T> &c) const
|
||||
{
|
||||
T val = (b.Y - Y) * (c.X - b.X) -
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
(b.X - X) * (c.Y - b.Y);
|
||||
|
||||
return val < 0;
|
||||
}
|
||||
@ -382,10 +444,10 @@ public:
|
||||
\param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
|
||||
Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
|
||||
*/
|
||||
vector2d<T>& interpolate( const vector2d<T>& a, const vector2d<T>& b, f64 d)
|
||||
vector2d<T> &interpolate(const vector2d<T> &a, const vector2d<T> &b, f64 d)
|
||||
{
|
||||
X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
|
||||
Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
|
||||
X = (T)((f64)b.X + ((a.X - b.X) * d));
|
||||
Y = (T)((f64)b.Y + ((a.Y - b.Y) * d));
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -396,21 +458,30 @@ public:
|
||||
T Y;
|
||||
};
|
||||
|
||||
//! Typedef for f32 2d vector.
|
||||
typedef vector2d<f32> vector2df;
|
||||
//! Typedef for f32 2d vector.
|
||||
typedef vector2d<f32> vector2df;
|
||||
|
||||
//! Typedef for integer 2d vector.
|
||||
typedef vector2d<s32> vector2di;
|
||||
//! Typedef for integer 2d vector.
|
||||
typedef vector2d<s32> vector2di;
|
||||
|
||||
template<class S, class T>
|
||||
vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
|
||||
template <class S, class T>
|
||||
vector2d<T> operator*(const S scalar, const vector2d<T> &vector)
|
||||
{
|
||||
return vector * scalar;
|
||||
}
|
||||
|
||||
// These methods are declared in dimension2d, but need definitions of vector2d
|
||||
template<class T>
|
||||
dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
|
||||
// These methods are declared in dimension2d, but need definitions of vector2d
|
||||
template <class T>
|
||||
dimension2d<T>::dimension2d(const vector2d<T> &other) :
|
||||
Width(other.X), Height(other.Y)
|
||||
{
|
||||
}
|
||||
|
||||
template<class T>
|
||||
bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
|
||||
template <class T>
|
||||
bool dimension2d<T>::operator==(const vector2d<T> &other) const
|
||||
{
|
||||
return Width == other.X && Height == other.Y;
|
||||
}
|
||||
|
||||
} // end namespace core
|
||||
} // end namespace irr
|
||||
@ -418,10 +489,10 @@ public:
|
||||
namespace std
|
||||
{
|
||||
|
||||
template<class T>
|
||||
struct hash<irr::core::vector2d<T> >
|
||||
template <class T>
|
||||
struct hash<irr::core::vector2d<T>>
|
||||
{
|
||||
size_t operator()(const irr::core::vector2d<T>& vec) const
|
||||
size_t operator()(const irr::core::vector2d<T> &vec) const
|
||||
{
|
||||
size_t h1 = hash<T>()(vec.X);
|
||||
size_t h2 = hash<T>()(vec.Y);
|
||||
@ -430,5 +501,3 @@ struct hash<irr::core::vector2d<T> >
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user