// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "CSoftwareDriver2.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ #include "SoftwareDriver2_helper.h" #include "CSoftwareTexture.h" #include "CSoftwareTexture2.h" #include "CSoftware2MaterialRenderer.h" #include "S3DVertex.h" #include "S4DVertex.h" #include "CBlit.h" // Matrix now here template bool mat33_transposed_inverse(irr::core::CMatrix4& out, const irr::core::CMatrix4& M) { const T* burning_restrict m = M.pointer(); double d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) - (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) + (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) + (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) - (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) + (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]); if (fabs(d) < DBL_MIN) { out.makeIdentity(); return false; } d = 1.0 / d; T* burning_restrict o = out.pointer(); o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13]))); o[4] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13]))); o[8] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5]))); o[12] = 0.f; o[1] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15]))); o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15]))); o[9] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7]))); o[13] = 0.f; o[2] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15]))); o[6] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15]))); o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7]))); o[14] = 0.f; o[3] = 0.f; o[7] = 0.f; o[11] = 0.f; o[15] = 1.f; return true; } #if 0 template bool mat44_transposed_inverse(irr::core::CMatrix4& out, const irr::core::CMatrix4& M) { const T* burning_restrict m = M.pointer(); double d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) - (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) + (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) + (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) - (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) + (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]); if (fabs(d) < DBL_MIN) { out.makeIdentity(); return false; } d = 1.0 / d; T* burning_restrict o = out.pointer(); o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13]))); o[4] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13]))); o[8] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5]))); o[12] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10]))); o[1] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15]))); o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15]))); o[9] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7]))); o[13] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10]))); o[2] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15]))); o[6] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15]))); o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7]))); o[14] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8]))); o[3] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13]))); o[7] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13]))); o[11] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5]))); o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8]))); return true; } #endif // difference to CMatrix4::getInverse . higher precision in determinant. return identity on failure template bool mat44_inverse(irr::core::CMatrix4& out, const irr::core::CMatrix4& M) { const T* burning_restrict m = M.pointer(); double d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) - (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) + (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) + (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) - (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) + (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]); if (fabs(d) < DBL_MIN) { out.makeIdentity(); return false; } d = 1.0 / d; T* burning_restrict o = out.pointer(); o[0] = (T)(d * (m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13]))); o[1] = (T)(d * (m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13]))); o[2] = (T)(d * (m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5]))); o[3] = (T)(d * (m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10]))); o[4] = (T)(d * (m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15]))); o[5] = (T)(d * (m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15]))); o[6] = (T)(d * (m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7]))); o[7] = (T)(d * (m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10]))); o[8] = (T)(d * (m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15]))); o[9] = (T)(d * (m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15]))); o[10] = (T)(d * (m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7]))); o[11] = (T)(d * (m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8]))); o[12] = (T)(d * (m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13]))); o[13] = (T)(d * (m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13]))); o[14] = (T)(d * (m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5]))); o[15] = (T)(d * (m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8]))); return true; } // void CMatrix4::transformVec4(T *out, const T * in) const template inline void transformVec4Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14]; out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15]; } template inline void transformVec3Vec3(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + M[12]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + M[13]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + M[14]; } #if 0 // void CMatrix4::transformVect(T *out, const core::vector3df &in) const template inline void transformVec3Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const core::vector3df& in) { const T* burning_restrict M = m.pointer(); out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12]; out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13]; out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14]; out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15]; } #endif template inline void rotateMat44Vec3Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10]; out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11]; //out[3] = 0.f; } template inline void rotateMat33Vec3Vec4(const irr::core::CMatrix4& m, T* burning_restrict out, const T* burning_restrict in) { const T* burning_restrict M = m.pointer(); out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8]; out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9]; out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10]; out[3] = 0.f; //in[0] * M[3] + in[1] * M[7] + in[2] * M[11]; } #if 0 template irr::video::sVec4 operator* (const irr::core::CMatrix4& m, const irr::core::vector3df& in) { const T* burning_restrict M = m.pointer(); return irr::video::sVec4( in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12], in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13], in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14], in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15]); } template irr::video::sVec4 operator* (const irr::core::vector3df& in, const irr::core::CMatrix4& m) { const T* burning_restrict M = m.pointer(); return irr::video::sVec4( in.X * M[0] + in.Y * M[1] + in.Z * M[2] + M[3], in.X * M[4] + in.Y * M[5] + in.Z * M[6] + M[7], in.X * M[8] + in.Y * M[9] + in.Z * M[10] + M[11], in.X * M[12] + in.Y * M[13] + in.Z * M[14] + M[15]); } #endif template irr::video::sVec4 operator* (const irr::core::CMatrix4& m, const irr::video::sVec4& v) { const T* burning_restrict M = m.pointer(); const float* burning_restrict in = &v.x; return irr::video::sVec4( in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12], in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13], in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14], in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15]); } template irr::video::sVec4 operator* (const irr::video::sVec4& v, const irr::core::CMatrix4& m) { const T* burning_restrict M = m.pointer(); const float* burning_restrict in = &v.x; return irr::video::sVec4( in[0] * M[0] + in[1] * M[1] + in[2] * M[2] + in[3] * M[3], in[0] * M[4] + in[1] * M[5] + in[2] * M[6] + in[3] * M[7], in[0] * M[8] + in[1] * M[9] + in[2] * M[10] + in[3] * M[11], in[0] * M[12] + in[1] * M[13] + in[2] * M[14] + in[3] * M[15]); } static inline float dot(const irr::video::sVec4& a, const irr::video::sVec4& b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } static inline float inversesqrt(const float x ) { return x!= 0.f ? 1.f / sqrtf(x) : 0.f; } static inline irr::video::sVec4 operator-(const irr::video::sVec4& a) { return irr::video::sVec4(-a.x, -a.y, -a.z, -a.w); } static inline irr::video::sVec4 normalize(const irr::video::sVec4& a) { float l = a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w; if (l < 0.00000001f) return irr::video::sVec4(0.f, 0.f, 1.f, 1.f); l = 1.f / sqrtf(l); return irr::video::sVec4(a.x * l, a.y * l, a.z * l, a.w * l); } // sVec3 xyz static inline irr::video::sVec4 cross(const irr::video::sVec4& a, const irr::video::sVec4& b) { return irr::video::sVec4(a.y * b.z - b.y * a.z, a.z * b.x - b.z * a.x, a.x * b.y - b.x * a.y, 0.f); } void irr::video::sVec4::setA8R8G8B8(const u32 argb) { //error term necessary. cancels out(somehow) at 255 argb((tofixpoint(r/w)+fix_0.5) static const f32 is = 1.f / (255.f); r = ((argb & 0x00FF0000) >> 16) * is; g = ((argb & 0x0000FF00) >> 8) * is; b = ((argb & 0x000000FF)) * is; a = ((argb & 0xFF000000) >> 24) * is; } //need to prevent floating point over/underflow //based on https://github.com/ekmett/approximate/blob/master/cbits/fast.c powf_fast_precise static inline float powf_limit(const float a, const float b) { if (a < 0.00000001f) return 0.f; else if (a >= 1.f) return a * b; /* calculate approximation with fraction of the exponent */ int e = (int)b; union { float f; int x; } u = { a }; u.x = (int)((b - e) * (u.x - 1065353216) + 1065353216); float r = 1.0f; float ua = a; while (e) { if (e & 1) { r *= ua; } if (ua < 0.000000001f) return 0.f; ua *= ua; e >>= 1; } r *= u.f; return r; } /* if (condition) state |= m; else state &= ~m; */ REALINLINE void burning_setbit32(unsigned int& state, int condition, const unsigned int mask) { // 0, or any positive to mask //s32 conmask = -condition >> 31; state ^= ((-condition >> 31) ^ state) & mask; } /* if (condition) state |= mask; else state &= ~mask; */ static inline void burning_setbit(size_t& state, int condition, size_t mask) { if (condition) state |= mask; else state &= ~mask; } // IImage::fill static void image_fill(irr::video::IImage* image, const irr::video::SColor& color, const interlaced_control interlaced) { if (0 == image) return; unsigned int c = color.color; switch (image->getColorFormat()) { case irr::video::ECF_A1R5G5B5: c = color.toA1R5G5B5(); c |= c << 16; break; default: break; } irr::memset32_interlaced(image->getData(), c, image->getPitch(), image->getDimension().Height, interlaced); } //setup Antialias. v0.52 uses as Interlaced void get_scale(interlaced_control& o, const irr::SIrrlichtCreationParameters& params) { o.raw = 0; o.bypass = 1; #if !defined(SOFTWARE_DRIVER_2_RENDERTARGET_SCALE) return; #endif //test case if (0 || params.WindowSize.Width <= 160 || params.WindowSize.Height <= 128) { return; } union scale_setup { struct { unsigned char x : 3; unsigned char y : 3; unsigned char i : 2; }; unsigned char v; }; scale_setup s; s.x = 1; s.y = 1; s.i = 0; switch (params.AntiAlias) { default: case 0: s.x = 1; s.y = 1; s.i = 0; break; case 2: s.x = 1; s.y = 1; s.i = 1; break; case 4: s.x = 2; s.y = 2; s.i = 0; break; case 8: s.x = 2; s.y = 2; s.i = params.Vsync ? 1 : 0; break; case 16:s.x = 4; s.y = 4; s.i = 0; break; case 32:s.x = 4; s.y = 4; s.i = 1; break; case 3: s.x = 3; s.y = 3; s.i = 0; break; case 5: s.x = 3; s.y = 3; s.i = 1; break; } /* if (params.WindowSize.Height > 384) { s.i = params.Vsync ? 0 : 1; s.x = params.AntiAlias ? 1 : 2; s.y = params.AntiAlias ? 1 : 2; } */ o.enable = s.i; o.target_scalex = s.x - 1; o.tex_scalex = 0; // s.x >= 2 ? s.x - 1 : 0; #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) o.enable = params.Vsync ? 0 : 1; switch (params.AntiAlias) { default: case 0: o.target_scalex = 0; o.tex_scalex = 0; break; case 2: o.target_scalex = 1; o.tex_scalex = 0; break; case 4: o.target_scalex = 1; o.tex_scalex = 1; break; case 8: o.target_scalex = 2; o.tex_scalex = 1; break; } #endif o.bypass = o.enable == 0; o.nr = 0; o.target_scaley = o.target_scalex; o.tex_scaley = o.tex_scalex; if (o.enable || o.target_scalex || o.tex_scalex) { char buf[256]; snprintf_irr(buf, sizeof(buf), "Burningvideo: Interlaced:%u,%u target:%u,%u tex:%u,%u", o.enable, o.bypass, o.target_scalex, o.target_scaley, o.tex_scalex, o.tex_scaley ); irr::os::Printer::log(buf, irr::ELL_NONE); } } #if 0 //code snippets #include #include #include #include void switch_between_ortho_and_perspective_projection(irr::IrrlichtDevice* device, irr::video::E_DRIVER_TYPE driverType) { //switch between ortho and perspective projection irr::scene::ICameraSceneNode* cam = device->getSceneManager()->addCameraSceneNode(); cam->setPosition(irr::core::vector3df(300, 250, -300)); cam->setTarget(irr::core::vector3df(0, 20, 0)); if (1 || driverType != irr::video::EDT_BURNINGSVIDEO) { cam->setProjectionMatrix(irr::core::matrix4().buildProjectionMatrixOrthoLH(120, 90, 0.9f, 5000.f, driverType != irr::video::EDT_OPENGL), true); } else { irr::f32 w = (2.f * 0.9f) / (2.f / 120.f * (cam->getTarget() - cam->getPosition()).getLength()); cam->setProjectionMatrix(irr::core::matrix4().buildProjectionMatrixPerspectiveLH(w, w * (90.f / 120.f), 0.9f, 5000.f, driverType != irr::video::EDT_OPENGL), true); } } /* For using an alternative camera in the examples. Try to translate the viewpoint (Maya internal CameraRotation) */ static inline void switchToMayaCamera(irr::IrrlichtDevice* device) { if (!device) return; irr::scene::ICameraSceneNode* camera = device->getSceneManager()->getActiveCamera(); if (!camera || camera->getID() == 54321) return; irr::core::vector3df target = camera->getTarget() - camera->getPosition(); irr::core::vector3df relativeRotation = target.getHorizontalAngle(); irr::scene::ICameraSceneNode* maya = device->getSceneManager()->addCameraSceneNodeMaya( 0, -1500, 1000, 1500, 54321, target.getLength(), true, relativeRotation.X + 90, relativeRotation.Y ); if (maya) { maya->setNearValue(camera->getNearValue()); maya->setFarValue(camera->getFarValue()); } device->getCursorControl()->setVisible(true); device->setResizable(true); } #endif //turn on/off fpu exception void fpu_exception(int on) { return; #if defined(_WIN32) _clearfp(); _controlfp(on ? _EM_INEXACT : -1, _MCW_EM); #endif } burning_namespace_start //! constructor CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) : CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter), WindowId(0), SceneSourceRect(0), RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0), DepthBuffer(0), StencilBuffer(0) { //enable fpu exception fpu_exception(1); #ifdef _DEBUG setDebugName("CBurningVideoDriver"); #endif VertexCache_map_source_format(); //Use AntiAlias(hack) to shrink BackBuffer Size and keep ScreenSize the same as Input //Control Interlaced/scaled BackBuffer get_scale(Interlaced, params); TexBias[ETF_STACK_3D] = 1.f; TexBias[ETF_STACK_2D] = 1.f; // create backbuffer. core::dimension2du use(params.WindowSize.Width / (Interlaced.target_scalex + 1), params.WindowSize.Height / (Interlaced.target_scaley + 1)); BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, use); if (BackBuffer) { //BackBuffer->fill(SColor(0)); image_fill(BackBuffer, SColor(0), interlaced_disabled()); // create z buffer if (params.ZBufferBits) DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension()); // create stencil buffer if (params.Stencilbuffer) StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension(), 8); } DriverAttributes->setAttribute("MaxIndices", 1 << 16); DriverAttributes->setAttribute("MaxTextures", BURNING_MATERIAL_MAX_TEXTURES); DriverAttributes->setAttribute("MaxTextureSize", SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE); DriverAttributes->setAttribute("MaxLights", 1024); //glsl::gl_MaxLights); DriverAttributes->setAttribute("MaxTextureLODBias", 16.f); DriverAttributes->setAttribute("Version", 50); // create triangle renderers memset(BurningShader, 0, sizeof(BurningShader)); //BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer); //BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer); BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this); BurningShader[ETR_GOURAUD_NOZ] = createTriangleRendererGouraudNoZ2(this); //BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this ); BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this); // 2D //BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer); BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this); BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this); BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this); BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2(this); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ(this); //BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap(this, EMT_NORMAL_MAP_SOLID); BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow(this); BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend(this); BurningShader[ETR_TRANSPARENT_REFLECTION_2_LAYER] = createTriangleRendererTexture_transparent_reflection_2_layer(this); //BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this ); BurningShader[ETR_COLOR] = create_burning_shader_color(this); // add the same renderer for all solid types CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID(this); CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR(this); //CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this ); //!TODO: addMaterialRenderer depends on pushing order.... addMaterialRenderer(smr); // EMT_SOLID addMaterialRenderer(smr); // EMT_SOLID_2_LAYER, addMaterialRenderer(smr); // EMT_LIGHTMAP, addMaterialRenderer(tmr); // EMT_LIGHTMAP_ADD, addMaterialRenderer(smr); // EMT_LIGHTMAP_M2, addMaterialRenderer(smr); // EMT_LIGHTMAP_M4, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M2, addMaterialRenderer(smr); // EMT_LIGHTMAP_LIGHTING_M4, addMaterialRenderer(smr); // EMT_DETAIL_MAP, addMaterialRenderer(smr); // EMT_SPHERE_MAP, addMaterialRenderer(smr); // EMT_REFLECTION_2_LAYER, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL, addMaterialRenderer(tmr); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF, addMaterialRenderer(tmr); // EMT_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer(tmr); // EMT_TRANSPARENT_REFLECTION_2_LAYER, #if 0 addMaterialRenderer(smr); // EMT_NORMAL_MAP_SOLID, addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer(smr); // EMT_PARALLAX_MAP_SOLID, addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer(tmr); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA, #else // add normal map renderers s32 tmp = 0; video::IMaterialRenderer* renderer = 0; renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_SOLID); renderer->drop(); renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR); renderer->drop(); renderer = createTRNormalMap(this, tmp, EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA); renderer->drop(); renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_SOLID); renderer->drop(); renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR); renderer->drop(); renderer = createTRParallaxMap(this, tmp, EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA); renderer->drop(); #endif addMaterialRenderer(tmr); // EMT_ONETEXTURE_BLEND smr->drop(); tmr->drop(); //umr->drop (); // select render target setRenderTargetImage2(BackBuffer, 0, 0); //reset Lightspace EyeSpace.init(); // select the right renderer setMaterial(Material.org); samples_passed = 0; } //! destructor CBurningVideoDriver::~CBurningVideoDriver() { // delete Backbuffer if (BackBuffer) { BackBuffer->drop(); BackBuffer = 0; } //release textures if (CurrentShader) { } Material.mat2D.setTexture(0, 0); // deleteMaterialRenders for (s32 i = 0; i < ETR2_COUNT; ++i) { if (BurningShader[i]) { BurningShader[i]->drop(); BurningShader[i] = 0; } } //deleteMaterialRenders(); // delete Additional buffer if (StencilBuffer) { StencilBuffer->drop(); StencilBuffer = 0; } if (DepthBuffer) { DepthBuffer->drop(); DepthBuffer = 0; } if (RenderTargetTexture) { RenderTargetTexture->drop(); RenderTargetTexture = 0; } if (RenderTargetSurface) { RenderTargetSurface->drop(); RenderTargetSurface = 0; } fpu_exception(0); } //! queries the features of the driver, returns true if feature is available bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { int on = 0; switch (feature) { #ifdef SOFTWARE_DRIVER_2_BILINEAR case EVDF_BILINEAR_FILTER: on = 1; break; #endif #if SOFTWARE_DRIVER_2_MIPMAPPING_MAX > 1 case EVDF_MIP_MAP: on = 1; break; #endif case EVDF_STENCIL_BUFFER: on = StencilBuffer != 0; break; case EVDF_RENDER_TO_TARGET: case EVDF_MULTITEXTURE: case EVDF_HARDWARE_TL: case EVDF_TEXTURE_NSQUARE: case EVDF_TEXTURE_MATRIX: on = 1; break; case EVDF_ARB_FRAGMENT_PROGRAM_1: case EVDF_ARB_VERTEX_PROGRAM_1: on = 1; break; #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) case EVDF_TEXTURE_NPOT: case EVDF_ARB_GLSL: on = 1; break; #else case EVDF_TEXTURE_NPOT: // for 2D on = 0; break; case EVDF_DEPTH_CLAMP: // shadow on = 1; break; #endif #if defined(SOFTWARE_DRIVER_2_2D_AS_3D) #if defined(IRRLICHT_FREE_CANVAS) case EVDF_VIEWPORT_SCALE_GUI: on = 1; break; #endif #endif case EVDF_OCCLUSION_QUERY: on = 1; break; default: on = 0; break; } return on && FeatureEnabled[feature]; } //matrix multiplication void CBurningVideoDriver::transform_calc(E_TRANSFORMATION_STATE_BURNING_VIDEO state) { size_t* flag = TransformationFlag[TransformationStack]; if (flag[state] & ETF_VALID) return; //check size_t ok = 0; switch (state) { case ETS_MODEL_VIEW_PROJ: if (0 == (flag[ETS_VIEW_PROJECTION] & ETF_VALID)) transform_calc(ETS_VIEW_PROJECTION); ok = flag[ETS_WORLD] & flag[ETS_VIEW] & flag[ETS_PROJECTION] & flag[ETS_VIEW_PROJECTION] & ETF_VALID; break; case ETS_VIEW_PROJECTION: ok = flag[ETS_VIEW] & flag[ETS_PROJECTION] & ETF_VALID; break; case ETS_MODEL_VIEW: ok = flag[ETS_WORLD] & flag[ETS_VIEW] & ETF_VALID; break; case ETS_NORMAL: ok = flag[ETS_MODEL_VIEW] & ETF_VALID; break; case ETS_MODEL_INVERSE: ok = flag[ETS_WORLD] & ETF_VALID; break; default: break; } if (!ok) { char buf[256]; sprintf(buf, "transform_calc not valid for %d", state); os::Printer::log(buf, ELL_WARNING); } core::matrix4* matrix = Transformation[TransformationStack]; switch (state) { case ETS_MODEL_VIEW_PROJ: if (flag[ETS_WORLD] & ETF_IDENTITY) { matrix[state] = matrix[ETS_VIEW_PROJECTION]; } else { matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW_PROJECTION], matrix[ETS_WORLD]); } break; case ETS_VIEW_PROJECTION: matrix[state].setbyproduct_nocheck(matrix[ETS_PROJECTION], matrix[ETS_VIEW]); break; case ETS_MODEL_VIEW: if (flag[ETS_WORLD] & ETF_IDENTITY) { matrix[state] = matrix[ETS_VIEW]; } else { matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW], matrix[ETS_WORLD]); } break; case ETS_NORMAL: mat33_transposed_inverse(matrix[state], matrix[ETS_MODEL_VIEW]); break; case ETS_MODEL_INVERSE: if (flag[ETS_WORLD] & ETF_IDENTITY) { matrix[state] = matrix[ETS_WORLD]; } else { mat44_inverse(matrix[state], matrix[ETS_WORLD]); } break; default: break; } flag[state] |= ETF_VALID; } //! sets transformation void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { size_t* flag = TransformationFlag[TransformationStack]; core::matrix4* matrix = Transformation[TransformationStack]; #if 0 int changed = 1; if (flag[state] & ETF_VALID) { changed = memcmp(mat.pointer(), matrix[state].pointer(), sizeof(mat)); } if (changed) #endif { matrix[state] = mat; flag[state] |= ETF_VALID; } //maybe identity (mostly for texturematrix to avoid costly multiplication) #if defined ( USE_MATRIX_TEST ) burning_setbit(TransformationFlag[state], mat.getDefinitelyIdentityMatrix(), ETF_IDENTITY); #else burning_setbit(flag[state], 0 == memcmp(mat.pointer(), core::IdentityMatrix.pointer(), sizeof(mat)), ETF_IDENTITY ); #endif #if 0 if (changed) #endif switch (state) { case ETS_PROJECTION: flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID; flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID; break; case ETS_VIEW: flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID; flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID; flag[ETS_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_NORMAL] &= ~ETF_VALID; break; case ETS_WORLD: flag[ETS_MODEL_VIEW_PROJ] &= ~ETF_VALID; flag[ETS_MODEL_VIEW] &= ~ETF_VALID; flag[ETS_NORMAL] &= ~ETF_VALID; flag[ETS_MODEL_INVERSE] &= ~ETF_VALID; break; case ETS_TEXTURE_0: case ETS_TEXTURE_1: case ETS_TEXTURE_2: case ETS_TEXTURE_3: #if _IRR_MATERIAL_MAX_TEXTURES_>4 case ETS_TEXTURE_4: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>5 case ETS_TEXTURE_5: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>6 case ETS_TEXTURE_6: #endif #if _IRR_MATERIAL_MAX_TEXTURES_>7 case ETS_TEXTURE_7: #endif if (0 == (flag[state] & ETF_IDENTITY)) { flag[state] |= ETF_TEXGEN_MATRIX; } break; default: break; } } //! Returns the transformation set by setTransform const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Transformation[TransformationStack][state]; } bool CBurningVideoDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect* sourceRect) { #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) CNullDriver::beginScene(clearFlag & ECBF_COLOR, clearFlag & ECBF_DEPTH, clearColor, videoData, sourceRect); #else CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); #endif Interlaced.nr = (Interlaced.nr + 1) & interlace_control_mask; WindowId = videoData.D3D9.HWnd; SceneSourceRect = sourceRect; clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); //memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) ); return true; } bool CBurningVideoDriver::endScene() { CNullDriver::endScene(); return Presenter->present(BackBuffer, WindowId, SceneSourceRect); } //! Create render target. IRenderTarget* CBurningVideoDriver::addRenderTarget() { CSoftwareRenderTarget2* renderTarget = new CSoftwareRenderTarget2(this); RenderTargets.push_back(renderTarget); return renderTarget; } #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) bool CBurningVideoDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { CSoftwareRenderTarget2 target(this); target.RenderTexture = texture; target.TargetType = ERT_RENDER_TEXTURE; target.Textures[0] = texture; if (texture) texture->grab(); u16 flag = 0; if (clearBackBuffer) flag |= ECBF_COLOR; if (clearZBuffer) flag |= ECBF_DEPTH; return setRenderTargetEx(texture ? &target : 0, flag, color, 1.f, true); } #endif bool CBurningVideoDriver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) if (target && target->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR); return false; } #endif if (RenderTargetTexture) { //switching from texture to backbuffer if (target == 0) { RenderTargetTexture->regenerateMipMapLevels(); } RenderTargetTexture->drop(); } #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) RenderTargetTexture = target ? target->getTexture()[0] : 0; #else RenderTargetTexture = target ? ((CSoftwareRenderTarget2*)target)->Textures[0] : 0; #endif if (RenderTargetTexture) { RenderTargetTexture->grab(); Interlaced.bypass = 1; setRenderTargetImage2(((CSoftwareTexture2*)RenderTargetTexture)->getImage()); } else { Interlaced.bypass = Interlaced.enable == 0; setRenderTargetImage2(BackBuffer); } clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } /* static inline f32 map_value(f32 x, f32 in_min, f32 in_max, f32 out_min, f32 out_max) { return (x - in_min) * (out_max - out_min) / (f32)(in_max - in_min) + out_min; } */ //! sets a render target void CBurningVideoDriver::setRenderTargetImage2(video::IImage* color, video::IImage* depth, video::IImage* stencil) { if (RenderTargetSurface) RenderTargetSurface->drop(); core::dimension2d current = RenderTargetSize; RenderTargetSurface = color; RenderTargetSize.Width = 0; RenderTargetSize.Height = 0; if (RenderTargetSurface) { RenderTargetSurface->grab(); RenderTargetSize = RenderTargetSurface->getDimension(); } RatioRenderTargetScreen.x = ScreenSize.Width ? (f32)RenderTargetSize.Width / ScreenSize.Width : 1.f; RatioRenderTargetScreen.y = ScreenSize.Height ? (f32)RenderTargetSize.Height / ScreenSize.Height : 1.f; int not_changed = current == RenderTargetSize; burning_setbit(TransformationFlag[0][ETS_PROJECTION], not_changed, ETF_VALID); burning_setbit(TransformationFlag[1][ETS_PROJECTION], not_changed, ETF_VALID); setViewPort(core::recti(RenderTargetSize)); if (DepthBuffer) DepthBuffer->setSize(RenderTargetSize); if (StencilBuffer) StencilBuffer->setSize(RenderTargetSize); } //--------- Transform from NDC to DC, transform TexCoo ---------------------------------------------- //--------- Transform from NDC to DC ---------------------------------------------- // used to scale <-1,-1><1,1> to viewport [scale,center] // controls subtexel and fill convention. // Don't tweak SOFTWARE_DRIVER_2_SUBTEXEL (-0.5f in m[1]) anymore to control texture blur effect, it's used for viewport scaling. // naming is misleading. it will write outside memory location.. //xw = (xn+1)*(w/2) + x void buildNDCToDCMatrix(f32* burning_restrict dc_matrix, const core::rect& viewport, const f32 center) { //const f32 center = -0.5f; // combined with top / left fill convention to (0,0)-(x-1,y-1) f32 x0 = viewport.UpperLeftCorner.X + center; f32 x1 = viewport.LowerRightCorner.X - 1 - center; f32 y0 = viewport.UpperLeftCorner.Y + center; f32 y1 = viewport.LowerRightCorner.Y - 1 - center; dc_matrix[0] = (x1 - x0) * 0.5f; dc_matrix[1] = dc_matrix[0] + x0; dc_matrix[2] = (y0 - y1) * 0.5f; dc_matrix[3] = dc_matrix[2] + y1; } //! sets a viewport void CBurningVideoDriver::setViewPort(const core::rect& area) { //const core::rect rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); const core::rect rendert(0, 0, RenderTargetSize.Width, RenderTargetSize.Height); ViewPort = area; ViewPort.clipAgainst(rendert); const s32 viewarea = ViewPort.getArea(); //is this even possible to be pixel-perfect if i have not the same depth range as openGL? //fill convention maybe flipped because window space is flipped so +-1 pixel always off? buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[ETF_STACK_3D], ViewPort, -0.5f); //Pixel Offset in window space here and not in view-space to avoid clipping //[-0.5,-0.5]-[w-0.5,h-0.5] buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[ETF_STACK_2D], ViewPort, -0.5f); TexBias[ETF_STACK_3D] = viewarea <= (160 * 120) ? 1.5f : Interlaced.target_scalex ? 0.75f : 0.75f; TexBias[ETF_STACK_2D] = 1.5f; if (CurrentShader) CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); } void CBurningVideoDriver::setScissor(int x, int y, int width, int height) { //openGL //y = rt.Height - y - height; //coming from GUI AbsRectangle v0; v0.x0 = core::floor32(x * RatioRenderTargetScreen.x); v0.y0 = core::floor32(y * RatioRenderTargetScreen.y); v0.x1 = core::floor32((x + width) * RatioRenderTargetScreen.x); v0.y1 = core::floor32((y + height) * RatioRenderTargetScreen.y); AbsRectangle v1; v1.x0 = 0; v1.y0 = 0; v1.x1 = RenderTargetSize.Width; v1.y1 = RenderTargetSize.Height; intersect(Scissor, v0, v1); } /* generic plane clipping in homogenous coordinates special case ndc frustum <-w,w>,<-w,w>,<-w,w> can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w cam is (0,0,-1) */ static const sVec4 NDCPlane[6 + 2] = { sVec4(0.f, 0.f, 1.f, -1.f), // near sVec4(0.f, 0.f, -1.f, -1.f), // far sVec4(1.f, 0.f, 0.f, -1.f), // left sVec4(-1.f, 0.f, 0.f, -1.f), // right sVec4(0.f, 1.f, 0.f, -1.f), // bottom sVec4(0.f, -1.f, 0.f, -1.f) // top }; /* test a vertex if it's inside the standard frustum this is the generic one.. f32 dotPlane; for ( u32 i = 0; i!= 6; ++i ) { dotPlane = v->Pos.dotProduct ( NDCPlane[i] ); burning_setbit32( flag, dotPlane <= 0.f, 1 << i ); } // this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w> burning_setbit32( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 ); burning_setbit32( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 ); burning_setbit32( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 ); burning_setbit32( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 ); burning_setbit32( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 ); burning_setbit32( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 ); */ #ifdef IRRLICHT_FAST_MATH REALINLINE size_t CBurningVideoDriver::clipToFrustumTest(const s4DVertex* v) const { size_t flag; f32 test[8]; const f32 w = -v->Pos.w; // a conditional move is needed....FCOMI ( but we don't have it ) // so let the fpu calculate and write it back. // cpu makes the compare, interleaving test[0] = v->Pos.z + w; test[1] = -v->Pos.z + w; test[2] = v->Pos.x + w; test[3] = -v->Pos.x + w; test[4] = v->Pos.y + w; test[5] = -v->Pos.y + w; const u32* a = F32_AS_U32_POINTER(test); flag = (a[0]) >> 31; flag |= (a[1] & 0x80000000) >> 30; flag |= (a[2] & 0x80000000) >> 29; flag |= (a[3] & 0x80000000) >> 28; flag |= (a[4] & 0x80000000) >> 27; flag |= (a[5] & 0x80000000) >> 26; /* flag = (IR ( test[0] ) ) >> 31; flag |= (IR ( test[1] ) & 0x80000000 ) >> 30; flag |= (IR ( test[2] ) & 0x80000000 ) >> 29; flag |= (IR ( test[3] ) & 0x80000000 ) >> 28; flag |= (IR ( test[4] ) & 0x80000000 ) >> 27; flag |= (IR ( test[5] ) & 0x80000000 ) >> 26; */ /* flag = F32_LOWER_EQUAL_0 ( test[0] ); flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1; flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2; flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3; flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4; flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5; */ return flag; } #else REALINLINE u32 clipToFrustumTest(const s4DVertex* v) { u32 flag = 0; flag |= v->Pos.z <= v->Pos.w ? (size_t)VERTEX4D_CLIP_NEAR : 0; flag |= -v->Pos.z <= v->Pos.w ? (size_t)VERTEX4D_CLIP_FAR : 0; flag |= v->Pos.x <= v->Pos.w ? (size_t)VERTEX4D_CLIP_LEFT : 0; flag |= -v->Pos.x <= v->Pos.w ? (size_t)VERTEX4D_CLIP_RIGHT : 0; flag |= v->Pos.y <= v->Pos.w ? (size_t)VERTEX4D_CLIP_BOTTOM : 0; flag |= -v->Pos.y <= v->Pos.w ? (size_t)VERTEX4D_CLIP_TOP : 0; //verify with plane /* size_t flag2 = 0; for ( u32 i = 0; i < 6; ++i ) { if (v->Pos.dot_xyzw(NDCPlane[i]) <= 0.f) flag2 |= ((size_t)1) << i; } if (flag != flag2) { int g = 1; } */ return flag; } #endif // _MSC_VER u32 clipToHyperPlane( s4DVertexPair* burning_restrict dest, const s4DVertexPair* burning_restrict source, const u32 inCount, const sVec4& plane ) { u32 outCount = 0; s4DVertexPair* out = dest; const s4DVertex* a; const s4DVertex* b = source; ipoltype bDotPlane; bDotPlane = b->Pos.dot_xyzw(plane); /* for( u32 i = 1; i < inCount + 1; ++i) { #if 0 a = source + (i%inCount)*2; #else const s32 condition = i - inCount; const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1; a = source + index; #endif */ // polygon scan conversion edge sharing opposite side? //Sutherland–Hodgman for (u32 i = 0; i < inCount; ++i) { a = source + (i == inCount - 1 ? 0 : s4DVertex_ofs(i + 1)); // current point inside if (ipol_lower_equal_0(a->Pos.dot_xyzw(plane))) { // last point outside if (ipol_greater_0(bDotPlane)) { // intersect line segment with plane //out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane)); ipoltype denom = (b->Pos - a->Pos).dot_xyzw(plane); out->interpolate(*b, *a, bDotPlane / denom); out += sizeof_s4DVertexPairRel; outCount += 1; } // copy current to out //*out = *a; memcpy_s4DVertexPair(out, a); b = out; out += sizeof_s4DVertexPairRel; outCount += 1; } else { // current point outside if (ipol_lower_0(bDotPlane)) { // previous was inside // intersect line segment with plane //out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane)); ipoltype denom = (b->Pos - a->Pos).dot_xyzw(plane); out->interpolate(*b, *a, bDotPlane / denom); out += sizeof_s4DVertexPairRel; outCount += 1; } // pointer b = a; } bDotPlane = b->Pos.dot_xyzw(plane); } return outCount; } /* Clip on all planes. Clipper.data clipmask per face */ u32 CBurningVideoDriver::clipToFrustum(const u32 vIn /*, const size_t clipmask_for_face*/) { s4DVertexPair* v0 = Clipper.data; s4DVertexPair* v1 = Clipper_disjoint.data; u32 vOut = vIn; //clear all clipping & projected flags const u32 flag = v0[0].flag & VERTEX4D_FORMAT_MASK; for (u32 g = 0; g != Clipper.ElementSize; ++g) { v0[g].flag = flag; v1[g].flag = flag; } #if 0 for (size_t i = 0; i < 6; ++i) { v0 = i & 1 ? Clipper_disjoint.data : Clipper.data; v1 = i & 1 ? Clipper.data : Clipper_disjoint.data; //clipMask checked outside - always clip all planes #if 0 if (0 == (clipMask & ((size_t)1 << i))) { vOut = vIn; memcpy_s4DVertexPair(v1, v0); } else #endif { vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[i]); if (vOut < vIn) return vOut; } } #endif vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[0]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[1]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[2]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[3]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[4]); if (vOut < vIn) return vOut; vOut = clipToHyperPlane(v0, v1, vOut, NDCPlane[5]); return vOut; } /*! Part I: apply Clip Scale matrix From Normalized Device Coordiante ( NDC ) Space to Device Coordinate ( DC ) Space Part II: Project homogeneous vector homogeneous to non-homogenous coordinates ( dividebyW ) Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A ) Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w ) replace w/w by 1/w */ //aliasing problems! [dest = source + 1] inline void ndc_2_dc_and_project(s4DVertexPair* burning_restrict v, const u32 vIn, const f32* burning_restrict dc_matrix ) { #define src v[g] #define dst v[g+1] for (u32 g = 0; g < vIn; g += sizeof_s4DVertexPairRel) { //cache doesn't work anymore? //if ( dst.flag & VERTEX4D_PROJECTED ) continue; //dst.flag = src.flag | VERTEX4D_PROJECTED; const f32 iw = reciprocal_zero_pos_underflow(src.Pos.w); // from normalized device to window coordinates (-1,-1) viewport //limit sub pixel for consistent fill convention (wrong place) #if SOFTWARE_DRIVER_2_SUBPIXEL_LIMIT > 0 && 0 dst.Pos.x = floorf((iw * src.Pos.x * dc_matrix[0] + dc_matrix[1]) * 128.f+0.5f) * (1.f / 128.f); dst.Pos.y = floorf((iw * src.Pos.y * dc_matrix[2] + dc_matrix[3]) * 128.f + 0.5f) * (1.f/ 128.f); #else dst.Pos.x = iw * src.Pos.x * dc_matrix[0] + dc_matrix[1]; dst.Pos.y = iw * src.Pos.y * dc_matrix[2] + dc_matrix[3]; #endif //burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip #if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1 dst.Pos.z = -iw * src.Pos.z * 0.5f + 0.5f; #endif dst.Pos.w = iw; //ortographic projection w == 1 looses stencil //dest[g].Pos.w = 1.f - dest[g].Pos.z; // Texture Coordinates will be projected after mipmap selection // satisfy write-combiner //todo: only set on flag #if 1 #if BURNING_MATERIAL_MAX_TEXTURES > 0 dst.Tex[0].x = src.Tex[0].x; dst.Tex[0].y = src.Tex[0].y; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 1 dst.Tex[1].x = src.Tex[1].x; dst.Tex[1].y = src.Tex[1].y; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 2 dst.Tex[2].x = src.Tex[2].x; dst.Tex[2].y = src.Tex[2].y; #endif #if BURNING_MATERIAL_MAX_TEXTURES > 3 dst.Tex[3].x = src.Tex[3].x; dst.Tex[3].y = src.Tex[3].y; #endif #endif // alpha? #if BURNING_MATERIAL_MAX_COLORS > 0 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.Color[0].r = src.Color[0].r * iw; dst.Color[0].g = src.Color[0].g * iw; dst.Color[0].b = src.Color[0].b * iw; dst.Color[0].a = src.Color[0].a * iw; #else dst.Color[0] = src.Color[0]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 1 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.Color[1].r = src.Color[1].r * iw; dst.Color[1].g = src.Color[1].g * iw; dst.Color[1].b = src.Color[1].b * iw; dst.Color[1].a = src.Color[1].a * iw; #else dst.Color[1] = src.Color[1]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 2 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.Color[2].r = src.Color[2].r * iw; dst.Color[2].g = src.Color[2].g * iw; dst.Color[2].b = src.Color[2].b * iw; dst.Color[2].a = src.Color[2].a * iw; #else dst.Color[2] = src.Color[2]; #endif #endif #if BURNING_MATERIAL_MAX_COLORS > 3 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.Color[3].r = src.Color[3].r * iw; dst.Color[3].g = src.Color[3].g * iw; dst.Color[3].b = src.Color[3].b * iw; dst.Color[3].a = src.Color[3].a * iw; #else dst.Color[3] = src.Color[3]; #endif #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.LightTangent[0].x = src.LightTangent[0].x * iw; dst.LightTangent[0].y = src.LightTangent[0].y * iw; dst.LightTangent[0].z = src.LightTangent[0].z * iw; #else dst.LightTangent[0] = src.LightTangent[0]; #endif #endif } #undef src #undef dst } inline void ndc_2_dc_and_project_grid(s4DVertexPair* burning_restrict v, const u32 vIn, const f32* burning_restrict dc_matrix ) { #define src v[g] #define dst v[g+1] u32 i; u32 size; for (u32 g = 0; g < vIn; g += sizeof_s4DVertexPairRel) { const f32 iw = reciprocal_zero_pos_underflow(src.Pos.w); // from normalized device to window coordinates (-1,-1) viewport //limit sub pixel for consistent fill convention (wrong place) dst.Pos.x = floorf((iw * src.Pos.x * dc_matrix[0] + dc_matrix[1]) * 4096.f + 0.5f) * (1.f / 4096.f); dst.Pos.y = floorf((iw * src.Pos.y * dc_matrix[2] + dc_matrix[3]) * 4096.f + 0.5f) * (1.f / 4096.f); //burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip #if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1 dst.Pos.z = -iw * src.Pos.z * 0.5f + 0.5f; #endif dst.Pos.w = iw; #if BURNING_MATERIAL_MAX_TEXTURES > 0 size = (src.flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16; for (i = 0; i != size; ++i) { dst.Tex[i].x = src.Tex[i].x; dst.Tex[i].y = src.Tex[i].y; } #endif #if BURNING_MATERIAL_MAX_COLORS > 0 size = (src.flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20; for (i = 0; i != size; ++i) { // alpha? #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.Color[i].r = src.Color[i].r * iw; dst.Color[i].g = src.Color[i].g * iw; dst.Color[i].b = src.Color[i].b * iw; dst.Color[i].a = src.Color[i].a * iw; #else dst.Color[i] = src.Color[i]; #endif } #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 size = (src.flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24; for (i = 0; i != size; ++i) { #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dst.LightTangent[i].x = src.LightTangent[i].x * iw; dst.LightTangent[i].y = src.LightTangent[i].y * iw; dst.LightTangent[i].z = src.LightTangent[i].z * iw; #else dst.LightTangent[i] = src.LightTangent[i]; #endif } #endif } #undef src #undef dst } #define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.TextureLayer[tex].Texture ) //! clamp(value,0,1) #if 0 static inline float clampfuv(const float v, const float b) { // b = 1.f - (2.f * (1/width)) return v < b ? b : v > 1.f - b ? 1.f - b : v; //return v < b ? b : v > 1.f-b ? 1.f-b : v; } #endif static inline float clampf01(const float v) { return v < 0.f ? 0.f : v > 1.f ? 1.f : v; } // Vertex Cache //! setup Vertex Format void CBurningVideoDriver::VertexCache_map_source_format() { const u32 s0 = sizeof(s4DVertex); const u32 s1 = sizeof(s4DVertex_proxy); if (s1 <= sizeof_s4DVertex / 2) { os::Printer::log("BurningVideo vertex format unnecessary to large", ELL_WARNING); } //memcpy_vertex if (s0 != sizeof_s4DVertex || ((sizeof_s4DVertex * sizeof_s4DVertexPairRel) & 31)) { os::Printer::log("BurningVideo vertex format compile problem", ELL_ERROR); IRR_DEBUG_BREAK_IF(1); } #if defined(ENV64BIT) if (sizeof(void*) != 8) { os::Printer::log("BurningVideo pointer should be 8 bytes", ELL_ERROR); IRR_DEBUG_BREAK_IF(1); } if (((unsigned long long)Transformation & 15) || ((unsigned long long)TransformationFlag & 15)) { os::Printer::log("BurningVideo Matrix Stack not 16 byte aligned", ELL_ERROR); IRR_DEBUG_BREAK_IF(1); } #endif SVSize* vSize = VertexShader.vSize; vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_2_FOG; vSize[E4VT_STANDARD].Pitch = sizeof(S3DVertex); vSize[E4VT_STANDARD].TexSize = 1; vSize[E4VT_STANDARD].TexCooSize = 1; vSize[E4VT_STANDARD].ColSize = 2; vSize[E4VT_2TCOORDS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG; vSize[E4VT_2TCOORDS].Pitch = sizeof(S3DVertex2TCoords); vSize[E4VT_2TCOORDS].TexSize = 2; vSize[E4VT_2TCOORDS].TexCooSize = 2; vSize[E4VT_2TCOORDS].ColSize = 2; // EMT_NORMAL_MAP_SOLID,EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_4 | VERTEX4D_FORMAT_BUMP_DOT3; vSize[E4VT_TANGENTS].Pitch = sizeof(S3DVertexTangents); vSize[E4VT_TANGENTS].TexSize = 2; vSize[E4VT_TANGENTS].TexCooSize = 2; vSize[E4VT_TANGENTS].ColSize = 4; // EMT_PARALLAX_MAP_SOLID,EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA vSize[E4VT_TANGENTS_PARALLAX].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_4 | VERTEX4D_FORMAT_PARALLAX; vSize[E4VT_TANGENTS_PARALLAX].Pitch = sizeof(S3DVertexTangents); vSize[E4VT_TANGENTS_PARALLAX].TexSize = 2; vSize[E4VT_TANGENTS_PARALLAX].TexCooSize = 2; vSize[E4VT_TANGENTS_PARALLAX].ColSize = 4; // EMT_TRANSPARENT_REFLECTION_2_LAYER map vSize[E4VT_REFLECTION_MAP].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG; vSize[E4VT_REFLECTION_MAP].Pitch = sizeof(S3DVertex); vSize[E4VT_REFLECTION_MAP].TexSize = 2; vSize[E4VT_REFLECTION_MAP].TexCooSize = 1; //TexCoo2 generated vSize[E4VT_REFLECTION_MAP].ColSize = 2; // shadow vSize[E4VT_SHADOW].Format = 0; vSize[E4VT_SHADOW].Pitch = sizeof(f32) * 3; // core::vector3df* vSize[E4VT_SHADOW].TexSize = 0; vSize[E4VT_SHADOW].TexCooSize = 0; vSize[E4VT_SHADOW].ColSize = 0; // color shading only (no texture) vSize[E4VT_NO_TEXTURE].Format = VERTEX4D_FORMAT_COLOR_2_FOG; vSize[E4VT_NO_TEXTURE].Pitch = sizeof(S3DVertex); vSize[E4VT_NO_TEXTURE].TexSize = 0; vSize[E4VT_NO_TEXTURE].TexCooSize = 0; vSize[E4VT_NO_TEXTURE].ColSize = 2; //Line vSize[E4VT_LINE].Format = VERTEX4D_FORMAT_COLOR_1; vSize[E4VT_LINE].Pitch = sizeof(S3DVertex); vSize[E4VT_LINE].TexSize = 0; vSize[E4VT_LINE].TexCooSize = 0; vSize[E4VT_LINE].ColSize = 1; //verify with global defines u32 size; for (size_t i = 0; i < E4VT_COUNT; ++i) { u32& flag = vSize[i].Format; #if !defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR) //flag &= ~VERTEX4D_FORMAT_SPECULAR; #endif if (vSize[i].TexSize > BURNING_MATERIAL_MAX_TEXTURES) vSize[i].TexSize = BURNING_MATERIAL_MAX_TEXTURES; size = (flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16; if (size > BURNING_MATERIAL_MAX_TEXTURES) { flag = (flag & ~VERTEX4D_FORMAT_MASK_TEXTURE) | (BURNING_MATERIAL_MAX_TEXTURES << 16); } size = (flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20; if (size > BURNING_MATERIAL_MAX_COLORS) { flag = (flag & ~VERTEX4D_FORMAT_MASK_COLOR) | (BURNING_MATERIAL_MAX_COLORS << 20); } size = (flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24; if (size > BURNING_MATERIAL_MAX_LIGHT_TANGENT) { flag = (flag & ~VERTEX4D_FORMAT_MASK_LIGHT) | (BURNING_MATERIAL_MAX_LIGHT_TANGENT << 24); } } VertexShader.mem.resize(VERTEXCACHE_ELEMENT * 2); VertexShader.vType = E4VT_STANDARD; Clipper.resize(VERTEXCACHE_ELEMENT * 2); Clipper_disjoint.resize(VERTEXCACHE_ELEMENT * 2); TransformationStack = ETF_STACK_3D; memset(TransformationFlag, 0, sizeof(TransformationFlag)); memset(Transformation_ETS_CLIPSCALE, 0, sizeof(Transformation_ETS_CLIPSCALE)); Material.resetRenderStates = true; Material.Fallback_MaterialType = EMT_SOLID; Material.VertexShader = BVT_Fix; PushShader.CurrentShader = 0; PushShader.EdgeTestPass = 0; } /*! fill a cache line with transformed, light and clip test triangles overhead - if primitive is outside or culled, vertexLighting and TextureTransform is still done */ void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex) { const u8* burning_restrict source; s4DVertex* burning_restrict dest; source = (u8*)VertexShader.vertices + (sourceIndex * VertexShader.vSize[VertexShader.vType].Pitch); // it's a look ahead so we never hit it.. // but give priority... //VertexShader.info[ destIndex ].hit = hitCount; // store info VertexShader.info[destIndex].index = sourceIndex; VertexShader.info[destIndex].hit = 0; // destination Vertex dest = VertexShader.mem.data + s4DVertex_ofs(destIndex); dest->reset_interpolate(); //Irrlicht S3DVertex,S3DVertex2TCoords,S3DVertexTangents const S3DVertex* base = ((S3DVertex*)source); const core::matrix4* matrix = Transformation[TransformationStack]; if (Material.VertexShader == BVT_Fix) goto fftransform; { IBurningShader* shader = (u32)Material.org.MaterialType < MaterialRenderers.size() ? (IBurningShader*)MaterialRenderers[Material.org.MaterialType].Renderer : CurrentShader; // Vertex program attribute inputs: sVec4 gl_Vertex(base->Pos.X, base->Pos.Y, base->Pos.Z, 1.f); sVec4 gl_Normal(base->Normal.X, base->Normal.Y, base->Normal.Z, 1.f); sVec4 gl_Color; gl_Color.setA8R8G8B8(base->Color.color); // Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address! sVec4 gl_MultiTexCoord[4]; const sVec2Pack* baseTCoord = (const sVec2Pack*)&base->TCoords.X; for (u32 m = 0; m < array_size(gl_MultiTexCoord); ++m) { if (m < VertexShader.vSize[VertexShader.vType].TexCooSize) { gl_MultiTexCoord[m].s = baseTCoord[m].x; gl_MultiTexCoord[m].t = baseTCoord[m].y; } else { gl_MultiTexCoord[m].s = 0.f; gl_MultiTexCoord[m].t = 0.f; } gl_MultiTexCoord[m].p = 1.f; gl_MultiTexCoord[m].q = 1.f; } #define gl_MultiTexCoord0 gl_MultiTexCoord[0] #define gl_MultiTexCoord1 gl_MultiTexCoord[1] #define gl_MultiTexCoord2 gl_MultiTexCoord[2] #define gl_MultiTexCoord3 gl_MultiTexCoord[3] #define gl_Position dest->Pos #define gl_TexCoord dest->Tex #define gl_FrontColor dest->Color[0] #define gl_BackColor dest->Color[1] #define vec2 sVec2 #define vec3 sVec4 #define vec4 sVec4 #define mat4 core::matrix4 #define gl_NormalMatrix matrix[ETS_NORMAL] #define gl_ModelViewMatrix matrix[ETS_MODEL_VIEW] #define gl_ModelViewProjectionMatrix matrix[ETS_MODEL_VIEW_PROJ] #define ftransform() (matrix[ETS_MODEL_VIEW_PROJ] * gl_Vertex) #define uniform(var,name) const var& name = (const var&)*shader->getUniform(#name,BL_VERTEX_FLOAT) #define varying(var,name) var& name = (var&)*shader->getUniform(#name,BL_FRAGMENT_FLOAT) #ifdef _MSC_VER #pragma warning (disable: 4244) // float/double conversion #pragma warning (disable: 4305) // truncation #endif //init for default pixelshader gl_FrontColor = gl_Color; //gl_FrontColor.setA8R8G8B8(gl_Color); if (Material.VertexShader == BVT_815_0x1f847599) { //varying(vec2,TexCoords); gl_Position = gl_Vertex; // TexCoords = (gl_Vertex.xy * 0.5 + 0.5); gl_TexCoord[0].x = gl_Vertex.x * 0.5f + 0.5f; gl_TexCoord[0].y = gl_Vertex.y * -0.5f + 0.5f; // runtime flip } else if (Material.VertexShader == BVT_opengl_vsh_shaderexample) { uniform(mat4, mWorldViewProj); uniform(mat4, mInvWorld); uniform(mat4, mTransWorld); uniform(vec3, mLightPos); // actually just camera-pos in this case uniform(vec4, mLightColor); gl_Position = mWorldViewProj * gl_Vertex; // transform normal somehow (NOTE: for the real vertex normal you would use an inverse-transpose world matrix instead of mInvWorld) vec4 normal = vec4(gl_Normal, 0.0); normal = mInvWorld * normal; normal = normalize(normal); // (NOTE: not sure why transposed world is used instead of world?) vec4 worldpos = gl_Vertex * mTransWorld; vec4 lightVector = worldpos - vec4(mLightPos, 1.0); lightVector = normalize(lightVector); float tmp2 = dot(-lightVector, normal); sVec4 tmp = mLightColor * tmp2; gl_FrontColor = gl_BackColor = vec4(tmp.x, tmp.y, tmp.z, 0.0); gl_TexCoord[0] = gl_MultiTexCoord0; gl_FrontColor.clampf01(); } else if (Material.VertexShader == STK_1259_0xc8226e1a) { // Creates a bubble (wave) effect by distorting the texture depending on time uniform(float, time); varying(vec2, uv); gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = ftransform(); float delta_x = cos(time * 3.0) * sin(4.0 * gl_TexCoord[0].st.s * 6.28318531); float delta_y = cos(time * 2.0) * sin(3.0 * gl_TexCoord[0].st.t * 6.28318531); uv = gl_TexCoord[0].st_op() + vec2(0.02 * delta_x, 0.02 * delta_y); //fragment uniform(float, transparency); gl_TexCoord[0] = uv; gl_FrontColor.a *= transparency; } else if (Material.VertexShader == STK_958_0xa048973b) { // motion_blur.vert gl_TexCoord[0].st_op() = vec2(gl_MultiTexCoord0.s, gl_MultiTexCoord0.t); gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = gl_Vertex; } else if (Material.VertexShader == STK_1309_0x1fd689c2) { varying(vec3, lightVec); varying(vec3, halfVec); varying(vec3, eyeVec); uniform(vec3, lightdir); gl_TexCoord[0] = gl_MultiTexCoord0; // Building the matrix Eye Space -> Tangent Space vec3 n = normalize(gl_NormalMatrix * gl_Normal); vec3 t = normalize(gl_NormalMatrix * gl_MultiTexCoord1.xyz()); // tangent vec3 b = cross(n, t); vec3 vertexPosition = vec3(gl_ModelViewMatrix * gl_Vertex); // transform light and half angle vectors by tangent basis vec3 v; v.x = dot(lightdir, t); v.y = dot(lightdir, b); v.z = dot(lightdir, n); v.w = 0; lightVec = normalize(v); v.x = dot(vertexPosition, t); v.y = dot(vertexPosition, b); v.z = dot(vertexPosition, n); v.w = 0; eyeVec = normalize(v); vertexPosition = normalize(vertexPosition); // Normalize the halfVector to pass it to the fragment shader // No need to divide by two, the result is normalized anyway. // vec3 halfVector = normalize((vertexPosition + lightDir) / 2.0); vec3 halfVector = normalize(vertexPosition + lightdir); v.x = dot(halfVector, t); v.y = dot(halfVector, b); v.z = dot(halfVector, n); // No need to normalize, t,b,n and halfVector are normal vectors. //normalize (v); halfVec = v; gl_Position = ftransform(); } else if (Material.VertexShader == STK_1204_0x072a4094) { varying(vec3, normal); varying(vec4, vertex_color); varying(vec3, lightdir2); uniform(vec3, lightdir); gl_TexCoord[0] = gl_MultiTexCoord0; gl_TexCoord[1] = gl_MultiTexCoord1; gl_Position = ftransform(); vertex_color = gl_Color; //normal = normalize(gl_NormalMatrix * gl_Normal); normal = normalize(gl_Normal); lightdir2 = normalize(lightdir); } else if (Material.VertexShader == STK_1303_0xd872cdb6) { // Shader based on work by Fabien Sanglard // Released under the terms of CC-BY 3.0 varying(vec3,lightVec); varying(vec3,halfVec); varying(vec3,eyeVec); uniform(vec3,lightdir); //void main() { gl_TexCoord[0] = gl_MultiTexCoord0; // Building the matrix Eye Space -> Tangent Space vec3 n = normalize(gl_NormalMatrix * gl_Normal); // gl_MultiTexCoord1.xyz vec3 t = normalize(gl_NormalMatrix * vec3(1.0, 0.0, 0.0)); // tangent vec3 b = cross(n, t); vec3 vertexPosition = vec3(gl_ModelViewMatrix * gl_Vertex); // transform light and half angle vectors by tangent basis vec3 v; v.x = dot(lightdir, t); v.y = dot(lightdir, b); v.z = dot(lightdir, n); lightVec = normalize(v); vertexPosition = normalize(vertexPosition); eyeVec = normalize(-vertexPosition); // we are in Eye Coordinates, so EyePos is (0,0,0) // Normalize the halfVector to pass it to the fragment shader // No need to divide by two, the result is normalized anyway. // vec3 halfVector = normalize((vertexPosition + lightDir) / 2.0); vec3 halfVector = normalize(vertexPosition + lightdir); v.x = dot(halfVector, t); v.y = dot(halfVector, b); v.z = dot(halfVector, n); // No need to normalize, t,b,n and halfVector are normal vectors. //normalize (v); halfVec = v; gl_Position = ftransform(); } } #ifdef _MSC_VER #pragma warning (default: 4244) // conversion #pragma warning (default: 4305) // truncation #endif #undef gl_MultiTexCoord0 #undef gl_MultiTexCoord1 #undef gl_MultiTexCoord2 #undef gl_MultiTexCoord3 #undef vec2 #undef vec3 #undef vec4 #undef mat4 #undef uniform #undef varying #undef gl_TexCoord #undef gl_FrontColor #undef gl_BackColor #undef ftransform #undef gl_NormalMatrix #undef gl_ModelViewMatrix #undef gl_ModelViewProjectionMatrix goto clipandproject; } fftransform: // transform Model * World * Camera * Projection * NDCSpace matrix matrix[ETS_MODEL_VIEW_PROJ].transformVect(&dest[0].Pos.x, base->Pos); /* ieee754* p = (ieee754*) &dest[0].Pos.x; p[0].fields.frac &= 0xFFFFFFF0; p[1].fields.frac &= 0xFFFFFFF0; p[2].fields.frac &= 0xFFFFFFF0; //p[3].fields.frac &= 0xFFFFFFF0; */ //dest[0].Pos.x = floorf(dest[0].Pos.x * 4096.f + 0.5f) * (1.f / 4096.f); //dest[0].Pos.y = floorf(dest[0].Pos.y * 4096.f + 0.5f) * (1.f / 4096.f); //dest[0].Pos.z = floorf(dest[0].Pos.z * 4096.f + 0.5f) * (1.f / 4096.f); //dest[0].Pos.w = floorf(dest[0].Pos.w * 4096.f + 0.5f) * (1.f / 4096.f); //mhm ... maybe no goto if (VertexShader.vType == E4VT_SHADOW) { //core::vector3df i = base->Pos; //i.Z -= 0.5f; //matrix[ETS_MODEL_VIEW_PROJ].transformVect(&dest->Pos.x, i); //GL_DEPTH_CLAMP,EVDF_DEPTH_CLAMP //if ( dest->Pos.z < dest->Pos.w) // dest->Pos.z = dest->Pos.w*0.99f; //glPolygonOffset // self shadow wanted or not? dest->Pos.w *= 1.005f; //flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0; //flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0; goto clipandproject; } #if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM ) // vertex, normal in light(eye) space if (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG | TL_LIGHT)) { sVec4 vertex4; //eye coordinate position of vertex matrix[ETS_MODEL_VIEW].transformVect(&vertex4.x, base->Pos); f32 iw = reciprocal_zero_pos_underflow(vertex4.w); EyeSpace.vertex.x = vertex4.x * iw; EyeSpace.vertex.y = vertex4.y * iw; EyeSpace.vertex.z = vertex4.z * iw; EyeSpace.vertex.w = iw; //EyeSpace.cam_distance = EyeSpace.vertex.length_xyz(); /* if ( GL_LIGHT_MODEL_LOCAL_VIEWER == 0 ) { EyeSpace.cam_dir.x = 0.f; EyeSpace.cam_dir.y = 0.f; EyeSpace.cam_dir.z = 1.f; } */ EyeSpace.vertexn = EyeSpace.vertex; EyeSpace.vertexn.normalize_dir_xyz(); //matrix[ETS_NORMAL].rotateVect(&EyeSpace.normal.x, base->Normal); rotateMat33Vec3Vec4(matrix[ETS_NORMAL], &EyeSpace.normal.x, &base->Normal.X); if (EyeSpace.TL_Flag & TL_NORMALIZE_NORMALS) { EyeSpace.normal.normalize_dir_xyz_zero(); } } #endif #if BURNING_MATERIAL_MAX_COLORS > 0 // apply lighting model #if defined (SOFTWARE_DRIVER_2_LIGHTING) if (EyeSpace.TL_Flag & TL_LIGHT) { lightVertex_eye(dest, base->Color.color); } else { dest->Color[0].setA8R8G8B8(base->Color.color); } #else dest->Color[0].setA8R8G8B8(base->Color.color); #endif #endif //vertex fog if (EyeSpace.TL_Flag & TL_FOG) //Material.org.FogEnable { f32 fog_factor = 1.f; // GL_FRAGMENT_DEPTH -> abs(EyeSpace.vertex.z) ieee754 fog_frag_coord; fog_frag_coord.f = EyeSpace.vertex.z; fog_frag_coord.fields.sign = 0; switch (FogType) { case EFT_FOG_LINEAR: fog_factor = (FogEnd - fog_frag_coord.f) * EyeSpace.fog_scale; break; case EFT_FOG_EXP: fog_factor = (f32)exp(-FogDensity * fog_frag_coord.f); break; case EFT_FOG_EXP2: fog_factor = (f32)exp(-FogDensity * FogDensity * fog_frag_coord.f * fog_frag_coord.f); break; } sVec4* a = dest->Color + (((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_COLOR)>=VERTEX4D_FORMAT_COLOR_2_FOG) ? 1 : 0); a->a = clampf01(fog_factor); } // Texture Coo Generation and Transform for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m) { sVec4 r; f32 tx, ty; // texgen const size_t& flag = TransformationFlag[TransformationStack][ETS_TEXTURE_0 + m]; if (flag & ETF_TEXGEN_CAMERA_SPHERE) { //reflect(u,N) u - 2.0 * dot(N, u) * N const sVec4& u = EyeSpace.vertexn; // EyeSpace.vertex.normalized const sVec4& n = EyeSpace.normal; f32 dot = -2.f * n.dot_xyz(u); r.x = u.x + dot * n.x; r.y = u.y + dot * n.y; r.z = u.z + dot * n.z; //openGL f32 m = 2.f * sqrtf(r.x * r.x + r.y * r.y + (r.z + 1.f) * (r.z + 1.f)); tx = r.x / m + 0.5f; ty = -(r.y / m + 0.5f); // tex flipped /* //~d3d with spheremap scale f32 m = 0.25f / (0.00001f + sqrtf(r.x*r.x+r.y*r.y+r.z*r.z)); dest[0].Tex[t].x = r.x * m + 0.5f; dest[0].Tex[t].y = -r.y * m + 0.5f; */ } else if (flag & ETF_TEXGEN_CAMERA_REFLECTION) { //reflect(u,N) u - 2.0 * dot(N, u) * N const sVec4& u = EyeSpace.vertexn; // EyeSpace.vertex.normalized const sVec4& n = EyeSpace.normal; f32 dot = -2.f * n.dot_xyz(u); //openGL tx = /*r.x =*/ u.x + dot * n.x; ty = /*r.y =*/ u.y + dot * n.y; //r.z = u.z + dot * n.z; //~d3d with spheremap transform //tx = r.x * 0.5f + 0.5f; //ty = r.y * -0.5f + 0.5f; } else if (m < VertexShader.vSize[VertexShader.vType].TexCooSize) { // Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address! const sVec2Pack* baseTCoord = (const sVec2Pack*)&base->TCoords.X; tx = baseTCoord[m].x; ty = baseTCoord[m].y; } else { tx = 0.f; ty = 0.f; } #if 0 static const CSoftwareTexture2_Bound empty_bound = { 0.f,0.f,0.f,0.f,0 }; const video::CSoftwareTexture2* tex = MAT_TEXTURE(t); const CSoftwareTexture2_Bound& texb = tex ? tex->getTexBound_index()[0] : empty_bound; const bool filter = Material.org.TextureLayer[t].BilinearFilter; #endif //Texture Matrix Transform if (flag & ETF_TEXGEN_MATRIX) // !(flag & ETF_IDENTITY) { /* Generate texture coordinates as linear functions so that: u = Ux*x + Uy*y + Uz*z + Uw v = Vx*x + Vy*y + Vz*z + Vw The matrix M for this case is: Ux Vx 0 0 Uy Vy 0 0 Uz Vz 0 0 Uw Vw 0 0 */ const f32* M = matrix[ETS_TEXTURE_0 + m].pointer(); f32 _tx = tx; f32 _ty = ty; tx = M[0] * _tx + M[4] * _ty + M[8]; ty = M[1] * _tx + M[5] * _ty + M[9]; } switch (Material.org.TextureLayer[m].TextureWrapU) { case ETC_CLAMP: tx = clampf01(tx); break; case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: tx = clampf01(tx); break; case ETC_MIRROR: if (core::fract(tx) > 0.5f) tx = 1.f - tx; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: tx = clampf01(tx); if (core::fract(tx) > 0.5f) tx = 1.f - tx; break; case ETC_REPEAT: // texel access is always modulo default: break; } switch (Material.org.TextureLayer[m].TextureWrapV) { case ETC_CLAMP: ty = clampf01(ty); break; case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: //if (ty < 0.f) ty = 0.f; //else if (ty > texb.pixelclampy) ty = texb.pixelclampy; //ty = clampfuv(ty, filter ? texb.pixelclampy : 0.f); ty = clampf01(ty); break; case ETC_MIRROR: if (core::fract(ty) > 0.5f) ty = 1.f - ty; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: ty = clampf01(ty); if (core::fract(ty) > 0.5f) ty = 1.f - ty; break; case ETC_REPEAT: // texel access is always modulo default: break; } dest->Tex[m].x = tx; dest->Tex[m].y = ty; } #if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 if ((EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) && ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_BUMP_DOT3) ) { const S3DVertexTangents* tangent = ((S3DVertexTangents*)source); sVec4 vp; sVec4 light_accu; light_accu.set(0.f); /* * Color[0] lightcolor[0] a: vertexalpha * Color[1] lightcolor[1] a: fogdistance * Color[2] lightvector[0] * Color[3] lightvector[1] * LightVector[0] eyevector */ if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_PARALLAX) { vp.x = EyeSpace.leye.x - base->Pos.X; vp.y = EyeSpace.leye.y - base->Pos.Y; vp.z = EyeSpace.leye.z - base->Pos.Z; light_accu.x = vp.dot(tangent->Tangent); light_accu.y = -vp.dot(tangent->Binormal); light_accu.z = -vp.dot(tangent->Normal); light_accu.normalize_pack_xyz(dest->LightTangent[0], 1.f, 0.f); } const u32 maxLight = core::min_((u32)BURNING_MATERIAL_MAX_COLORS,(u32)2, EyeSpace.Light.size()); for (u32 i = 0; i < maxLight; ++i) { const SBurningShaderLight& light = EyeSpace.Light[i]; if (!light.LightIsOn) continue; vp.x = light.pos_local.x - base->Pos.X; vp.y = light.pos_local.y - base->Pos.Y; vp.z = light.pos_local.z - base->Pos.Z; f32 attenuation = inversesqrt(vp.dot_xyz(vp) * light.nmap_linearAttenuation); dest->Color[i].r = light.DiffuseColor.r * attenuation; dest->Color[i].g = light.DiffuseColor.g * attenuation; dest->Color[i].b = light.DiffuseColor.b * attenuation; dest->Color[i].clampf01(); // lightvector transform by tangent matrix #if BURNING_MATERIAL_MAX_COLORS >=4 dest->Color[2+i].x = vp.dot(tangent->Tangent); dest->Color[2+i].y = vp.dot(tangent->Binormal); dest->Color[2+i].z = vp.dot(tangent->Normal); dest->Color[2 + i].normalize_dir_xyz_zero(); #else light_accu.x += (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z); light_accu.y += (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z); light_accu.z += (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z); #endif } #if BURNING_MATERIAL_MAX_COLORS >=4 #else //normalize [-1,+1] to [0,1] -> obsolete light_accu.normalize_pack_xyz(dest->LightTangent[0], 1.f, 0.f); #endif dest->Tex[1].x = dest->Tex[0].x; dest->Tex[1].y = dest->Tex[0].y; } else if (EyeSpace.TL_Flag & TL_LIGHT) { //dest->LightTangent[0].x = 0.f; //dest->LightTangent[0].y = 0.f; //dest->LightTangent[0].z = 0.f; } #endif //if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0 //#endif // SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM clipandproject: // test vertex visibility const u32 flag = clipToFrustumTest(dest) | VertexShader.vSize[VertexShader.vType].Format; dest[s4DVertex_ofs(0)].flag = dest[s4DVertex_pro(0)].flag = flag; // to DC Space, project homogenous vertex if ((flag & VERTEX4D_CLIPMASK) == VERTEX4D_INSIDE) { ndc_2_dc_and_project(dest, s4DVertex_ofs(1), Transformation_ETS_CLIPSCALE[TransformationStack]); } } void SVertexShader::setIndices(const void* _indices, const video::E_INDEX_TYPE _iType) { indices = _indices; indicesIndex = 0; indicesRun = 0; switch (_iType) { case EIT_16BIT: iType = E4IT_16BIT; break; case EIT_32BIT: iType = E4IT_32BIT; break; default: iType = (e4DIndexType)iType; break; } if (!indices) iType = E4IT_NONE; } void SVertexShader::setPrimitiveType(const scene::E_PRIMITIVE_TYPE primitiveType, const u32 primitiveCount) { pType = primitiveType; primitiveHasVertex = 3; indicesPitch = 1; switch (pType) { default: case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: indexCount = primitiveCount; indicesPitch = 1; primitiveHasVertex = 1; break; case scene::EPT_LINE_STRIP: case scene::EPT_LINE_LOOP: indexCount = primitiveCount + 1; indicesPitch = 1; primitiveHasVertex = 2; break; case scene::EPT_LINES: indexCount = 2 * primitiveCount; indicesPitch = 2; primitiveHasVertex = 2; break; case scene::EPT_TRIANGLE_STRIP: indexCount = primitiveCount + 2; indicesPitch = 1; primitiveHasVertex = 3; break; case scene::EPT_TRIANGLES: indexCount = primitiveCount + primitiveCount + primitiveCount; indicesPitch = 3; primitiveHasVertex = 3; break; case scene::EPT_TRIANGLE_FAN: indexCount = primitiveCount + 2; indicesPitch = 1; primitiveHasVertex = 3; break; case scene::EPT_POLYGON: indexCount = primitiveCount; indicesPitch = 1; primitiveHasVertex = 3; // drawn a triangle fan break; case scene::EPT_QUAD_STRIP: indexCount = 2 * primitiveCount + 2; indicesPitch = 2; primitiveHasVertex = 4; break; case scene::EPT_QUADS: indexCount = 4 * primitiveCount; indicesPitch = 4; primitiveHasVertex = 4; //draw two triangles.. break; } } void SVertexShader::set_info_miss() { //memset(info, VERTEXCACHE_MISS, sizeof(info)); for (size_t i = 0; i != VERTEXCACHE_ELEMENT; ++i) { info[i].hit = VERTEXCACHE_MISS; info[i].index = VERTEXCACHE_MISS; } } // get the next unique index cache line void SVertexShader::get_next_index_cacheline() { u32 i; // cache element 0 switch (pType) { case scene::EPT_POLYGON: case scene::EPT_TRIANGLE_FAN: fillIndex = indicesRun ? 1 : 0; break; default: fillIndex = 0; break; } // set_info_temp_miss for (i = fillIndex; i != VERTEXCACHE_ELEMENT; ++i) { info_temp[i].hit = VERTEXCACHE_MISS; info_temp[i].index = VERTEXCACHE_MISS; } // rewind to start of primitive indicesIndex = indicesRun; while (indicesIndex < indexCount && fillIndex < VERTEXCACHE_ELEMENT) { u32 sourceIndex = index(indicesIndex); indicesIndex += 1; // if not exist, push back u32 exist = 0; for (u32 dIndex = 0; dIndex < fillIndex; ++dIndex) { if (info_temp[dIndex].index == sourceIndex) { exist = 1; break; } } if (0 == exist) { info_temp[fillIndex].index = sourceIndex; fillIndex += 1; } } // clear marks for (i = 0; i != VERTEXCACHE_ELEMENT; ++i) { info[i].hit = 0; } // mark all existing for (i = 0; i != fillIndex; ++i) { for (u32 dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex) { if (info[dIndex].index == info_temp[i].index) { info_temp[i].hit = dIndex; info[dIndex].hit = 1; break; } } } } /* Cache based on linear walk indices fill blockwise on the next 16(Cache_Size) unique vertices in indexlist merge the next 16 vertices with the current */ void SVertexShader::getPrimitive(s4DVertexPair* face[4], CBurningVideoDriver* driver) { // next primitive must be complete in cache if (indicesIndex - indicesRun < primitiveHasVertex && indicesIndex < indexCount) { // get the next unique indices cache line get_next_index_cacheline(); // fill new for (u32 i = 0; i != fillIndex; ++i) { if (info_temp[i].hit != VERTEXCACHE_MISS) continue; for (u32 dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex) { if (0 == info[dIndex].hit) { driver->VertexCache_fill(info_temp[i].index, dIndex); info[dIndex].hit += 1; info_temp[i].hit = dIndex; break; } } } } // all primitive indices are in the index cache line switch (pType) { case scene::EPT_POLYGON: case scene::EPT_TRIANGLE_FAN: face[0] = vertex(index(0)); face[1] = vertex(index(indicesRun + 1)); face[2] = vertex(index(indicesRun + 2)); break; case scene::EPT_TRIANGLE_STRIP: face[0] = vertex(index(indicesRun + 0)); face[(primitiveRun & 1) ? 2 : 1] = vertex(index(indicesRun + 1)); face[(primitiveRun & 1) ? 1 : 2] = vertex(index(indicesRun + 2)); break; default: for (u32 i = 0; i < primitiveHasVertex; ++i) { face[i] = vertex(index(indicesRun + i)); } break; } indicesRun += indicesPitch; } /*! */ int CBurningVideoDriver::VertexCache_reset(const void* vertices, u32 vertexCount, const void* indices, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (0 == CurrentShader) { return 1; } VertexShader.vertices = vertices; VertexShader.vertexCount = vertexCount; switch (Material.org.MaterialType) // (Material.Fallback_MaterialType) { case EMT_PARALLAX_MAP_SOLID: case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR: case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA: VertexShader.vType = vType == EVT_TANGENTS ? E4VT_TANGENTS_PARALLAX : (e4DVertexType)vType; break; case EMT_REFLECTION_2_LAYER: case EMT_TRANSPARENT_REFLECTION_2_LAYER: VertexShader.vType = vType == EVT_STANDARD ? E4VT_REFLECTION_MAP : (e4DVertexType)vType; break; default: VertexShader.vType = (e4DVertexType)vType; break; } //check material material->OnRender(VertexType) SVSize* vSize = VertexShader.vSize; for (int m = (int)vSize[VertexShader.vType].TexSize - 1; m >= 0; --m) { const ITexture* tex = MAT_TEXTURE(m); if (!tex) { //vSize[E4VT_NO_TEXTURE] = vSize[VertexShader.vType]; vSize[E4VT_NO_TEXTURE].Format = (vSize[VertexShader.vType].Format & ~VERTEX4D_FORMAT_MASK_COLOR) | VERTEX4D_FORMAT_COLOR_1; vSize[E4VT_NO_TEXTURE].Pitch = vSize[VertexShader.vType].Pitch; vSize[E4VT_NO_TEXTURE].TexSize = m; vSize[E4VT_NO_TEXTURE].TexCooSize = m; VertexShader.vType = E4VT_NO_TEXTURE; //flags downconvert? } } VertexShader.setIndices(indices, iType); VertexShader.setPrimitiveType(pType, primitiveCount); VertexShader.set_info_miss(); return 0; } //! draws a vertex primitive list void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (VertexCache_reset(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType)) return; pushShader(pType, 1); //Matrices needed for this primitive transform_calc(ETS_MODEL_VIEW_PROJ); if ((EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG | TL_LIGHT)) || Material.VertexShader != BVT_Fix) { transform_calc(ETS_MODEL_VIEW); transform_calc(ETS_NORMAL); } //objectspace if (EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) { transform_calc(ETS_MODEL_INVERSE); const core::matrix4* matrix = Transformation[TransformationStack]; if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) >= VERTEX4D_FORMAT_PARALLAX) { transform_calc(ETS_MODEL_VIEW); mat44_inverse(EyeSpace.mvi, matrix[ETS_MODEL_VIEW]); sVec4 eye(0.f, 0.f, 0.f, 1.f); transformVec3Vec3(EyeSpace.mvi, &EyeSpace.leye.x, &eye.x); } const u32 maxLight = core::min_((u32)BURNING_MATERIAL_MAX_COLORS, (u32)2, EyeSpace.Light.size()); for (u32 i = 0; i < maxLight; ++i) { SBurningShaderLight& light = EyeSpace.Light[i]; if (!light.LightIsOn) continue; transformVec3Vec3(matrix[ETS_MODEL_INVERSE], &light.pos_local.x, &light.pos.x); } } if ((u32)Material.org.MaterialType < MaterialRenderers.size()) { MaterialRenderers[Material.org.MaterialType].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexShader.vType); } s4DVertexPair* face[4]; u32 vOut; u32 vertex_from_clipper; // from VertexShader or CurrentOut u32 has_vertex_run; // magnitude crossproduct (area of parallelogram * 0.5 = triangle screen size, winding) ieee754 dc_area; CurrentShader->fragment_draw_count = 0; for (VertexShader.primitiveRun = 0; VertexShader.primitiveRun < primitiveCount; ++VertexShader.primitiveRun) { //collect pointer to face vertices VertexShader.getPrimitive(face, this); size_t clipMask_i; size_t clipMask_o; clipMask_i = face[0]->flag; clipMask_o = face[0]->flag; for (has_vertex_run = 1; has_vertex_run < VertexShader.primitiveHasVertex; ++has_vertex_run) { clipMask_i |= face[has_vertex_run]->flag; // if fully outside or outside on same side clipMask_o &= face[has_vertex_run]->flag; // if fully inside } clipMask_i &= VERTEX4D_CLIPMASK; clipMask_o &= VERTEX4D_CLIPMASK; if (clipMask_i != VERTEX4D_INSIDE) { // if primitive fully outside or outside on same side continue; //vOut = 0; //vertex_from_clipper = 0; } else if (clipMask_o == VERTEX4D_INSIDE) { // if primitive fully inside vOut = VertexShader.primitiveHasVertex; vertex_from_clipper = 0; } else #if defined(SOFTWARE_DRIVER_2_CLIPPING) { // else if not complete inside clipping necessary // todo: clipping should reuse vertexcache (try to minimize clipping) for (has_vertex_run = 0; has_vertex_run < VertexShader.primitiveHasVertex; ++has_vertex_run) { memcpy_s4DVertexPair(Clipper.data + s4DVertex_ofs(has_vertex_run), face[has_vertex_run]); } //clipping should happen in R^3 before perspective divide, avoid flipping points //x = A_x * (1 - da/(da - db)) + A_y * (da/(da-db)) vOut = clipToFrustum(VertexShader.primitiveHasVertex); vertex_from_clipper = 1; // to DC Space, project homogenous vertex if (vOut > VertexShader.primitiveHasVertex ) ndc_2_dc_and_project_grid(Clipper.data, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]); else ndc_2_dc_and_project(Clipper.data, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]); } #else { continue; vOut = 0; vertex_from_clipper = 0; } #endif #if BURNING_MATERIAL_MAX_TEXTURES > 0 s32 lod_max[BURNING_MATERIAL_MAX_TEXTURES]; for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m) { lod_max[m] = 0; } #endif f32 t[4]; #define BURNING_MAX_MIP_CLIPPER 1 #if BURNING_MAX_MIP_CLIPPER == 1 //select largest texture for clipped triangle //very small long triangles are very undersampled here ("skybox flicker") int use_max_mip = vertex_from_clipper && VertexShader.vSize[VertexShader.vType].TexSize && vOut > VertexShader.primitiveHasVertex ? 1 : 0; for (int probe = use_max_mip; probe >= 0; probe -= 1) #endif { // re-tesselate for (has_vertex_run = 0; (has_vertex_run + VertexShader.primitiveHasVertex) <= vOut; has_vertex_run += 1) { // set from clipped geometry ( triangle fan 0-1-2,0-2-3.. ) if (vertex_from_clipper) { face[0] = Clipper.data + s4DVertex_ofs(0); face[1] = Clipper.data + s4DVertex_ofs(has_vertex_run + 1); face[2] = Clipper.data + s4DVertex_ofs(has_vertex_run + 2); face[3] = Clipper.data + s4DVertex_ofs(has_vertex_run + 3); } //area of primitive in device space // projected triangle screen area is used for culling ( sign of normal ) and mipmap selection //f32 dc_area = screenarea_inside(face); // magnitude crossproduct dc_area.f = 1.f; if (VertexShader.primitiveHasVertex >= 3) { const sVec4& v0 = (face[0] + s4DVertex_pro(0))->Pos; const sVec4& v1 = (face[1] + s4DVertex_pro(0))->Pos; const sVec4& v2 = (face[2] + s4DVertex_pro(0))->Pos; //dc_area = 2d triangle normal.crossproduct (a.x * b.y - b.x * a.y).length/2; dc_area.f = ((v1.x - v0.x) * (v2.y - v0.y) - (v2.x - v0.x) * (v1.y - v0.y)) /* * 0.5f */; //geometric clipping has problem with invisible or very small Triangles //size_t sign = dc_area < 0.001f ? CULL_BACK : dc_area > 0.001f ? CULL_FRONT : CULL_INVISIBLE; size_t sign = dc_area.fields.sign ? CULL_BACK : CULL_FRONT; sign |= dc_area.abs.frac_exp < CULL_EPSILON_00001 ? CULL_INVISIBLE : 0; if (Material.CullFlag & sign) continue; //not break; per clipper triangle // select mipmap #if BURNING_MAX_MIP_CLIPPER == 1 if (probe == use_max_mip) #endif for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m) { video::CSoftwareTexture2* tex = MAT_TEXTURE(m); const sVec2& v0 = (face[0] + s4DVertex_ofs(0))->Tex[m]; const sVec2& v1 = (face[1] + s4DVertex_ofs(0))->Tex[m]; const sVec2& v2 = (face[2] + s4DVertex_ofs(0))->Tex[m]; //todo: get triangle setup here //bbox t[0] = t[2] = v0.x; t[1] = t[3] = v0.y; if (v1.x < t[0]) t[0] = v1.x; if (v1.y < t[1]) t[1] = v1.y; if (v1.x > t[2]) t[2] = v1.x; if (v1.y > t[3]) t[3] = v1.y; if (v2.x < t[0]) t[0] = v2.x; if (v2.y < t[1]) t[1] = v2.y; if (v2.x > t[2]) t[2] = v2.x; if (v2.y > t[3]) t[3] = v2.y; f32 tex_area = fabsf((t[2] - t[0]) * (t[3] - t[1])); //tex_area = |a.x * b.y - b.x * a.y| * 0.5; // crossproduct //f32 tex_area = fabsf((v1.x - v0.x) * (v2.y - v0.y) - (v2.x - v0.x) * (v1.y - v0.y)); //various over and underflow cases if (tex_area <= 0.000001f) tex_area = 0.000001f; else if (tex_area > 1.01f) tex_area = 1.f / tex_area; /* 2.f * tex_area * 1.6f bias. 1.6 too much for detailsmap3 */ //not dc_area * 0.5 cancel out 2 * TexBias const u32 dc_area_over_tex_area = (u32)floorf( /*/tex_area > 0.0000001f ? */ fabsf(dc_area.f) * TexBias[TransformationStack] / tex_area /*: 0.f*/ ); // get a near 1:1 ratio between pixel and texel // tex_area * b[lodFactor].w * b[lodFactor].h > dc_area_abs s32 lodFactor = 0; const CSoftwareTexture2_Bound* b = tex->getTexBound_index(); while (lodFactor < SOFTWARE_DRIVER_2_MIPMAPPING_MAX && b[lodFactor].area > dc_area_over_tex_area ) { lodFactor += 1; } //clipped triangle should take single area based mipmap from unclipped face //skybox,billboard test case //if (vertex_from_clipper) lodFactor -= 1; if (has_vertex_run == 0) lod_max[m] = lodFactor; else if (lodFactor < lod_max[m]) lod_max[m] = lodFactor; //CurrentShader->setTextureParam(m, tex, lodFactor); //select_polygon_mipmap_inside(face, m, tex->getTexBound()); } } //else /* if (VertexShader.primitiveHasVertex == 3) */ #if BURNING_MAX_MIP_CLIPPER == 1 if (probe > 0) continue; #endif // set single mipmap for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m) { video::CSoftwareTexture2* tex = MAT_TEXTURE(m); CurrentShader->setTextureParam(m, tex, lod_max[m]); //select_polygon_mipmap_inside(face, m, tex->getTexBound()); //currently shader receives texture coordinate as Pixelcoo of 1 Texture const CSoftwareTexture2_Bound& b = tex->getTexBound(); for (u32 v = 0; v < VertexShader.primitiveHasVertex; ++v) { const sVec2& src = (face[v] + s4DVertex_ofs(0))->Tex[m]; sVec2& dst = (face[v] + s4DVertex_pro(0))->Tex[m]; #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT const f32 iw = (face[v] + s4DVertex_pro(0))->Pos.w; dst.x = src.x * iw * b.mat[0] + b.mat[1]; dst.y = src.y * iw * b.mat[2] + b.mat[3]; #else dst.x = src.x * b.mat[0] + b.mat[1]; dst.y = src.y * b.mat[2] + b.mat[3]; #endif } } switch (VertexShader.primitiveHasVertex) { case 1: CurrentShader->drawPoint(face[0] + s4DVertex_pro(0)); break; case 2: CurrentShader->drawLine(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0)); break; case 3: CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0)); break; case 4: //todo: CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[1] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0)); CurrentShader->drawWireFrameTriangle(face[0] + s4DVertex_pro(0), face[2] + s4DVertex_pro(0), face[3] + s4DVertex_pro(0)); break; } //vertex_from_clipper = 1; } } // probe } this->samples_passed += CurrentShader->fragment_draw_count; //release texture for (u32 m = 0; m < VertexShader.vSize[VertexShader.vType].TexSize; ++m) { CurrentShader->setTextureParam(m, 0, 0); } } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void CBurningVideoDriver::setAmbientLight(const SColorf& color) { EyeSpace.Global_AmbientLight.setColorf(color); } void CBurningVideoDriver::assignHardwareLight(SBurningShaderLight& l, const SLight& dl) { // l.org = dl; l.Type = dl.Type; l.LightIsOn = true; l.AmbientColor.setColorf(dl.AmbientColor); l.DiffuseColor.setColorf(dl.DiffuseColor); l.SpecularColor.setColorf(dl.SpecularColor); //should always be valid? sVec4 nDirection; nDirection.x = dl.Direction.X; nDirection.y = dl.Direction.Y; nDirection.z = dl.Direction.Z; nDirection.normalize_dir_xyz(); switch (dl.Type) { case ELT_DIRECTIONAL: l.pos.x = -nDirection.x; l.pos.y = -nDirection.y; l.pos.z = -nDirection.z; l.pos.w = 0.f; l.constantAttenuation = 1.f; l.linearAttenuation = 0.f; l.quadraticAttenuation = 0.f; l.spotDirection.x = 0.f; l.spotDirection.y = 0.f; l.spotDirection.z = -1.f; l.spotDirection.w = 0.f; l.spotCosCutoff = -1.f; l.spotCosInnerCutoff = 1.f; l.spotExponent = 0.f; break; case ELT_POINT: l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 1.f; l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = dl.Attenuation.Y; l.quadraticAttenuation = dl.Attenuation.Z; l.spotDirection.x = 0.f; l.spotDirection.y = 0.f; l.spotDirection.z = -1.f; l.spotDirection.w = 0.f; l.spotCosCutoff = -1.f; l.spotCosInnerCutoff = 1.f; l.spotExponent = 0.f; break; case ELT_SPOT: l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 1.f; l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = dl.Attenuation.Y; l.quadraticAttenuation = dl.Attenuation.Z; l.spotDirection.x = nDirection.x; l.spotDirection.y = nDirection.y; l.spotDirection.z = nDirection.z; l.spotDirection.w = 0.0f; l.spotCosCutoff = cosf(dl.OuterCone * 2.0f * core::DEGTORAD * 0.5f); l.spotCosInnerCutoff = cosf(dl.InnerCone * 2.0f * core::DEGTORAD * 0.5f); l.spotExponent = dl.Falloff; break; default: break; } //which means ETS_VIEW, irrlicht openGL setTransform(ETS_WORLD, irr::core::IdentityMatrix); transform_calc(ETS_MODEL_VIEW); //transform_calc(ETS_NORMAL); const core::matrix4* matrix = Transformation[TransformationStack]; transformVec4Vec4(matrix[ETS_MODEL_VIEW], &l.pos4.x, &l.pos.x); rotateMat44Vec3Vec4(matrix[ETS_MODEL_VIEW], &l.spotDirection4.x, &l.spotDirection.x); l.nmap_linearAttenuation = 1.f / (0.001f + dl.Radius * dl.Radius); /* //case ELT_DIRECTIONAL: if (l.pos.w == 0.f) { l.pos4n = l.pos4; l.pos4n.normalize_dir_xyz(); //GL_LIGHT_MODEL_LOCAL_VIEWER = 0 l.halfVector = l.pos4n; l.halfVector.z += 1.f; l.halfVector.normalize_dir_xyz(); } */ } //! adds a dynamic light s32 CBurningVideoDriver::addDynamicLight(const SLight& dl) { /*s32 i0 = */CNullDriver::addDynamicLight(dl); SBurningShaderLight l; EyeSpace.Light.push_back(l); s32 i1 = EyeSpace.Light.size() - 1; //i0 and i1 must be in sync assignHardwareLight(EyeSpace.Light[i1], dl); return i1; } //! Turns a dynamic light on or off void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn) { if ((u32)lightIndex < EyeSpace.Light.size()) { SBurningShaderLight& l = EyeSpace.Light[lightIndex]; // some glitches with STK, always set, currently twice. openGL forces ModelMatrix to Identity if (!l.LightIsOn && turnOn) { assignHardwareLight(l, CNullDriver::getDynamicLight(lightIndex)); } l.LightIsOn = turnOn; } } //! deletes all dynamic lights there are void CBurningVideoDriver::deleteAllDynamicLights() { EyeSpace.deleteAllDynamicLights(); CNullDriver::deleteAllDynamicLights(); } //! returns the maximal amount of dynamic lights the device can handle u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const { return 8; //no limit 8 only for convenience } // a != b size_t compare_3d_material(const SMaterial& a, const SMaterial& b) { size_t flag = 0; flag |= a.MaterialType == b.MaterialType ? 0 : 1; flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4; if (flag) return flag; return a != b; } //! sets a material void CBurningVideoDriver::setMaterial(const SMaterial& material) { // ---------- Override Material.org = material; OverrideMaterial.apply(Material.org); const SMaterial& in = Material.org; const u32 shaderid = (u32)in.MaterialType; //basically set always. 2d does its own compare //if (TransformationStack == ETF_STACK_2D || Material.resetRenderStates || compare_3d_material(Material.lastMaterial,in)) { // ---------- Notify Shader // unset old material u32 shaderid_old = (u32)Material.lastMaterial.MaterialType; if (shaderid != shaderid_old && shaderid_old < MaterialRenderers.size()) { MaterialRenderers[shaderid_old].Renderer->OnUnsetMaterial(); } // set new material. if (shaderid < MaterialRenderers.size()) { MaterialRenderers[shaderid].Renderer->OnSetMaterial( in, Material.lastMaterial, Material.resetRenderStates, this); } Material.lastMaterial = in; Material.resetRenderStates = false; } //CSoftware2MaterialRenderer sets Material.Fallback_MaterialType //Material.Fallback_MaterialType = material.MaterialType; //----------------- //Material.org = material; Material.CullFlag = CULL_INVISIBLE | (in.BackfaceCulling ? CULL_BACK : 0) | (in.FrontfaceCulling ? CULL_FRONT : 0); size_t* flag = TransformationFlag[TransformationStack]; EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP); #ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM //vertextype not set! for (u32 m = 0; m < BURNING_MATERIAL_MAX_TEXTURES /*VertexShader.vSize[VertexShader.vType].TexSize*/; ++m) { flag[ETS_TEXTURE_0 + m] &= ~ETF_TEXGEN_MASK; setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + m), in.getTextureMatrix(m)); } #endif #ifdef SOFTWARE_DRIVER_2_LIGHTING burning_setbit(EyeSpace.TL_Flag, in.FogEnable, TL_FOG); burning_setbit(EyeSpace.TL_Flag, in.NormalizeNormals, TL_NORMALIZE_NORMALS); burning_setbit(EyeSpace.TL_Flag, in.Lighting, TL_LIGHT); if (EyeSpace.TL_Flag & TL_LIGHT) { burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_AMBIENT || in.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT, TL_COLORMAT_AMBIENT); burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_DIFFUSE || in.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT, TL_COLORMAT_DIFFUSE); burning_setbit(EyeSpace.TL_Flag, in.ColorMaterial == ECM_SPECULAR, TL_COLORMAT_SPECULAR); Material.AmbientColor.setA8R8G8B8(in.AmbientColor.color); Material.DiffuseColor.setA8R8G8B8(in.DiffuseColor.color); Material.EmissiveColor.setA8R8G8B8(in.EmissiveColor.color); Material.SpecularColor.setA8R8G8B8(in.SpecularColor.color); burning_setbit(EyeSpace.TL_Flag, (in.Shininess != 0.f) && (in.SpecularColor.color & 0x00ffffff), TL_SPECULAR); } #endif //--------------- setCurrentShader ITexture* texture0 = in.getTexture(0); ITexture* texture1 = in.getTexture(1); //ITexture* texture2 = in.getTexture(2); //ITexture* texture3 = in.getTexture(3); //visual studio code analysis u32 maxTex = BURNING_MATERIAL_MAX_TEXTURES; if (maxTex < 1) texture0 = 0; if (maxTex < 2) texture1 = 0; //if (maxTex < 3) texture2 = 0; //if (maxTex < 4) texture3 = 0; //todo: seperate depth test from depth write Material.depth_write = getWriteZBuffer(in); Material.depth_test = in.ZBuffer != ECFN_DISABLED && Material.depth_write; EBurningFFShader shader = Material.depth_test ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ; switch (Material.Fallback_MaterialType) //(Material.org.MaterialType) // Material.Fallback_MaterialType) { case EMT_ONETEXTURE_BLEND: shader = ETR_TEXTURE_BLEND; break; case EMT_TRANSPARENT_ALPHA_CHANNEL_REF: Material.org.MaterialTypeParam = 0.5f; //fallthrough case EMT_TRANSPARENT_ALPHA_CHANNEL: if (texture0 && texture0->hasAlpha()) { shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ; } else { //fall back to EMT_TRANSPARENT_VERTEX_ALPHA shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA; } break; case EMT_TRANSPARENT_ADD_COLOR: shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z; if (Material.org.BlendOperation == EBO_ADD) shader = ETR_TEXTURE_GOURAUD_ADD_NO_Z; break; case EMT_TRANSPARENT_VERTEX_ALPHA: shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA; break; case EMT_LIGHTMAP: case EMT_LIGHTMAP_LIGHTING: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1; break; case EMT_LIGHTMAP_M2: case EMT_LIGHTMAP_LIGHTING_M2: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2; break; case EMT_LIGHTMAP_LIGHTING_M4: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4; break; case EMT_LIGHTMAP_M4: if (texture1) shader = ETR_TEXTURE_LIGHTMAP_M4; break; case EMT_LIGHTMAP_ADD: if (texture1) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD; break; case EMT_DETAIL_MAP: if (texture1) shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP; break; case EMT_SPHERE_MAP: flag[ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_SPHERE; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM; break; case EMT_REFLECTION_2_LAYER: case EMT_TRANSPARENT_REFLECTION_2_LAYER: if (texture1) { shader = ETR_TRANSPARENT_REFLECTION_2_LAYER; flag[ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM; } break; case EMT_NORMAL_MAP_SOLID: case EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR: case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA: if (texture1) { shader = ETR_NORMAL_MAP_SOLID; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP; EyeSpace.TL_Flag &= ~TL_LIGHT; } break; case EMT_PARALLAX_MAP_SOLID: case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR: case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA: if (texture1) { shader = ETR_PARALLAX_MAP_SOLID; EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP; EyeSpace.TL_Flag &= ~TL_LIGHT; } break; default: break; } if (!texture0) { shader = Material.depth_test ? ETR_GOURAUD : shader == ETR_TEXTURE_GOURAUD_VERTEX_ALPHA ? ETR_GOURAUD_ALPHA_NOZ : // 2D Gradient ETR_GOURAUD_NOZ; shader = ETR_COLOR; } if (in.Wireframe) { IBurningShader* candidate = BurningShader[shader]; if (!candidate || (candidate && !candidate->canWireFrame())) { shader = ETR_TEXTURE_GOURAUD_WIRE; } } if (in.PointCloud) { IBurningShader* candidate = BurningShader[shader]; if (!candidate || (candidate && !candidate->canPointCloud())) { shader = ETR_TEXTURE_GOURAUD_WIRE; } } //shader = ETR_REFERENCE; // switchToTriangleRenderer CurrentShader = BurningShader[shader]; if (!CurrentShader && shaderid < MaterialRenderers.size()) { CurrentShader = (IBurningShader *) MaterialRenderers[shaderid].Renderer; } if (CurrentShader) { CurrentShader->setTLFlag(EyeSpace.TL_Flag); if (EyeSpace.TL_Flag & TL_FOG) CurrentShader->setFog(FogColor); if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor); CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); CurrentShader->OnSetMaterialBurning(Material); CurrentShader->setEdgeTest(in.Wireframe, in.PointCloud); } #if 0 { //u32 shaderid = (u32)Material.org.MaterialType; if (shaderid < MaterialRenderers.size()) MaterialRenderers[shaderid].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexShader.vType); } #endif } //! Sets the fog mode. void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog); EyeSpace.fog_scale = reciprocal_zero(FogEnd - FogStart); } #if defined(SOFTWARE_DRIVER_2_LIGHTING) && BURNING_MATERIAL_MAX_COLORS > 0 /*! applies lighting model */ void CBurningVideoDriver::lightVertex_eye(s4DVertex* dest, const u32 vertexargb) { //gl_FrontLightModelProduct.sceneColor = gl_FrontMaterial.emission + gl_FrontMaterial.ambient * gl_LightModel.ambient sVec3Color ambient; sVec3Color diffuse; sVec3Color specular; // the universe started in darkness.. ambient.set(0.f); diffuse.set(0.f); specular.set(0.f); u32 i; f32 dot; f32 distance; f32 attenuation; sVec4 vp; // vertex to light sVec4 lightHalf; // blinn-phong reflection f32 spotDot; // cos of angle between spotlight and point on surface for (i = 0; i < EyeSpace.Light.size(); ++i) { const SBurningShaderLight& light = EyeSpace.Light[i]; if (!light.LightIsOn) continue; switch (light.Type | (EyeSpace.TL_Flag & TL_SPECULAR)) { case ELT_DIRECTIONAL: case ELT_DIRECTIONAL | TL_SPECULAR: // surface to light vp = light.pos4n = light.pos4 // attenuation = 1 // distance = 1 // accumulate ambient ambient.add_rgb(light.AmbientColor); //angle between normal and light vector dot = EyeSpace.normal.dot_xyz(light.pos4); if (dot <= 0.f) continue; diffuse.mad_rgb(light.DiffuseColor, dot); if (!(EyeSpace.TL_Flag & TL_SPECULAR)) continue; //light.halfvector lightHalf.x = light.pos4.x - EyeSpace.vertexn.x; // + 0.f; lightHalf.y = light.pos4.y - EyeSpace.vertexn.y; // + 0.f; lightHalf.z = light.pos4.z - EyeSpace.vertexn.z; // + 1.f; //lightHalf.normalize_dir_xyz(); dot = EyeSpace.normal.dot_xyz(lightHalf); if (dot <= 0.f) continue; distance = lightHalf.length_xyz(); distance = reciprocal_zero(distance); specular.mad_rgb(light.SpecularColor, powf_limit(dot * distance, Material.org.Shininess)); break; case ELT_POINT: // surface to light vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; distance = vp.length_xyz(); attenuation = light.constantAttenuation + distance * (light.linearAttenuation + light.quadraticAttenuation * distance); attenuation = reciprocal_one(attenuation); //att = clamp(1.0 - dist/radius, 0.0, 1.0); att *= att // accumulate ambient ambient.mad_rgb(light.AmbientColor, attenuation); // build diffuse reflection //angle between normal and light vector //vp.mul_xyz(reciprocal_zero(distance)); //normalize dot = EyeSpace.normal.dot_xyz(vp); if (dot <= 0.f) continue; distance = reciprocal_zero(distance); // diffuse component diffuse.mad_rgb(light.DiffuseColor, (dot * distance) * attenuation); break; case ELT_POINT | TL_SPECULAR: // surface to light vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; distance = vp.length_xyz(); attenuation = light.constantAttenuation + distance * (light.linearAttenuation + light.quadraticAttenuation * distance); attenuation = reciprocal_one(attenuation); // accumulate ambient ambient.mad_rgb(light.AmbientColor, attenuation); // build diffuse reflection dot = EyeSpace.normal.dot_xyz(vp); if (dot <= 0.f) continue; distance = reciprocal_zero(distance); // diffuse component diffuse.mad_rgb(light.DiffuseColor, (dot * distance) * attenuation); //vp.mul_xyz(distance); //normalize //halfVector = normalize(VP + eye), GL_LIGHT_MODEL_LOCAL_VIEWER lightHalf.x = vp.x * distance - EyeSpace.vertexn.x; // + 0.f; lightHalf.y = vp.y * distance - EyeSpace.vertexn.y; // + 0.f; lightHalf.z = vp.z * distance - EyeSpace.vertexn.z; // + 1.f; //lightHalf.normalize_dir_xyz(); dot = EyeSpace.normal.dot_xyz(lightHalf); if (dot <= 0.f) continue; distance = lightHalf.length_xyz(); dot *= reciprocal_zero(distance); //specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation specular.mad_rgb(light.SpecularColor, powf_limit(dot, Material.org.Shininess) * attenuation); break; case ELT_SPOT: case ELT_SPOT | TL_SPECULAR: // surface to light vp.x = light.pos4.x - EyeSpace.vertex.x; vp.y = light.pos4.y - EyeSpace.vertex.y; vp.z = light.pos4.z - EyeSpace.vertex.z; distance = vp.length_xyz(); //normalize vp.mul_xyz(reciprocal_zero(distance)); // point on surface inside cone of illumination spotDot = vp.dot_minus_xyz(light.spotDirection4); if (spotDot < light.spotCosCutoff) continue; attenuation = light.constantAttenuation + light.linearAttenuation * distance + light.quadraticAttenuation * distance * distance; attenuation = reciprocal_one(attenuation); attenuation *= powf_limit(spotDot, light.spotExponent); // accumulate ambient ambient.mad_rgb(light.AmbientColor, attenuation); // build diffuse reflection //angle between normal and light vector dot = EyeSpace.normal.dot_xyz(vp); if (dot < 0.f) continue; // diffuse component diffuse.mad_rgb(light.DiffuseColor, dot * attenuation); if (!(EyeSpace.TL_Flag & TL_SPECULAR)) continue; lightHalf.x = vp.x - EyeSpace.vertexn.x; // + 0.f; lightHalf.y = vp.y - EyeSpace.vertexn.y; // + 0.f; lightHalf.z = vp.z - EyeSpace.vertexn.z; // + 1.f; lightHalf.normalize_dir_xyz(); //specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation specular.mad_rgb(light.SpecularColor, powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess) * attenuation ); break; default: break; } } sVec3Color vertexColor; vertexColor.setA8R8G8B8(vertexargb); // sum up lights //If = Ia + Id + Is sVec3Color dColor; dColor.set(0.f); //Ia = gl_light_model_ambient* ambient_material + ambient_light * ambient_material const sVec4& amb_mat = (EyeSpace.TL_Flag & TL_COLORMAT_AMBIENT) ? vertexColor : Material.AmbientColor; dColor.mad_rgbv(EyeSpace.Global_AmbientLight, amb_mat); dColor.mad_rgbv(ambient, amb_mat); //Id = diffuse_light * lambertTerm dot(N,L) * diffuse_material dColor.mad_rgbv(diffuse, (EyeSpace.TL_Flag & TL_COLORMAT_DIFFUSE) ? vertexColor : Material.DiffuseColor); #if 0 dColor.mad_rgbv(diffuse, Material.DiffuseColor); //diffuse * vertex color. //has to move to shader (for vertex color only this will fit [except clamping]) dColor.r *= vertexColor.r; dColor.g *= vertexColor.g; dColor.b *= vertexColor.b; #endif //separate specular const sVec4& spec_mat = (EyeSpace.TL_Flag & TL_COLORMAT_SPECULAR) ? vertexColor : Material.SpecularColor; #if defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR) if ((VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_COLOR)>=VERTEX4D_FORMAT_COLOR_2_FOG) { specular.sat_mul_xyz(dest->Color[1], spec_mat); } else if (!(EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) && (VertexShader.vSize[VertexShader.vType].Format & VERTEX4D_FORMAT_MASK_LIGHT) ) { specular.sat_mul_xyz(dest->LightTangent[0], spec_mat); } else #endif { dColor.mad_rgbv(specular, spec_mat); } dColor.add_rgb(Material.EmissiveColor); dColor.sat_alpha_pass(dest->Color[0], vertexColor.a); } #endif /* draw2DImage with single color scales into destination quad & cliprect(more like viewport) draw2DImage with 4 color scales on destination and cliprect is scissor */ static const u32 quad_triangle_indexList[6 + 2] = { 0,1,2,0,2,3, 3,3 }; #if defined(SOFTWARE_DRIVER_2_2D_AS_2D) //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (texture) { if (texture->getOriginalSize() != texture->getSize()) { core::rect destRect(destPos, sourceRect.getSize()); SColor c4[4] = { color,color,color,color }; draw2DImage(texture, destRect, sourceRect, clipRect, c4, useAlphaChannelOfTexture); return; } if (texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); return; } if (useAlphaChannelOfTexture) ((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha( RenderTargetSurface, destPos, sourceRect, color, clipRect); else ((CSoftwareTexture2*)texture)->getImage()->copyTo( RenderTargetSurface, destPos, sourceRect, clipRect); } } //! Draws a part of the texture into the rectangle. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (texture) { if (texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); return; } u32 argb = (colors ? colors[0].color : 0xFFFFFFFF); eBlitter op = useAlphaChannelOfTexture ? (argb == 0xFFFFFFFF ? BLITTER_TEXTURE_ALPHA_BLEND : BLITTER_TEXTURE_ALPHA_COLOR_BLEND) : BLITTER_TEXTURE; StretchBlit(op, RenderTargetSurface, clipRect, &destRect, ((CSoftwareTexture2*)texture)->getImage(), &sourceRect, &texture->getOriginalSize(), argb ); } } //!Draws an 2d rectangle with a gradient. void CBurningVideoDriver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect p(position); if (clip) p.clipAgainst(*clip); if (p.isValid()) drawRectangle(RenderTargetSurface, p, colorLeftUp); } #endif //defined(SOFTWARE_DRIVER_2_2D_AS_2D) //! Enable the 2d override material void CBurningVideoDriver::enableMaterial2D(bool enable) { CNullDriver::enableMaterial2D(enable); //burning_setbit(TransformationFlag[1][ETS_PROJECTION], 0, ETF_VALID); } // a != b size_t compare_2d_material(const SMaterial& a, const SMaterial& b) { size_t flag = 0; flag |= a.MaterialType == b.MaterialType ? 0 : 1; flag |= a.ZBuffer == b.ZBuffer ? 0 : 2; flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4; flag |= a.TextureLayer[0].BilinearFilter == b.TextureLayer[0].BilinearFilter ? 0 : 8; flag |= a.TextureLayer[0].TextureWrapU == b.TextureLayer[0].TextureWrapU ? 0 : 16; flag |= a.MaterialTypeParam == b.MaterialTypeParam ? 0 : 32; if (flag) return flag; flag |= a.TextureLayer[1].Texture == b.TextureLayer[1].Texture ? 0 : 64; flag |= a.ZWriteEnable == b.ZWriteEnable ? 0 : 128; return flag; } void CBurningVideoDriver::setRenderStates2DMode(const video::SColor& color, const video::ITexture* texture, bool useAlphaChannelOfTexture) { //save current 3D Material //Material.save3D = Material.org; //build new 2D Material bool vertexAlpha = color.getAlpha() < 255; //2D uses textureAlpa*vertexAlpha 3D not.. if (useAlphaChannelOfTexture && texture && texture->hasAlpha()) { Material.mat2D.MaterialType = EMT_TRANSPARENT_ALPHA_CHANNEL; } else if (vertexAlpha) { Material.mat2D.MaterialType = EMT_TRANSPARENT_VERTEX_ALPHA; } else { Material.mat2D.MaterialType = EMT_SOLID; } Material.mat2D.ZBuffer = ECFN_DISABLED; Material.mat2D.ZWriteEnable = EZW_OFF; Material.mat2D.Lighting = false; Material.mat2D.setTexture(0, (video::ITexture*)texture); //used for text. so stay as sharp as possible (like HW Driver) bool filter = false; const SMaterial& currentMaterial = (!OverrideMaterial2DEnabled) ? InitMaterial2D : OverrideMaterial2D; filter = texture && currentMaterial.TextureLayer[0].BilinearFilter; Material.mat2D.setFlag(video::EMF_BILINEAR_FILTER, filter); Material.mat2D.TextureLayer[0].TextureWrapU = currentMaterial.TextureLayer[0].TextureWrapU; Material.mat2D.TextureLayer[0].TextureWrapV = currentMaterial.TextureLayer[0].TextureWrapV; //compare size_t cmp_mat = compare_2d_material(Material.org, Material.mat2D); //switch to 2D Matrix Stack [ Material set Texture Matrix ] //if (TransformationStack != ETF_STACK_2D) cmp_mat |= 256; TransformationStack = ETF_STACK_2D; //2D GUI Matrix if ((cmp_mat & 256) || !(TransformationFlag[TransformationStack][ETS_PROJECTION] & ETF_VALID)) { const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m(core::matrix4::EM4CONST_NOTHING); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f); m.setTranslation(core::vector3df(-1.f, 1.f, 0)); setTransform(ETS_PROJECTION, m); m.makeIdentity(); setTransform(ETS_WORLD, m); // pixel perfect //if(filter) //currently done in ndc to dc -0.5f //m.setTranslation(core::vector3df(-0.5f, -0.5f, 0.0f)); #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) m.setTranslation(core::vector3df(0.375f, 0.375f, 0.0f)); #endif setTransform(ETS_VIEW, m); cmp_mat |= 8; } //compare if (cmp_mat) { setMaterial(Material.mat2D); } if (CurrentShader) { CurrentShader->setPrimitiveColor(color.color); CurrentShader->setTLFlag(EyeSpace.TL_Flag); if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor); } } void CBurningVideoDriver::setRenderStates3DMode() { //restoreRenderStates3DMode //setMaterial(Material.save3D); //switch to 3D Matrix Stack TransformationStack = ETF_STACK_3D; } //! draws a vertex primitive list in 2d void CBurningVideoDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); bool useAlphaChannelOfTexture = false; video::SColor color(0xFFFFFFFF); switch (Material.org.MaterialType) { case EMT_TRANSPARENT_ALPHA_CHANNEL: useAlphaChannelOfTexture = true; break; case EMT_TRANSPARENT_VERTEX_ALPHA: color.setAlpha(127); break; default: break; } setRenderStates2DMode(color, Material.org.getTexture(0), useAlphaChannelOfTexture); drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); setRenderStates3DMode(); } //wrapper if both enabled #if defined(SOFTWARE_DRIVER_2_2D_AS_2D) && defined(SOFTWARE_DRIVER_2_2D_AS_3D) #endif //setup a quad #if defined(SOFTWARE_DRIVER_2_2D_AS_3D) //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; // clip these coordinates core::rect targetRect(destPos, sourceRect.getSize()); if (clipRect) { targetRect.clipAgainst(*clipRect); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; } const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); targetRect.clipAgainst(core::rect(0, 0, (s32)renderTargetSize.Width, (s32)renderTargetSize.Height)); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; // ok, we've clipped everything. // now draw it. const core::dimension2d sourceSize(targetRect.getSize()); core::position2d sourcePos(sourceRect.UpperLeftCorner + (targetRect.UpperLeftCorner - destPos)); const core::dimension2d& tex_orgsize = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(tex_orgsize.Width); const f32 invH = 1.f / static_cast(tex_orgsize.Height); const core::rect tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[2].Color = color; Quad2DVertices[3].Color = color; Quad2DVertices[0].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); setRenderStates2DMode(color, texture, useAlphaChannelOfTexture); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT); setRenderStates3DMode(); } //! Draws a part of the texture into the rectangle. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (!texture) return; const core::dimension2d& st = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(st.Width); const f32 invH = 1.f / static_cast(st.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, sourceRect.UpperLeftCorner.Y * invH, sourceRect.LowerRightCorner.X * invW, sourceRect.LowerRightCorner.Y * invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; Quad2DVertices[0].Color = useColor[0]; Quad2DVertices[1].Color = useColor[3]; Quad2DVertices[2].Color = useColor[2]; Quad2DVertices[3].Color = useColor[1]; Quad2DVertices[0].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); if (clipRect) { if (!clipRect->isValid()) return; //glEnable(GL_SCISSOR_TEST); EyeSpace.TL_Flag |= TL_SCISSOR; setScissor(clipRect->UpperLeftCorner.X, clipRect->UpperLeftCorner.Y,//renderTargetSize.Height - clipRect->LowerRightCorner.Y clipRect->getWidth(), clipRect->getHeight()); } video::SColor alphaTest; alphaTest.color = useColor[0].color & useColor[0].color & useColor[0].color & useColor[0].color; setRenderStates2DMode(alphaTest, texture, useAlphaChannelOfTexture); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT); if (clipRect) EyeSpace.TL_Flag &= ~TL_SCISSOR; setRenderStates3DMode(); } //!Draws an 2d rectangle with a gradient. void CBurningVideoDriver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; Quad2DVertices[0].Color = colorLeftUp; Quad2DVertices[1].Color = colorRightUp; Quad2DVertices[2].Color = colorRightDown; Quad2DVertices[3].Color = colorLeftDown; Quad2DVertices[0].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords.X = 0.f; Quad2DVertices[0].TCoords.Y = 0.f; Quad2DVertices[1].TCoords.X = 0.f; Quad2DVertices[1].TCoords.Y = 0.f; Quad2DVertices[2].TCoords.X = 0.f; Quad2DVertices[3].TCoords.Y = 0.f; Quad2DVertices[3].TCoords.X = 0.f; Quad2DVertices[3].TCoords.Y = 0.f; video::SColor alphaTest; alphaTest.color = colorLeftUp.color & colorRightUp.color & colorRightDown.color & colorLeftDown.color; setRenderStates2DMode(alphaTest, 0, 0); drawVertexPrimitiveList(Quad2DVertices, 4, quad_triangle_indexList, 2, EVT_STANDARD, scene::EPT_TRIANGLES, EIT_32BIT); setRenderStates3DMode(); } #endif // SOFTWARE_DRIVER_2_2D_AS_3D //! Draws a 2d line. void CBurningVideoDriver::draw2DLine(const core::position2d& start, const core::position2d& end, SColor color) { drawLine(RenderTargetSurface, start, end, color); } //! Draws a pixel void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor& color) { RenderTargetSurface->setPixel(x, y, color, true); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void CBurningVideoDriver::OnResize(const core::dimension2d& size) { // make sure width and height are multiples of 2 core::dimension2d realSize(size); /* if (realSize.Width % 2) realSize.Width += 1; if (realSize.Height % 2) realSize.Height += 1; */ if (ScreenSize != realSize) { if (ViewPort.getWidth() == (s32)ScreenSize.Width && ViewPort.getHeight() == (s32)ScreenSize.Height) { ViewPort.UpperLeftCorner.X = 0; ViewPort.UpperLeftCorner.Y = 0; ViewPort.LowerRightCorner.X = realSize.Width; ViewPort.LowerRightCorner.X = realSize.Height; } ScreenSize = realSize; bool resetRT = (RenderTargetSurface == BackBuffer); if (BackBuffer) BackBuffer->drop(); BackBuffer = new CImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, realSize); if (resetRT) setRenderTargetImage2(BackBuffer); } } //! returns the current render target size const core::dimension2d& CBurningVideoDriver::getCurrentRenderTargetSize() const { return (RenderTargetSurface == BackBuffer) ? ScreenSize : RenderTargetSize; } //! Draws a 3d line. void CBurningVideoDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color_start) { SColor color_end = color_start; VertexShader.primitiveHasVertex = 2; VertexShader.vType = E4VT_LINE; s4DVertex* v = Clipper.data; transform_calc(ETS_MODEL_VIEW_PROJ); const core::matrix4* matrix = Transformation[TransformationStack]; matrix[ETS_MODEL_VIEW_PROJ].transformVect(&v[s4DVertex_ofs(0)].Pos.x, start); matrix[ETS_MODEL_VIEW_PROJ].transformVect(&v[s4DVertex_ofs(1)].Pos.x, end); u32 has_vertex_run; const u32 flag = (VertexShader.vSize[VertexShader.vType].Format); for (has_vertex_run = 0; has_vertex_run < VertexShader.primitiveHasVertex; has_vertex_run += 1) { v[s4DVertex_ofs(has_vertex_run)].reset_interpolate(); v[s4DVertex_ofs(has_vertex_run)].flag = flag; v[s4DVertex_pro(has_vertex_run)].flag = flag; } #if BURNING_MATERIAL_MAX_COLORS > 0 v[s4DVertex_ofs(0)].Color[0].setA8R8G8B8(color_start.color); v[s4DVertex_ofs(1)].Color[0].setA8R8G8B8(color_end.color); #endif u32 vOut; // vertices count per line vOut = clipToFrustum(VertexShader.primitiveHasVertex); if (vOut < VertexShader.primitiveHasVertex) return; // to DC Space, project homogenous vertex ndc_2_dc_and_project(v, s4DVertex_ofs(vOut), Transformation_ETS_CLIPSCALE[TransformationStack]); // unproject vertex color #if 0 #if BURNING_MATERIAL_MAX_COLORS > 0 for (g = 0; g != vOut; g += 2) { v[g + 1].Color[0].setA8R8G8B8(color.color); } #endif #endif pushShader(scene::EPT_LINES, 0); for (has_vertex_run = 0; (has_vertex_run + VertexShader.primitiveHasVertex) <= vOut; has_vertex_run += 1) { CurrentShader->drawLine(v + s4DVertex_pro(has_vertex_run), v + s4DVertex_pro(has_vertex_run + 1)); } PushShader.pop(); } // set Shader Mode based on primitive type void CBurningVideoDriver::pushShader(scene::E_PRIMITIVE_TYPE pType, int testCurrent) { int wireFrame = 0; int pointCloud = 0; switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: pointCloud = 1; break; case scene::EPT_LINE_STRIP: case scene::EPT_LINE_LOOP: case scene::EPT_LINES: wireFrame = 1; break; default: return; } IBurningShader* shader = 0; if (wireFrame) { if (testCurrent && CurrentShader && CurrentShader->canWireFrame()) shader = CurrentShader; else shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE]; } if (pointCloud) { if (testCurrent && CurrentShader && CurrentShader->canPointCloud()) shader = CurrentShader; else shader = BurningShader[ETR_TEXTURE_GOURAUD_WIRE]; } if (shader) { if (shader != CurrentShader) { PushShader.push(CurrentShader); CurrentShader = shader; shader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); shader->OnSetMaterialBurning(Material); } shader->setEdgeTest(wireFrame, pointCloud); } } //! \return Returns the name of the video driver. Example: In case of the DirectX8 //! driver, it would return "Direct3D8.1". const wchar_t* CBurningVideoDriver::getName() const { #ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL return L"Burning's Video 0.54 beautiful"; #elif defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) return L"Burning's Video 0.54 STK"; #elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST ) return L"Burning's Video 0.54 ultra fast"; #elif defined ( BURNINGVIDEO_RENDERER_FAST ) return L"Burning's Video 0.54 fast"; #elif defined ( BURNINGVIDEO_RENDERER_CE ) return L"Burning's Video 0.54 CE"; #else return L"Burning's Video 0.54"; #endif } //! Returns the graphics card vendor name. core::stringc CBurningVideoDriver::getVendorInfo() { return "Burning's Video: Ing. Thomas Alten (c) 2006-2022"; } //! Returns type of video driver E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const { return EDT_BURNINGSVIDEO; } //! returns color format ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const { return BackBuffer ? BackBuffer->getColorFormat() : CNullDriver::getColorFormat(); } //! Creates a render target texture. ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d& size, const io::path& name, const ECOLOR_FORMAT format #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) , const bool useStencil #endif ) { if (IImage::isCompressedFormat(format)) return 0; //IImage* img = createImage(SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT, size); //empty proxy image IImage* img = createImageFromData(format, size, 0, true, false); ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET /*| CSoftwareTexture2::GEN_MIPMAP */, this); if (img) img->drop(); addTexture(tex); tex->drop(); return tex; } void CBurningVideoDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { if ((flag & ECBF_COLOR) && RenderTargetSurface) image_fill(RenderTargetSurface, color, Interlaced); if ((flag & ECBF_DEPTH) && DepthBuffer) DepthBuffer->clear(depth, Interlaced); if ((flag & ECBF_STENCIL) && StencilBuffer) StencilBuffer->clear(stencil, Interlaced); } #if 0 void CBurningVideoDriver::saveBuffer() { static int shotCount = 0; char buf[256]; if (BackBuffer) { sprintf(buf, "shot/%04d_b.png", shotCount); writeImageToFile(BackBuffer, buf); } if (StencilBuffer) { CImage stencil(ECF_A8R8G8B8, StencilBuffer->getSize(), StencilBuffer->lock(), true, false); sprintf(buf, "shot/%04d_s.ppm", shotCount); writeImageToFile(&stencil, buf); } shotCount += 1; } #endif //! Returns an image created from the last rendered frame. IImage* CBurningVideoDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target != video::ERT_FRAME_BUFFER) return 0; if (BackBuffer) { IImage* tmp = createImage(BackBuffer->getColorFormat(), BackBuffer->getDimension()); BackBuffer->copyTo(tmp); return tmp; } else return 0; } ITexture* CBurningVideoDriver::createDeviceDependentTexture(const io::path& name, IImage* image) { u32 flags = ((TextureCreationFlags & ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0) #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) | CSoftwareTexture2::GEN_MIPMAP_AUTO #else | ((TextureCreationFlags & ETCF_AUTO_GENERATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP_AUTO : 0) #endif | ((TextureCreationFlags & ETCF_ALLOW_NON_POWER_2) ? CSoftwareTexture2::ALLOW_NPOT : 0) #if defined(IRRLICHT_sRGB) | ((TextureCreationFlags & ETCF_IMAGE_IS_LINEAR) ? CSoftwareTexture2::IMAGE_IS_LINEAR : 0) | ((TextureCreationFlags & ETCF_TEXTURE_IS_LINEAR) ? CSoftwareTexture2::TEXTURE_IS_LINEAR : 0) #endif ; CSoftwareTexture2* texture = new CSoftwareTexture2(image, name, flags, this); return texture; } ITexture* CBurningVideoDriver::createDeviceDependentTextureCubemap(const io::path& name, const core::array& image) { return 0; } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 CBurningVideoDriver::getMaximalPrimitiveCount() const { return 0x7FFFFFFF; } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow. void CBurningVideoDriver::drawStencilShadowVolume(const core::array& triangles, bool zfail, u32 debugDataVisible) { const u32 count = triangles.size(); if (!StencilBuffer || !count) return; Material.org.MaterialType = video::EMT_SOLID; Material.org.Lighting = false; Material.org.ZWriteEnable = video::EZW_OFF; Material.org.ZBuffer = ECFN_LESS; CurrentShader = BurningShader[ETR_STENCIL_SHADOW]; CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort, Interlaced); CurrentShader->setEdgeTest(Material.org.Wireframe, 0); //setMaterial EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP); CurrentShader->setTLFlag(EyeSpace.TL_Flag); //glStencilMask(~0); //glStencilFunc(GL_ALWAYS, 0, ~0); //glEnable(GL_DEPTH_CLAMP); if (zfail) { Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; Material.CullFlag = CULL_FRONT | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_INCR, StencilOp_KEEP); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE); Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; Material.CullFlag = CULL_BACK | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_DECR, StencilOp_KEEP); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE); } else // zpass { Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; Material.CullFlag = CULL_BACK | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_INCR); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE); Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; Material.CullFlag = CULL_FRONT | CULL_INVISIBLE; CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_DECR); drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE)E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE)E4IT_NONE); } //glDisable(GL_DEPTH_CLAMP); } //! Fills the stencil shadow with color. After the shadow volume has been drawn //! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this //! to draw the color of the shadow. void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; // draw a shadow rectangle covering the entire screen using stencil buffer const u32 h = RenderTargetSurface->getDimension().Height; const u32 w = RenderTargetSurface->getDimension().Width; const bool bit32 = RenderTargetSurface->getColorFormat() == ECF_A8R8G8B8; const tVideoSample alpha = extractAlpha(leftUpEdge.color) >> (bit32 ? 0 : 3); const tVideoSample src = bit32 ? leftUpEdge.color : video::A8R8G8B8toA1R5G5B5(leftUpEdge.color); interlace_scanline_data line; for (line.y = 0; line.y < h; line.y += SOFTWARE_DRIVER_2_STEP_Y) { if_interlace_scanline { tVideoSample * dst = (tVideoSample*)RenderTargetSurface->getData() + (line.y * w); const tStencilSample* stencil = (tStencilSample*)StencilBuffer->lock() + (line.y * w); if (bit32) { for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X) { if (stencil[x]) dst[x] = PixelBlend32(dst[x], src, alpha); } } else { for (u32 x = 0; x < w; x += SOFTWARE_DRIVER_2_STEP_X) { if (stencil[x]) dst[x] = PixelBlend16(dst[x], src, alpha); } } } } if (clearStencilBuffer) StencilBuffer->clear(0, Interlaced); } core::dimension2du CBurningVideoDriver::getMaxTextureSize() const { return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE, SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE); } bool CBurningVideoDriver::queryTextureFormat(ECOLOR_FORMAT format) const { return format == SOFTWARE_DRIVER_2_RENDERTARGET_COLOR_FORMAT || format == SOFTWARE_DRIVER_2_TEXTURE_COLOR_FORMAT; } #if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) bool CBurningVideoDriver::needsTransparentRenderPass(const irr::video::SMaterial& material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); // || material.isTransparent(); } #endif s32 CBurningVideoDriver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 materialID = -1; IBurningShader* shader = new IBurningShader( this, materialID, vertexShaderProgram, 0, video::EVST_VS_1_1, pixelShaderProgram, 0, video::EPST_PS_1_1, 0, 0, EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, callback, baseMaterial, userData); shader->drop(); return materialID; } //! Adds a new material renderer to the VideoDriver, based on a high level shading language. s32 CBurningVideoDriver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData #if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0) , E_GPU_SHADING_LANGUAGE shadingLang #endif ) { s32 materialID = -1; IBurningShader* shader = new IBurningShader( this, materialID, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback, baseMaterial, userData); shader->drop(); return materialID; } void CBurningVideoDriver::setFallback_Material(E_MATERIAL_TYPE fallback_MaterialType, eBurningVertexShader vertexShader) { //this should be in material.... Material.Fallback_MaterialType = fallback_MaterialType; Material.VertexShader = vertexShader; } void CBurningVideoDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastMaterial, bool resetAllRenderstates) { } //! Return an index constant for the vertex shader based on a name. s32 CBurningVideoDriver::getVertexShaderConstantID(const c8* name) { return getPixelShaderConstantID(name); } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const f32* floats, int count) { return setPixelShaderConstant(index, floats, count); } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const s32* ints, int count) { return setPixelShaderConstant(index, ints, count); } bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const u32* ints, int count) { return setPixelShaderConstant(index, ints, count); } void CBurningVideoDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { //used? if (CurrentShader) { CurrentShader->setVertexShaderConstant(data, startRegister, constantAmount); } } //! Return an index constant for the pixel shader based on a name. s32 CBurningVideoDriver::getPixelShaderConstantID(const c8* name) { return -1; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const f32* floats, int count) { return false; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const s32* ints, int count) { return false; } bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const u32* ints, int count) { return false; } void CBurningVideoDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount = 1) { //used? if (CurrentShader) { CurrentShader->setPixelShaderConstant(data, startRegister, constantAmount); } } //! Get pointer to the IVideoDriver interface /** \return Pointer to the IVideoDriver interface */ IVideoDriver* CBurningVideoDriver::getVideoDriver() { return this; } //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ void CBurningVideoDriver::runOcclusionQuery(scene::ISceneNode* node, bool visible) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { //extGlBeginQuery(GL_SAMPLES_PASSED_ARB, OcclusionQueries[index].UID); samples_passed = 0; CNullDriver::runOcclusionQuery(node, visible); //extGlEndQuery(GL_SAMPLES_PASSED_ARB); } } //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void CBurningVideoDriver::updateOcclusionQuery(scene::ISceneNode* node, bool block) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index < 0) return; OcclusionQueries[index].Result = samples_passed; } //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger than the actual value of pixels. */ u32 CBurningVideoDriver::getOcclusionQueryResult(const scene::ISceneNode* node) const { const s32 index = OcclusionQueries.linear_search(node); return index < 0 ? ~0 : OcclusionQueries[index].Result; } burning_namespace_end #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ burning_namespace_start //! creates a video driver IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CBurningVideoDriver(params, io, presenter); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } burning_namespace_end