// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "IBurningShader.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ // compile flag for this file #undef USE_ZBUFFER #undef IPOL_Z #undef CMP_Z #undef WRITE_Z #undef IPOL_W #undef CMP_W #undef WRITE_W #undef SUBTEXEL #undef INVERSE_W #undef IPOL_C0 #undef IPOL_C1 #undef IPOL_C2 #undef IPOL_T0 #undef IPOL_T1 #undef IPOL_L0 // define render case #define SUBTEXEL #define INVERSE_W #define USE_ZBUFFER #define IPOL_W #define CMP_W #define WRITE_W #define IPOL_C0 #define IPOL_C1 //#define IPOL_C2 #define IPOL_T0 //#define IPOL_T1 //#define IPOL_L0 // apply global override #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef INVERSE_W #endif #ifndef SOFTWARE_DRIVER_2_SUBTEXEL #undef SUBTEXEL #endif #if BURNING_MATERIAL_MAX_COLORS < 1 #undef IPOL_C0 #endif #if BURNING_MATERIAL_MAX_COLORS < 2 #undef IPOL_C1 #endif #if BURNING_MATERIAL_MAX_COLORS < 3 #undef IPOL_C2 #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT < 1 #undef IPOL_L0 #endif #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER ) #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef IPOL_W #endif #define IPOL_Z #ifdef CMP_W #undef CMP_W #define CMP_Z #endif #ifdef WRITE_W #undef WRITE_W #define WRITE_Z #endif #endif namespace irr { namespace video { class CTRTextureGouraud2 : public IBurningShader { public: //! constructor CTRTextureGouraud2(CBurningVideoDriver* driver); //! draws an indexed triangle list virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) _IRR_OVERRIDE_; virtual bool canWireFrame () { return true; } private: void fragmentShader (); }; //! constructor CTRTextureGouraud2::CTRTextureGouraud2(CBurningVideoDriver* driver) : IBurningShader(driver) { #ifdef _DEBUG setDebugName("CTRTextureGouraud2"); #endif } /*! */ void CTRTextureGouraud2::fragmentShader () { tVideoSample *dst; #ifdef USE_ZBUFFER fp24 *z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC[BURNING_MATERIAL_MAX_COLORS]; #endif #ifdef IPOL_T0 sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES]; #endif #ifdef IPOL_L0 sVec3Pack_unpack slopeL[BURNING_MATERIAL_MAX_LIGHT_TANGENT]; #endif // apply top-left fill-convention, left xStart = fill_convention_left( line.x[0] ); xEnd = fill_convention_right( line.x[1] ); dx = xEnd - xStart; if ( dx < 0 ) return; // slopes const f32 invDeltaX = fill_step_x( line.x[1] - line.x[0] ); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC[0] = (line.c[0][1] - line.c[0][0]) * invDeltaX; #endif #ifdef IPOL_C1 slopeC[1] = (line.c[1][1] - line.c[1][0]) * invDeltaX; #endif #ifdef IPOL_C2 slopeC[2] = (line.c[2][1] - line.c[2][0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX; #endif #ifdef IPOL_L0 slopeL[0] = (line.l[0][1] - line.l[0][0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ( (f32) xStart ) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0][0] += slopeC[0] * subPixel; #endif #ifdef IPOL_C1 line.c[1][0] += slopeC[1] * subPixel; #endif #ifdef IPOL_C2 line.c[2][0] += slopeC[2] * subPixel; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0] * subPixel; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1] * subPixel; #endif #ifdef IPOL_L0 line.l[0][0] += slopeL[0] * subPixel; #endif #endif SOFTWARE_DRIVER_2_CLIPCHECK; dst = (tVideoSample*)RenderTarget->getData() + ( line.y * RenderTarget->getDimension().Width ) + xStart; #ifdef USE_ZBUFFER z = (fp24*) DepthBuffer->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart; #endif f32 inversew = FIX_POINT_F32_MUL; tFixPoint tx0; tFixPoint ty0; #ifdef IPOL_C0 tFixPoint r0, g0, b0; tFixPoint r1, g1, b1; #endif #ifdef IPOL_C1 tFixPoint aFog = FIX_POINT_ONE; #endif #ifdef IPOL_C2 tFixPoint r3, g3, b3; #endif #if defined(BURNINGVIDEO_RENDERER_FAST) && COLOR_MAX==0xff u32 dIndex = ( line.y & 3 ) << 2; #endif for ( s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X) { //if test active only first pixel if ((0 == EdgeTestPass) & (i > line.x_edgetest)) break; #ifdef CMP_Z if ( line.z[0] < z[i] ) #endif #ifdef CMP_W if ( line.w[0] >= z[i] ) #endif { #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif #ifdef INVERSE_W inversew = fix_inverse32 ( line.w[0] ); #endif #ifdef IPOL_C1 //complete inside fog if (TL_Flag & TL_FOG) { aFog = tofix(line.c[1][0].a, inversew); if (aFog <= 0) { dst[i] = fog_color_sample; continue; } } #endif tx0 = tofix ( line.t[0][0].x, inversew); ty0 = tofix ( line.t[0][0].y, inversew); #ifdef IPOL_C0 getSample_texture(r0, g0, b0, &IT[0], tx0, ty0); vec4_to_fix(r1, g1, b1, line.c[0][0], inversew); r0 = imulFix_simple(r0, r1); g0 = imulFix_simple(g0, g1); b0 = imulFix_simple(b0, b1); #ifdef IPOL_C1 //specular highlight if (TL_Flag & TL_SPECULAR) { vec4_to_fix(r1, g1, b1, line.c[1][0], inversew*COLOR_MAX); r0 = clampfix_maxcolor(r1 + r0); g0 = clampfix_maxcolor(g1 + g0); b0 = clampfix_maxcolor(b1 + b0); } //mix with distance if (aFog < FIX_POINT_ONE) { r0 = fog_color[1] + imulFix(aFog, r0 - fog_color[1]); g0 = fog_color[2] + imulFix(aFog, g0 - fog_color[2]); b0 = fog_color[3] + imulFix(aFog, b0 - fog_color[3]); } dst[i] = fix_to_sample(r0, g0, b0); #else dst[i] = fix_to_sample( imulFix_simple(r0, r1), imulFix_simple(g0, g1), imulFix_simple(b0, b1) ); #endif #else #if defined(BURNINGVIDEO_RENDERER_FAST) && COLOR_MAX==0xff const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ]; dst[i] = getTexel_plain ( &IT[0], d + tx0, d + ty0 ); #else getSample_texture ( r0, g0, b0, &IT[0], tx0,ty0 ); dst[i] = fix_to_sample( r0, g0, b0 ); #endif #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0][0] += slopeC[0]; #endif #ifdef IPOL_C1 line.c[1][0] += slopeC[1]; #endif #ifdef IPOL_C2 line.c[2][0] += slopeC[2]; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0]; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1]; #endif #ifdef IPOL_L0 line.l[0][0] += slopeL[0]; #endif } } void CTRTextureGouraud2::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) { // sort on height, y if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b); if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c); if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b); const f32 ca = c->Pos.y - a->Pos.y; const f32 ba = b->Pos.y - a->Pos.y; const f32 cb = c->Pos.y - b->Pos.y; // calculate delta y of the edges scan.invDeltaY[0] = fill_step_y( ca ); scan.invDeltaY[1] = fill_step_y( ba ); scan.invDeltaY[2] = fill_step_y( cb ); if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) ) return; // find if the major edge is left or right aligned f32 temp[4]; temp[0] = a->Pos.x - c->Pos.x; temp[1] = -ca; temp[2] = b->Pos.x - a->Pos.x; temp[3] = ba; scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1; scan.right = 1 - scan.left; // calculate slopes for the major edge scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0]; scan.x[0] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0]; scan.z[0] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0]; scan.w[0] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0]; scan.c[0][0] = a->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][0] = (c->Color[1] - a->Color[1]) * scan.invDeltaY[0]; scan.c[1][0] = a->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][0] = (c->Color[2] - a->Color[2]) * scan.invDeltaY[0]; scan.c[2][0] = a->Color[2]; #endif #ifdef IPOL_T0 scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0]; scan.t[0][0] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0]; scan.t[1][0] = a->Tex[1]; #endif #ifdef IPOL_L0 scan.slopeL[0][0] = (c->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[0]; scan.l[0][0] = a->LightTangent[0]; #endif // top left fill convention y run s32 yStart; s32 yEnd; #ifdef SUBTEXEL f32 subPixel; #endif // rasterize upper sub-triangle if ( F32_GREATER_0(scan.invDeltaY[1]) ) { // calculate slopes for top edge scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1]; scan.x[1] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1]; scan.z[1] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1]; scan.w[1] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1]; scan.c[0][1] = a->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][1] = (b->Color[1] - a->Color[1]) * scan.invDeltaY[1]; scan.c[1][1] = a->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][1] = (b->Color[2] - a->Color[2]) * scan.invDeltaY[1]; scan.c[2][1] = a->Color[2]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1]; scan.t[0][1] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1]; scan.t[1][1] = a->Tex[1]; #endif #ifdef IPOL_L0 scan.slopeL[0][1] = (b->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[1]; scan.l[0][1] = a->LightTangent[0]; #endif // apply top-left fill convention, top part yStart = fill_convention_left( a->Pos.y ); yEnd = fill_convention_right( b->Pos.y ); #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - a->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0] * subPixel; scan.c[0][1] += scan.slopeC[0][1] * subPixel; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0] * subPixel; scan.c[1][1] += scan.slopeC[1][1] * subPixel; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0] * subPixel; scan.c[2][1] += scan.slopeC[2][1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0] * subPixel; scan.l[0][1] += scan.slopeL[0][1] * subPixel; #endif #endif line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]); // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[0][scan.left] = scan.c[0][0]; line.c[0][scan.right] = scan.c[0][1]; #endif #ifdef IPOL_C1 line.c[1][scan.left] = scan.c[1][0]; line.c[1][scan.right] = scan.c[1][1]; #endif #ifdef IPOL_C2 line.c[2][scan.left] = scan.c[2][0]; line.c[2][scan.right] = scan.c[2][1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif #ifdef IPOL_L0 line.l[0][scan.left] = scan.l[0][0]; line.l[0][scan.right] = scan.l[0][1]; #endif // render a scanline interlace_scanline fragmentShader (); if ( EdgeTestPass & edge_test_first_line ) break; scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0]; scan.c[0][1] += scan.slopeC[0][1]; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0]; scan.c[1][1] += scan.slopeC[1][1]; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0]; scan.c[2][1] += scan.slopeC[2][1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0]; scan.l[0][1] += scan.slopeL[0][1]; #endif } } // rasterize lower sub-triangle if (F32_GREATER_0(scan.invDeltaY[2]) ) { // advance to middle point if(F32_GREATER_0(scan.invDeltaY[1]) ) { temp[0] = b->Pos.y - a->Pos.y; // dy scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0]; #ifdef IPOL_Z scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0]; #endif #ifdef IPOL_W scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0]; #endif #ifdef IPOL_C0 scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0]; #endif #ifdef IPOL_C1 scan.c[1][0] = a->Color[1] + scan.slopeC[1][0] * temp[0]; #endif #ifdef IPOL_C2 scan.c[2][0] = a->Color[2] + scan.slopeC[2][0] * temp[0]; #endif #ifdef IPOL_T0 scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0]; #endif #ifdef IPOL_T1 scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0]; #endif #ifdef IPOL_L0 scan.l[0][0] = sVec3Pack_unpack(a->LightTangent[0]) + scan.slopeL[0][0] * temp[0]; #endif } // calculate slopes for bottom edge scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2]; scan.x[1] = b->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2]; scan.z[1] = b->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2]; scan.w[1] = b->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2]; scan.c[0][1] = b->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][1] = (c->Color[1] - b->Color[1]) * scan.invDeltaY[2]; scan.c[1][1] = b->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][1] = (c->Color[2] - b->Color[2]) * scan.invDeltaY[2]; scan.c[2][1] = b->Color[2]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2]; scan.t[0][1] = b->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2]; scan.t[1][1] = b->Tex[1]; #endif #ifdef IPOL_L0 scan.slopeL[0][1] = (c->LightTangent[0] - b->LightTangent[0]) * scan.invDeltaY[2]; scan.l[0][1] = b->LightTangent[0]; #endif // apply top-left fill convention, top part yStart = fill_convention_left( b->Pos.y ); yEnd = fill_convention_right( c->Pos.y ); #ifdef SUBTEXEL subPixel = ( (f32) yStart ) - b->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0] * subPixel; scan.c[0][1] += scan.slopeC[0][1] * subPixel; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0] * subPixel; scan.c[1][1] += scan.slopeC[1][1] * subPixel; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0] * subPixel; scan.c[2][1] += scan.slopeC[2][1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0] * subPixel; scan.l[0][1] += scan.slopeL[0][1] * subPixel; #endif #endif line.x_edgetest = fill_convention_edge(scan.slopeX[scan.left]); // rasterize the edge scanlines for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[0][scan.left] = scan.c[0][0]; line.c[0][scan.right] = scan.c[0][1]; #endif #ifdef IPOL_C1 line.c[1][scan.left] = scan.c[1][0]; line.c[1][scan.right] = scan.c[1][1]; #endif #ifdef IPOL_C2 line.c[2][scan.left] = scan.c[2][0]; line.c[2][scan.right] = scan.c[2][1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif #ifdef IPOL_L0 line.l[0][scan.left] = scan.l[0][0]; line.l[0][scan.right] = scan.l[0][1]; #endif // render a scanline interlace_scanline fragmentShader (); if ( EdgeTestPass & edge_test_first_line ) break; scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0]; scan.c[0][1] += scan.slopeC[0][1]; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0]; scan.c[1][1] += scan.slopeC[1][1]; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0]; scan.c[2][1] += scan.slopeC[2][1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0]; scan.l[0][1] += scan.slopeL[0][1]; #endif } } } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ namespace irr { namespace video { //! creates a flat triangle renderer IBurningShader* createTriangleRendererTextureGouraud2(CBurningVideoDriver* driver) { // ETR_TEXTURE_GOURAUD #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CTRTextureGouraud2(driver); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } } // end namespace video } // end namespace irr