// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "CGeometryCreator.h" #include "SMesh.h" #include "IMesh.h" #include "IVideoDriver.h" #include "os.h" namespace irr { namespace scene { IMesh* CGeometryCreator::createCubeMesh(const core::vector3df& size, ECUBE_MESH_TYPE type) const { SMesh* mesh = new SMesh; const video::SColor clr(255,255,255,255); if ( type == ECMT_1BUF_12VTX_NA ) { SMeshBuffer* buffer = new SMeshBuffer(); // Create indices (pos, neg describes normal direction of front-face) const u16 u[36] = { 0,2,1, 0,3,2, // NEG_Z 1,5,4, 1,2,5, // POS_X 4,6,7, 4,5,6, // POS_Z 7,3,0, 7,6,3, // NEG_X 9,5,2, 9,8,5, // POS_Y 0,11,10, 0,10,7}; // NEG_Y buffer->Indices.set_used(36); for (u32 i=0; i<36; ++i) buffer->Indices[i] = u[i]; // Create vertices buffer->Vertices.reallocate(12); buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1,-1,-1, clr, 0, 1)); // 0 buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1,-1,-1, clr, 1, 1)); // 1 buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 1,-1, clr, 1, 0)); // 2 buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 1,-1, clr, 0, 0)); // 3 buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1,-1, 1, clr, 0, 1)); // 4 buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 1, 1, clr, 0, 0)); // 5 buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 1, 1, clr, 1, 0)); // 6 buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1,-1, 1, clr, 1, 1)); // 7 buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 1, 1, clr, 0, 1)); // 8 buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 1,-1, clr, 1, 1)); // 9 buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1,-1, 1, clr, 1, 0)); // 10 buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1,-1,-1, clr, 0, 0)); // 11 // Recalculate bounding box and set cube size buffer->BoundingBox.reset(0,0,0); for (u32 i=0; i<12; ++i) { buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f); buffer->Vertices[i].Pos *= size; buffer->Vertices[i].Normal.normalize(); buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos); } mesh->addMeshBuffer(buffer); buffer->drop(); } else if ( type == ECMT_6BUF_4VTX_NP ) { for ( int b=0; b<6; ++b ) { SMeshBuffer* buffer = new SMeshBuffer(); // Create indices const u16 u[6] = { 0,2,1,0,3,2}; buffer->Indices.set_used(6); for ( int i=0; i<6; ++i ) buffer->Indices[i] = u[i]; // Create vertices buffer->Vertices.reallocate(4); switch ( b ) { case 0: buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, 0,-1, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, 0,-1, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 0,-1, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 0,-1, clr, 0, 0)); break; case 1: buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1, 0, 0, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1, 0, 0, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 0, 0, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 0, 0, clr, 0, 0)); break; case 2: buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, 0, 1, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, 0, 1, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 0, 1, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 0, 1, clr, 0, 0)); break; case 3: buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1, 0, 0, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1, 0, 0, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 0, 0, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 0, 0, clr, 0, 0)); break; case 4: buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 1, 0, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 1, 0, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 1, 0, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 1, 0, clr, 0, 0)); break; case 5: buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, -1, 0, clr, 0, 1)); buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, -1, 0, clr, 1, 1)); buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, -1, 0, clr, 1, 0)); buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, -1, 0, clr, 0, 0)); break; } // Recalculate bounding box and set cube size for (u32 i=0; i<4; ++i) { buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f); buffer->Vertices[i].Pos *= size; if ( i == 0 ) buffer->BoundingBox.reset(buffer->Vertices[i].Pos); else buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos); } mesh->addMeshBuffer(buffer); buffer->drop(); } } else if ( type == ECMT_1BUF_24VTX_NP ) { SMeshBuffer* buffer = new SMeshBuffer(); // Create indices (pos, neg describes normal direction of front-face) const u16 u[36] = { 0,2,1, 0,3,2, // NEG_Z 4,7,6, 4,5,7, // POS_X 8,10,11, 8,9,10, // POS_Z 15,13,12, 15,14,13, // NEG_X 19,17,16, 19,18,17, // POS_Y 20,23,22, 20,22,21}; // NEG_Y buffer->Indices.set_used(36); for (u32 i=0; i<36; ++i) buffer->Indices[i] = u[i]; // Create vertices buffer->Vertices.reallocate(24); buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, 0,-1, clr, 0, 1)); // 0 buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, 0,-1, clr, 1, 1)); // 1 buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 0,-1, clr, 1, 0)); // 2 buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 0,-1, clr, 0, 0)); // 3 buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1, 0, 0, clr, 1, 1)); // 4 (1) buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 0, 0, clr, 1, 0)); // 5 (2) buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1, 0, 0, clr, 0, 1)); // 6 (4) buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 0, 0, clr, 0, 0)); // 7 (5) buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, 0, 1, clr, 0, 1)); // 8 (4) buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 0, 1, clr, 0, 0)); // 9 (5) buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 0, 1, clr, 1, 0)); // 10 (6) buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, 0, 1, clr, 1, 1)); // 11 (7) buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1, 0, 0, clr, 0, 1)); // 12 (0) buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 0, 0, clr, 0, 0)); // 13 (3) buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 0, 0, clr, 1, 0)); // 14 (6) buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1, 0, 0, clr, 1, 1)); // 15 (7) buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 1, 0, clr, 1, 0)); // 16 (2) buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 1, 0, clr, 0, 0)); // 17 (5) buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 1, 0, clr, 0, 1)); // 18 (8) buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 1, 0, clr, 1, 1)); // 19 (9) buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0,-1, 0, clr, 0, 1)); // 20 (0) buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0,-1, 0, clr, 1, 1)); // 21 (7) buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0,-1, 0, clr, 1, 0)); // 22 (10) buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0,-1, 0, clr, 0, 0)); // 23 (11) // Recalculate bounding box and set cube size buffer->BoundingBox.reset(0,0,0); for (u32 i=0; i<24; ++i) { buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f); buffer->Vertices[i].Pos *= size; buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos); } mesh->addMeshBuffer(buffer); buffer->drop(); } mesh->recalculateBoundingBox(); return mesh; } // creates a hill plane IMesh* CGeometryCreator::createHillPlaneMesh( const core::dimension2d& tileSize, const core::dimension2d& tc, video::SMaterial* material, f32 hillHeight, const core::dimension2d& ch, const core::dimension2d& textureRepeatCount) const { core::dimension2d tileCount = tc; core::dimension2d countHills = ch; if (countHills.Width < 0.01f) countHills.Width = 1.f; if (countHills.Height < 0.01f) countHills.Height = 1.f; // center const core::position2d center((tileSize.Width * tileCount.Width) * 0.5f, (tileSize.Height * tileCount.Height) * 0.5f); // texture coord step const core::dimension2d tx( textureRepeatCount.Width / tileCount.Width, textureRepeatCount.Height / tileCount.Height); // add one more point in each direction for proper tile count ++tileCount.Height; ++tileCount.Width; SMeshBuffer* buffer = new SMeshBuffer(); video::S3DVertex vtx; vtx.Color.set(255,255,255,255); // create vertices from left-front to right-back u32 x; f32 sx=0.f, tsx=0.f; for (x=0; xVertices.push_back(vtx); sy += tileSize.Height; tsy += tx.Height; } sx += tileSize.Width; tsx += tx.Width; } // create indices for (x=0; xIndices.push_back(current); buffer->Indices.push_back(current + 1); buffer->Indices.push_back(current + tileCount.Height); buffer->Indices.push_back(current + 1); buffer->Indices.push_back(current + 1 + tileCount.Height); buffer->Indices.push_back(current + tileCount.Height); } } // recalculate normals for (u32 i=0; iIndices.size(); i+=3) { const core::vector3df normal = core::plane3d( buffer->Vertices[buffer->Indices[i+0]].Pos, buffer->Vertices[buffer->Indices[i+1]].Pos, buffer->Vertices[buffer->Indices[i+2]].Pos).Normal; buffer->Vertices[buffer->Indices[i+0]].Normal = normal; buffer->Vertices[buffer->Indices[i+1]].Normal = normal; buffer->Vertices[buffer->Indices[i+2]].Normal = normal; } if (material) buffer->Material = *material; buffer->recalculateBoundingBox(); buffer->setHardwareMappingHint(EHM_STATIC); SMesh* mesh = new SMesh(); mesh->addMeshBuffer(buffer); mesh->recalculateBoundingBox(); buffer->drop(); return mesh; } namespace { // Return the position on an exponential curve. Input from 0 to 1. float geopos(float pos) { pos = core::clamp(pos, 0, 1); pos *= 5; const float out = powf(2.5f, pos - 5); return out; } } //! Create a geoplane. IMesh* CGeometryCreator::createGeoplaneMesh(f32 radius, u32 rows, u32 columns) const { using namespace core; using namespace video; rows = clamp(rows, 3, 2048); columns = clamp(columns, 3, 2048); SMeshBuffer * const mb = new SMeshBuffer(); S3DVertex v(0, 0, 0, 0, 1, 0, SColor(255, 255, 255, 255), 0, 0); const float anglestep = (2 * PI) / columns; mb->Vertices.reallocate((rows * columns) + 1); mb->Indices.reallocate((((rows - 2) * columns * 2) + columns) * 3); u32 i, j; mb->Vertices.push_back(v); for (j = 1; j < rows; j++) { const float len = radius * geopos((float) j/(rows-1)); for (i = 0; i < columns; i++) { const float angle = anglestep * i; v.Pos = vector3df(len * sinf(angle), 0, len * cosf(angle)); mb->Vertices.push_back(v); } } // Indices // First the inner fan for (i = 0; i < columns; i++) { mb->Indices.push_back(0); mb->Indices.push_back(1 + i); if (i == columns - 1) mb->Indices.push_back(1); else mb->Indices.push_back(2 + i); } // Then the surrounding quads for (j = 0; j < rows - 2; j++) { for (i = 0; i < columns; i++) { u32 start = ((j * columns) + i) + 1; u32 next = start + 1; u32 far = (((j + 1) * columns) + i) + 1; u32 farnext = far + 1; if (i == columns - 1) { next = ((j * columns)) + 1; farnext = (((j + 1) * columns)) + 1; } mb->Indices.push_back(start); mb->Indices.push_back(far); mb->Indices.push_back(next); mb->Indices.push_back(next); mb->Indices.push_back(far); mb->Indices.push_back(farnext); } } // Done SMesh * const mesh = new SMesh(); mesh->addMeshBuffer(mb); mb->recalculateBoundingBox(); mb->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); mb->drop(); return mesh; } IMesh* CGeometryCreator::createTerrainMesh(video::IImage* texture, video::IImage* heightmap, const core::dimension2d& stretchSize, f32 maxHeight, video::IVideoDriver* driver, const core::dimension2d& maxVtxBlockSize, bool debugBorders) const { if (!texture || !heightmap) return 0; // debug border const s32 borderSkip = debugBorders ? 0 : 1; video::S3DVertex vtx; vtx.Color.set(255,255,255,255); SMesh* mesh = new SMesh(); const u32 tm = os::Timer::getRealTime()/1000; const core::dimension2d hMapSize= heightmap->getDimension(); const core::dimension2d tMapSize= texture->getDimension(); const core::position2d thRel(static_cast(tMapSize.Width) / hMapSize.Width, static_cast(tMapSize.Height) / hMapSize.Height); maxHeight /= 255.0f; // height step per color value core::position2d processed(0,0); while (processed.Y blockSize = maxVtxBlockSize; if (processed.X + blockSize.Width > hMapSize.Width) blockSize.Width = hMapSize.Width - processed.X; if (processed.Y + blockSize.Height > hMapSize.Height) blockSize.Height = hMapSize.Height - processed.Y; SMeshBuffer* buffer = new SMeshBuffer(); buffer->setHardwareMappingHint(EHM_STATIC); buffer->Vertices.reallocate(blockSize.getArea()); // add vertices of vertex block u32 y; core::vector2df pos(0.f, processed.Y*stretchSize.Height); const core::vector2df bs(1.f/blockSize.Width, 1.f/blockSize.Height); core::vector2df tc(0.f, 0.5f*bs.Y); for (y=0; ygetPixel(x+processed.X, y+processed.Y).getAverage() * maxHeight; vtx.Pos.set(pos.X, height, pos.Y); vtx.TCoords.set(tc); buffer->Vertices.push_back(vtx); pos.X += stretchSize.Width; tc.X += bs.X; } pos.Y += stretchSize.Height; tc.Y += bs.Y; } buffer->Indices.reallocate((blockSize.Height-1)*(blockSize.Width-1)*6); // add indices of vertex block s32 c1 = 0; for (y=0; yIndices.push_back(c); buffer->Indices.push_back(c + blockSize.Width); buffer->Indices.push_back(c + 1); buffer->Indices.push_back(c + 1); buffer->Indices.push_back(c + blockSize.Width); buffer->Indices.push_back(c + 1 + blockSize.Width); } c1 += blockSize.Width; } // recalculate normals for (u32 i=0; iIndices.size(); i+=3) { const core::vector3df normal = core::plane3d( buffer->Vertices[buffer->Indices[i+0]].Pos, buffer->Vertices[buffer->Indices[i+1]].Pos, buffer->Vertices[buffer->Indices[i+2]].Pos).Normal; buffer->Vertices[buffer->Indices[i+0]].Normal = normal; buffer->Vertices[buffer->Indices[i+1]].Normal = normal; buffer->Vertices[buffer->Indices[i+2]].Normal = normal; } if (buffer->Vertices.size()) { c8 textureName[64]; // create texture for this block video::IImage* img = driver->createImage(texture->getColorFormat(), core::dimension2d(core::floor32(blockSize.Width*thRel.X), core::floor32(blockSize.Height*thRel.Y))); texture->copyTo(img, core::position2di(0,0), core::recti( core::position2d(core::floor32(processed.X*thRel.X), core::floor32(processed.Y*thRel.Y)), core::dimension2d(core::floor32(blockSize.Width*thRel.X), core::floor32(blockSize.Height*thRel.Y))), 0); sprintf(textureName, "terrain%u_%u", tm, mesh->getMeshBufferCount()); buffer->Material.setTexture(0, driver->addTexture(textureName, img)); if (buffer->Material.getTexture(0)) { c8 tmp[255]; sprintf(tmp, "Generated terrain texture (%ux%u): %s", buffer->Material.getTexture(0)->getSize().Width, buffer->Material.getTexture(0)->getSize().Height, textureName); os::Printer::log(tmp); } else os::Printer::log("Could not create terrain texture.", textureName, ELL_ERROR); img->drop(); } buffer->recalculateBoundingBox(); mesh->addMeshBuffer(buffer); buffer->drop(); // keep on processing processed.X += maxVtxBlockSize.Width - borderSkip; } // keep on processing processed.X = 0; processed.Y += maxVtxBlockSize.Height - borderSkip; } mesh->recalculateBoundingBox(); return mesh; } /* a cylinder, a cone and a cross point up on (0,1.f, 0.f ) */ IMesh* CGeometryCreator::createArrowMesh(const u32 tessellationCylinder, const u32 tessellationCone, const f32 height, const f32 cylinderHeight, const f32 width0, const f32 width1, const video::SColor vtxColor0, const video::SColor vtxColor1) const { SMesh* mesh = (SMesh*)createCylinderMesh(width0, cylinderHeight, tessellationCylinder, vtxColor0, false); IMesh* mesh2 = createConeMesh(width1, height-cylinderHeight, tessellationCone, vtxColor1, vtxColor0); for (u32 i=0; igetMeshBufferCount(); ++i) { IMeshBuffer* buffer = mesh2->getMeshBuffer(i); for (u32 j=0; jgetVertexCount(); ++j) buffer->getPosition(j).Y += cylinderHeight; buffer->setDirty(EBT_VERTEX); buffer->recalculateBoundingBox(); mesh->addMeshBuffer(buffer); } mesh2->drop(); mesh->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); return mesh; } /* A sphere with proper normals and texture coords */ IMesh* CGeometryCreator::createSphereMesh(f32 radius, u32 polyCountX, u32 polyCountY) const { // thanks to Alfaz93 who made his code available for Irrlicht on which // this one is based! // we are creating the sphere mesh here. if (polyCountX < 2) polyCountX = 2; if (polyCountY < 2) polyCountY = 2; while (polyCountX * polyCountY > 32767) // prevent u16 overflow { polyCountX /= 2; polyCountY /= 2; } const u32 polyCountXPitch = polyCountX+1; // get to same vertex on next level SMeshBuffer* buffer = new SMeshBuffer(); buffer->Indices.reallocate((polyCountX * polyCountY) * 6); const video::SColor clr(255, 255,255,255); u32 level = 0; for (u32 p1 = 0; p1 < polyCountY-1; ++p1) { //main quads, top to bottom for (u32 p2 = 0; p2 < polyCountX - 1; ++p2) { const u32 curr = level + p2; buffer->Indices.push_back(curr + polyCountXPitch); buffer->Indices.push_back(curr); buffer->Indices.push_back(curr + 1); buffer->Indices.push_back(curr + polyCountXPitch); buffer->Indices.push_back(curr+1); buffer->Indices.push_back(curr + 1 + polyCountXPitch); } // the connectors from front to end buffer->Indices.push_back(level + polyCountX - 1 + polyCountXPitch); buffer->Indices.push_back(level + polyCountX - 1); buffer->Indices.push_back(level + polyCountX); buffer->Indices.push_back(level + polyCountX - 1 + polyCountXPitch); buffer->Indices.push_back(level + polyCountX); buffer->Indices.push_back(level + polyCountX + polyCountXPitch); level += polyCountXPitch; } const u32 polyCountSq = polyCountXPitch * polyCountY; // top point const u32 polyCountSq1 = polyCountSq + 1; // bottom point const u32 polyCountSqM1 = (polyCountY - 1) * polyCountXPitch; // last row's first vertex for (u32 p2 = 0; p2 < polyCountX - 1; ++p2) { // create triangles which are at the top of the sphere buffer->Indices.push_back(polyCountSq); buffer->Indices.push_back(p2 + 1); buffer->Indices.push_back(p2); // create triangles which are at the bottom of the sphere buffer->Indices.push_back(polyCountSqM1 + p2); buffer->Indices.push_back(polyCountSqM1 + p2 + 1); buffer->Indices.push_back(polyCountSq1); } // create final triangle which is at the top of the sphere buffer->Indices.push_back(polyCountSq); buffer->Indices.push_back(polyCountX); buffer->Indices.push_back(polyCountX-1); // create final triangle which is at the bottom of the sphere buffer->Indices.push_back(polyCountSqM1 + polyCountX - 1); buffer->Indices.push_back(polyCountSqM1); buffer->Indices.push_back(polyCountSq1); // calculate the angle which separates all points in a circle const f64 AngleX = 2 * core::PI / polyCountX; const f64 AngleY = core::PI / polyCountY; u32 i=0; f64 axz; // we don't start at 0. f64 ay = 0;//AngleY / 2; buffer->Vertices.set_used((polyCountXPitch * polyCountY) + 2); for (u32 y = 0; y < polyCountY; ++y) { ay += AngleY; const f64 sinay = sin(ay); axz = 0; // calculate the necessary vertices without the doubled one for (u32 xz = 0;xz < polyCountX; ++xz) { // calculate points position const core::vector3df pos(static_cast(radius * cos(axz) * sinay), static_cast(radius * cos(ay)), static_cast(radius * sin(axz) * sinay)); // for spheres the normal is the position core::vector3df normal(pos); normal.normalize(); // calculate texture coordinates via sphere mapping // tu is the same on each level, so only calculate once f32 tu = 0.5f; if (y==0) { if (normal.Y != -1.0f && normal.Y != 1.0f) tu = static_cast(acos(core::clamp(normal.X/sinay, -1.0, 1.0)) * 0.5 *core::RECIPROCAL_PI64); if (normal.Z < 0.0f) tu=1-tu; } else tu = buffer->Vertices[i-polyCountXPitch].TCoords.X; buffer->Vertices[i] = video::S3DVertex(pos.X, pos.Y, pos.Z, normal.X, normal.Y, normal.Z, clr, tu, static_cast(ay*core::RECIPROCAL_PI64)); ++i; axz += AngleX; } // This is the doubled vertex on the initial position buffer->Vertices[i] = video::S3DVertex(buffer->Vertices[i-polyCountX]); buffer->Vertices[i].TCoords.X=1.0f; ++i; } // the vertex at the top of the sphere buffer->Vertices[i] = video::S3DVertex(0.0f,radius,0.0f, 0.0f,1.0f,0.0f, clr, 0.5f, 0.0f); // the vertex at the bottom of the sphere ++i; buffer->Vertices[i] = video::S3DVertex(0.0f,-radius,0.0f, 0.0f,-1.0f,0.0f, clr, 0.5f, 1.0f); // recalculate bounding box buffer->BoundingBox.reset(buffer->Vertices[i].Pos); buffer->BoundingBox.addInternalPoint(buffer->Vertices[i-1].Pos); buffer->BoundingBox.addInternalPoint(radius,0.0f,0.0f); buffer->BoundingBox.addInternalPoint(-radius,0.0f,0.0f); buffer->BoundingBox.addInternalPoint(0.0f,0.0f,radius); buffer->BoundingBox.addInternalPoint(0.0f,0.0f,-radius); SMesh* mesh = new SMesh(); mesh->addMeshBuffer(buffer); buffer->drop(); mesh->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); return mesh; } /* A cylinder with proper normals and texture coords */ IMesh* CGeometryCreator::createCylinderMesh(f32 radius, f32 length, u32 tessellation, const video::SColor& color, bool closeTop, f32 oblique, u32 normalType) const { SMeshBuffer* buffer = new SMeshBuffer(); if ( tessellation < 2 ) tessellation = 2; const f32 recTessellation = core::reciprocal((f32)tessellation); const f32 angleStep = (core::PI * 2.f ) * recTessellation; u32 i; video::S3DVertex v; v.Color = color; buffer->Vertices.reallocate(tessellation*2+2+(closeTop?2:1)); buffer->Indices.reallocate(tessellation*(closeTop?12:9)); f32 tcx = 0.f; for ( i = 0; i <= tessellation; ++i ) { const f32 angle = angleStep * i; v.Pos.X = radius * cosf(angle); v.Pos.Y = 0.f; v.Pos.Z = radius * sinf(angle); switch (normalType) { case 0: v.Normal = v.Pos; break; case 1: v.Normal = v.Pos; break; } v.Normal.normalize(); v.TCoords.X=tcx; v.TCoords.Y=0.f; buffer->Vertices.push_back(v); v.Pos.X += oblique; v.Pos.Y = length; switch (normalType) { case 0: v.Normal = v.Pos; break; case 1: v.Normal = core::vector3df(v.Pos.X-oblique, 0, v.Pos.Z); break; } v.Normal.normalize(); v.TCoords.Y=1.f; buffer->Vertices.push_back(v); tcx += recTessellation; } const u32 nonWrappedSize = tessellation*2; for (i=0; i != nonWrappedSize; i += 2) { buffer->Indices.push_back(i + 2); buffer->Indices.push_back(i + 0); buffer->Indices.push_back(i + 1); buffer->Indices.push_back(i + 2); buffer->Indices.push_back(i + 1); buffer->Indices.push_back(i + 3); } // close down v.Pos.X = 0.f; v.Pos.Y = 0.f; v.Pos.Z = 0.f; v.Normal.X = 0.f; v.Normal.Y = -1.f; v.Normal.Z = 0.f; v.TCoords.X = 0.5f; v.TCoords.Y = 1.f; buffer->Vertices.push_back(v); u32 index = buffer->Vertices.size() - 1; for ( i = 0; i != nonWrappedSize; i += 2 ) { buffer->Indices.push_back(index); buffer->Indices.push_back(i + 0); buffer->Indices.push_back(i + 2); } if (closeTop) { // close top v.Pos.X = oblique; v.Pos.Y = length; v.Pos.Z = 0.f; v.Normal.X = 0.f; v.Normal.Y = 1.f; v.Normal.Z = 0.f; v.TCoords.X = 0.5f; v.TCoords.Y = 0.f; buffer->Vertices.push_back(v); index = buffer->Vertices.size() - 1; for ( i = 0; i != nonWrappedSize; i += 2 ) { buffer->Indices.push_back(i + 1); buffer->Indices.push_back(index); buffer->Indices.push_back(i + 3); } } buffer->recalculateBoundingBox(); SMesh* mesh = new SMesh(); mesh->addMeshBuffer(buffer); mesh->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); buffer->drop(); return mesh; } /* A cone with proper normals and texture coords */ IMesh* CGeometryCreator::createConeMesh(f32 radius, f32 length, u32 tessellation, const video::SColor& colorTop, const video::SColor& colorBottom, f32 oblique) const { SMeshBuffer* buffer = new SMeshBuffer(); if ( tessellation < 2 ) tessellation = 2; const f32 angleStep = (core::PI * 2.f ) / tessellation; video::S3DVertex v; v.Pos.Y = 0.f; v.Color = colorTop; for (u32 i = 0; i != tessellation; ++i ) { const f32 angle = angleStep * f32(i); const f32 cosAngle = cosf(angle); const f32 sinAngle = sinf(angle); v.TCoords.X = (1.f+cosAngle)*0.5f; v.TCoords.Y = (1.f+sinAngle)*0.5f; v.Pos.X = radius * cosAngle; v.Pos.Z = radius * sinAngle; v.Normal = v.Pos; v.Normal.normalize(); buffer->Vertices.push_back(v); } const u32 nonWrappedSize = buffer->Vertices.size() - 1; // close top v.Pos.X = oblique; v.Pos.Y = length; v.Pos.Z = 0.f; v.Normal.X = 0.f; v.Normal.Y = 1.f; v.Normal.Z = 0.f; v.TCoords.X = 0.5f; v.TCoords.Y = 0.5f; buffer->Vertices.push_back(v); u32 index = buffer->Vertices.size() - 1; for (u32 i = 0; i != nonWrappedSize; ++i) { buffer->Indices.push_back(i + 0); buffer->Indices.push_back(index); buffer->Indices.push_back(i + 1); } buffer->Indices.push_back(nonWrappedSize); buffer->Indices.push_back(index); buffer->Indices.push_back(0); // close down v.Color = colorBottom; v.Pos.X = 0.f; v.Pos.Y = 0.f; v.Pos.Z = 0.f; v.Normal.X = 0.f; v.Normal.Y = -1.f; v.Normal.Z = 0.f; v.TCoords.X = 0.5f; v.TCoords.Y = 0.5f; buffer->Vertices.push_back(v); index = buffer->Vertices.size() - 1; for (u32 i = 0; i != nonWrappedSize; i += 1 ) { buffer->Indices.push_back(index); buffer->Indices.push_back(i + 0); buffer->Indices.push_back(i + 1); } buffer->Indices.push_back(index); buffer->Indices.push_back(nonWrappedSize); buffer->Indices.push_back(0); buffer->recalculateBoundingBox(); SMesh* mesh = new SMesh(); mesh->addMeshBuffer(buffer); buffer->drop(); mesh->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); return mesh; } irr::scene::IMesh* CGeometryCreator::createTorusMesh(irr::f32 majorRadius, irr::f32 minorRadius, irr::u32 majorSegments, irr::u32 minorSegments, f32 angleStart, f32 angleEnd, int capEnds) const { if ( majorRadius == 0.f || minorRadius == 0.f ) return 0; if ( majorSegments < 3 ) majorSegments = 3; if ( minorSegments < 3 ) minorSegments = 3; // Note: first/last vertices of major and minor lines are on same position, but not shared to allow for independent uv's. // prevent 16-bit vertex buffer overflow const u32 numCapVertices = (capEnds & 1 ? 1 : 0) + (capEnds & 2 ? 1 : 0); u32 numVertices = (majorSegments+1)*(minorSegments+1)+numCapVertices; while (numVertices > 65536) { if ( majorSegments > 2*minorSegments ) majorSegments /= 2; else if ( minorSegments > 2*majorSegments ) minorSegments /= 2; else { majorSegments /= 2; minorSegments /= 2; } numVertices = (majorSegments+1)*(minorSegments+1)+numCapVertices; } const u32 majorLines = majorSegments+1; const u32 minorLines = minorSegments+1; const video::SColor color(255,255,255,255); SMeshBuffer* buffer = new SMeshBuffer(); buffer->Indices.reallocate(majorSegments*minorSegments*6); buffer->Vertices.reallocate(numVertices); if ( angleStart > angleEnd ) core::swap(angleStart, angleEnd); const f32 radStart = angleStart * core::DEGTORAD; const f32 radEnd = angleEnd * core::DEGTORAD; const f32 radMajor = radEnd-radStart; const f32 radStepMajor = radMajor / majorSegments; const f32 TWO_PI = 2.f*core::PI; const f32 radStepMinor = TWO_PI / minorSegments; // vertices for ( irr::u32 major = 0; major < majorLines; ++major) { const f32 radMajor = radStart + major*radStepMajor; const f32 cosMajor = cosf(radMajor); const f32 sinMajor = sinf(radMajor); // points of major circle const core::vector3df pm(majorRadius*cosMajor, 0.f, majorRadius * sinMajor); for ( irr::u32 minor = 0; minor < minorLines; ++minor) { const f32 radMinor = minor*radStepMinor; const f32 cosMinor = cosf(radMinor); const core::vector3df n(cosMinor * cosMajor, sinf(radMinor), cosMinor * sinMajor); const core::vector2df uv(radMajor/TWO_PI, radMinor/TWO_PI); buffer->Vertices.push_back( video::S3DVertex(pm+n*minorRadius, n, color, uv) ); } } // indices for ( irr::u32 major = 0; major < majorSegments; ++major) { for ( irr::u32 minor = 0; minor < minorSegments; ++minor) { const irr::u16 i = major*minorLines+minor; buffer->Indices.push_back(i+1); buffer->Indices.push_back(i+minorLines); buffer->Indices.push_back(i); buffer->Indices.push_back(i+1); buffer->Indices.push_back(i+minorLines+1); buffer->Indices.push_back(i+minorLines); } } // add start caps if ( capEnds & 1 ) { const core::vector3df p(cosf(radStart), 0.f, sinf(radStart)); const core::vector3df n( p.crossProduct(core::vector3df(0,-1,0)) ); const core::vector2df uv(radStart/TWO_PI, 0.5f); buffer->Vertices.push_back( video::S3DVertex(p*majorRadius, n, color, uv) ); const irr::u16 i=buffer->Vertices.size()-1; for ( irr::u32 minor = 0; minor < minorSegments; ++minor) { buffer->Indices.push_back(minor+1); buffer->Indices.push_back(minor); buffer->Indices.push_back(i); } } // add end caps if ( capEnds & 2 ) { const core::vector3df p(cosf(radEnd), 0.f, sinf(radEnd)); const core::vector3df n( p.crossProduct(core::vector3df(0,1,0)) ); const core::vector2df uv(radEnd/TWO_PI, 0.5f); buffer->Vertices.push_back( video::S3DVertex(p*majorRadius, n, color, uv) ); const irr::u16 i=buffer->Vertices.size()-1; const irr::u16 k=i-numCapVertices; for ( irr::u32 minor = 0; minor < minorSegments; ++minor) { buffer->Indices.push_back(k-minor-1); buffer->Indices.push_back(k-minor); buffer->Indices.push_back(i); } } // recalculate bounding box buffer->BoundingBox.MaxEdge.X = core::abs_(majorRadius)+core::abs_(minorRadius); buffer->BoundingBox.MaxEdge.Z = buffer->BoundingBox.MaxEdge.X; buffer->BoundingBox.MaxEdge.Y = core::abs_(minorRadius); buffer->BoundingBox.MinEdge = buffer->BoundingBox.MaxEdge*-1.f; SMesh* mesh = new SMesh(); mesh->addMeshBuffer(buffer); buffer->drop(); mesh->setHardwareMappingHint(EHM_STATIC); mesh->recalculateBoundingBox(); return mesh; } void CGeometryCreator::addToBuffer(const video::S3DVertex& v, SMeshBuffer* Buffer) const { const s32 tnidx = Buffer->Vertices.linear_reverse_search(v); const bool alreadyIn = (tnidx != -1); u16 nidx = (u16)tnidx; if (!alreadyIn) { nidx = (u16)Buffer->Vertices.size(); Buffer->Indices.push_back(nidx); Buffer->Vertices.push_back(v); } else Buffer->Indices.push_back(nidx); } IMesh* CGeometryCreator::createVolumeLightMesh( const u32 subdivideU, const u32 subdivideV, const video::SColor footColor, const video::SColor tailColor, const f32 lpDistance, const core::vector3df& lightDim) const { SMeshBuffer* Buffer = new SMeshBuffer(); Buffer->setHardwareMappingHint(EHM_STATIC); const core::vector3df lightPoint(0, -(lpDistance*lightDim.Y), 0); const f32 ax = lightDim.X * 0.5f; // X Axis const f32 az = lightDim.Z * 0.5f; // Z Axis Buffer->Vertices.clear(); Buffer->Vertices.reallocate(6+12*(subdivideU+subdivideV)); Buffer->Indices.clear(); Buffer->Indices.reallocate(6+12*(subdivideU+subdivideV)); //draw the bottom foot.. the glowing region addToBuffer(video::S3DVertex(-ax, 0, az, 0,0,0, footColor, 0, 1),Buffer); addToBuffer(video::S3DVertex( ax, 0, az, 0,0,0, footColor, 1, 1),Buffer); addToBuffer(video::S3DVertex( ax, 0,-az, 0,0,0, footColor, 1, 0),Buffer); addToBuffer(video::S3DVertex( ax, 0,-az, 0,0,0, footColor, 1, 0),Buffer); addToBuffer(video::S3DVertex(-ax, 0,-az, 0,0,0, footColor, 0, 0),Buffer); addToBuffer(video::S3DVertex(-ax, 0, az, 0,0,0, footColor, 0, 1),Buffer); f32 tu = 0.f; const f32 tuStep = 1.f/subdivideU; f32 bx = -ax; const f32 bxStep = lightDim.X * tuStep; // Slices in X/U space for (u32 i = 0; i <= subdivideU; ++i) { // These are the two endpoints for a slice at the foot core::vector3df end1(bx, 0.0f, -az); core::vector3df end2(bx, 0.0f, az); end1 -= lightPoint; // get a vector from point to lightsource end1.normalize(); // normalize vector end1 *= lightDim.Y; // multiply it out by shootlength end1.X += bx; // Add the original point location to the vector end1.Z -= az; // Do it again for the other point. end2 -= lightPoint; end2.normalize(); end2 *= lightDim.Y; end2.X += bx; end2.Z += az; addToBuffer(video::S3DVertex(bx , 0, az, 0,0,0, footColor, tu, 1),Buffer); addToBuffer(video::S3DVertex(bx , 0, -az, 0,0,0, footColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, tu, 1),Buffer); addToBuffer(video::S3DVertex(bx , 0, -az, 0,0,0, footColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(end1.X , end1.Y, end1.Z, 0,0,0, tailColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, tu, 1),Buffer); //back side addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, tu, 1),Buffer); addToBuffer(video::S3DVertex(-bx , 0, -az, 0,0,0, footColor, tu, 1),Buffer); addToBuffer(video::S3DVertex(-bx , 0, az, 0,0,0, footColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(-bx , 0, az, 0,0,0, footColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(-end1.X , end1.Y, -end1.Z, 0,0,0, tailColor, tu, 0),Buffer); addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, tu, 1),Buffer); tu += tuStep; bx += bxStep; } f32 tv = 0.f; const f32 tvStep = 1.f/subdivideV; f32 bz = -az; const f32 bzStep = lightDim.Z * tvStep; // Slices in Z/V space for(u32 i = 0; i <= subdivideV; ++i) { // These are the two endpoints for a slice at the foot core::vector3df end1(-ax, 0.0f, bz); core::vector3df end2(ax, 0.0f, bz); end1 -= lightPoint; // get a vector from point to lightsource end1.normalize(); // normalize vector end1 *= lightDim.Y; // multiply it out by shootlength end1.X -= ax; // Add the original point location to the vector end1.Z += bz; // Do it again for the other point. end2 -= lightPoint; end2.normalize(); end2 *= lightDim.Y; end2.X += ax; end2.Z += bz; addToBuffer(video::S3DVertex(-ax , 0, bz, 0,0,0, footColor, 0, tv),Buffer); addToBuffer(video::S3DVertex(ax , 0, bz, 0,0,0, footColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(end1.X , end1.Y, end1.Z, 0,0,0, tailColor, 0, tv),Buffer); addToBuffer(video::S3DVertex(-ax , 0, bz, 0,0,0, footColor, 0, tv),Buffer); //back side addToBuffer(video::S3DVertex(ax , 0, -bz, 0,0,0, footColor, 0, tv),Buffer); addToBuffer(video::S3DVertex(-ax , 0, -bz, 0,0,0, footColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, 1, tv),Buffer); addToBuffer(video::S3DVertex(-end1.X , end1.Y, -end1.Z, 0,0,0, tailColor, 0, tv),Buffer); addToBuffer(video::S3DVertex(ax , 0, -bz, 0,0,0, footColor, 0, tv),Buffer); tv += tvStep; bz += bzStep; } Buffer->recalculateBoundingBox(); Buffer->Material.MaterialType = video::EMT_ONETEXTURE_BLEND; Buffer->Material.MaterialTypeParam = pack_textureBlendFunc( video::EBF_SRC_COLOR, video::EBF_SRC_ALPHA, video::EMFN_MODULATE_1X ); Buffer->Material.Lighting = false; Buffer->Material.ZWriteEnable = video::EZW_OFF; Buffer->setDirty(EBT_VERTEX_AND_INDEX); Buffer->recalculateBoundingBox(); SMesh* mesh = new SMesh(); mesh->addMeshBuffer(Buffer); Buffer->drop(); mesh->recalculateBoundingBox(); return mesh; } } // end namespace scene } // end namespace irr