// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "CParticleAnimatedMeshSceneNodeEmitter.h" #include "IAnimatedMeshSceneNode.h" #include "IMesh.h" #include "os.h" namespace irr { namespace scene { //! constructor CParticleAnimatedMeshSceneNodeEmitter::CParticleAnimatedMeshSceneNodeEmitter( IAnimatedMeshSceneNode* node, bool useNormalDirection, const core::vector3df& direction, f32 normalDirectionModifier, s32 mbNumber, bool everyMeshVertex, u32 minParticlesPerSecond, u32 maxParticlesPerSecond, const video::SColor& minStartColor, const video::SColor& maxStartColor, u32 lifeTimeMin, u32 lifeTimeMax, s32 maxAngleDegrees, const core::dimension2df& minStartSize, const core::dimension2df& maxStartSize ) : Node(0), AnimatedMesh(0), BaseMesh(0), TotalVertices(0), MBCount(0), MBNumber(mbNumber), Direction(direction), NormalDirectionModifier(normalDirectionModifier), MinParticlesPerSecond(minParticlesPerSecond), MaxParticlesPerSecond(maxParticlesPerSecond), MinStartColor(minStartColor), MaxStartColor(maxStartColor), MinLifeTime(lifeTimeMin), MaxLifeTime(lifeTimeMax), MaxStartSize(maxStartSize), MinStartSize(minStartSize), Time(0), MaxAngleDegrees(maxAngleDegrees), EveryMeshVertex(everyMeshVertex), UseNormalDirection(useNormalDirection) { #ifdef _DEBUG setDebugName("CParticleAnimatedMeshSceneNodeEmitter"); #endif setAnimatedMeshSceneNode(node); } //! Prepares an array with new particles to emitt into the system //! and returns how much new particles there are. s32 CParticleAnimatedMeshSceneNodeEmitter::emitt(u32 now, u32 timeSinceLastCall, SParticle*& outArray) { Time += timeSinceLastCall; const u32 pps = (MaxParticlesPerSecond - MinParticlesPerSecond); const f32 perSecond = pps ? ((f32)MinParticlesPerSecond + os::Randomizer::frand() * pps) : MinParticlesPerSecond; const f32 everyWhatMillisecond = 1000.0f / perSecond; if(Time > everyWhatMillisecond) { Particles.set_used(0); u32 amount = (u32)((Time / everyWhatMillisecond) + 0.5f); Time = 0; SParticle p; if(amount > MaxParticlesPerSecond * 2) amount = MaxParticlesPerSecond * 2; // Get Mesh for this frame IMesh* frameMesh = AnimatedMesh->getMesh( core::floor32(Node->getFrameNr()), 255, Node->getStartFrame(), Node->getEndFrame() ); for(u32 i=0; igetMeshBufferCount(); ++j ) { for( u32 k=0; kgetMeshBuffer(j)->getVertexCount(); ++k ) { p.pos = frameMesh->getMeshBuffer(j)->getPosition(k); if( UseNormalDirection ) p.vector = frameMesh->getMeshBuffer(j)->getNormal(k) / NormalDirectionModifier; else p.vector = Direction; p.startTime = now; if( MaxAngleDegrees ) { core::vector3df tgt = p.vector; tgt.rotateXYBy(os::Randomizer::frand() * MaxAngleDegrees); tgt.rotateYZBy(os::Randomizer::frand() * MaxAngleDegrees); tgt.rotateXZBy(os::Randomizer::frand() * MaxAngleDegrees); p.vector = tgt; } p.endTime = now + MinLifeTime; if (MaxLifeTime != MinLifeTime) p.endTime += os::Randomizer::rand() % (MaxLifeTime - MinLifeTime); if (MinStartColor==MaxStartColor) p.color=MinStartColor; else p.color = MinStartColor.getInterpolated(MaxStartColor, os::Randomizer::frand()); p.startColor = p.color; p.startVector = p.vector; if (MinStartSize==MaxStartSize) p.startSize = MinStartSize; else p.startSize = MinStartSize.getInterpolated(MaxStartSize, os::Randomizer::frand()); p.size = p.startSize; Particles.push_back(p); } } } else { s32 randomMB = 0; if( MBNumber < 0 ) randomMB = os::Randomizer::rand() % MBCount; else randomMB = MBNumber; u32 vertexNumber = frameMesh->getMeshBuffer(randomMB)->getVertexCount(); if (!vertexNumber) continue; vertexNumber = os::Randomizer::rand() % vertexNumber; p.pos = frameMesh->getMeshBuffer(randomMB)->getPosition(vertexNumber); if( UseNormalDirection ) p.vector = frameMesh->getMeshBuffer(randomMB)->getNormal(vertexNumber) / NormalDirectionModifier; else p.vector = Direction; p.startTime = now; if( MaxAngleDegrees ) { core::vector3df tgt = Direction; tgt.rotateXYBy(os::Randomizer::frand() * MaxAngleDegrees); tgt.rotateYZBy(os::Randomizer::frand() * MaxAngleDegrees); tgt.rotateXZBy(os::Randomizer::frand() * MaxAngleDegrees); p.vector = tgt; } p.endTime = now + MinLifeTime; if (MaxLifeTime != MinLifeTime) p.endTime += os::Randomizer::rand() % (MaxLifeTime - MinLifeTime); if (MinStartColor==MaxStartColor) p.color=MinStartColor; else p.color = MinStartColor.getInterpolated(MaxStartColor, os::Randomizer::frand()); p.startColor = p.color; p.startVector = p.vector; if (MinStartSize==MaxStartSize) p.startSize = MinStartSize; else p.startSize = MinStartSize.getInterpolated(MaxStartSize, os::Randomizer::frand()); p.size = p.startSize; Particles.push_back(p); } } outArray = Particles.pointer(); return Particles.size(); } return 0; } //! Set Mesh to emit particles from void CParticleAnimatedMeshSceneNodeEmitter::setAnimatedMeshSceneNode( IAnimatedMeshSceneNode* node ) { Node = node; AnimatedMesh = 0; BaseMesh = 0; TotalVertices = 0; VertexPerMeshBufferList.clear(); if ( !node ) { return; } AnimatedMesh = node->getMesh(); BaseMesh = AnimatedMesh->getMesh(0); MBCount = BaseMesh->getMeshBufferCount(); VertexPerMeshBufferList.reallocate(MBCount); for( u32 i = 0; i < MBCount; ++i ) { VertexPerMeshBufferList.push_back( BaseMesh->getMeshBuffer(i)->getVertexCount() ); TotalVertices += BaseMesh->getMeshBuffer(i)->getVertexCount(); } } } // end namespace scene } // end namespace irr