We will describe 2 methods: Automatic collision detection for moving through 3d worlds with stair climbing and sliding, and manual scene node and triangle picking using a ray. In this case, we will use a ray coming out from the camera, but you can use any ray.
To start, we take the program from tutorial 2, which loads and displays a quake 3 level. We will use the level to walk in it and to pick triangles from. In addition we'll place 3 animated models into it for triangle picking. The following code starts up the engine and loads the level, as per tutorial 2.
#include <irrlicht.h>
#include "driverChoice.h"
using namespace irr;
#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif
enum
{
ID_IsNotPickable = 0,
IDFlag_IsPickable = 1 << 0,
IDFlag_IsHighlightable = 1 << 1
};
int main()
{
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
IrrlichtDevice *device =
createDevice(driverType, core::dimension2d<u32>(640, 480), 16, false);
if (device == 0)
return 1;
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
device->getFileSystem()->addFileArchive("../../media/map-20kdm2.pk3");
scene::IAnimatedMesh* q3levelmesh = smgr->getMesh("20kdm2.bsp");
scene::IMeshSceneNode* q3node = 0;
if (q3levelmesh)
q3node = smgr->addOctreeSceneNode(q3levelmesh->getMesh(0), 0, IDFlag_IsPickable);
So far so good, we've loaded the quake 3 level like in tutorial 2. Now, here comes something different: We create a triangle selector. A triangle selector is a class which can fetch the triangles from scene nodes for doing different things with them, for example collision detection. There are different triangle selectors, and all can be created with the ISceneManager. In this example, we create an OctreeTriangleSelector, which optimizes the triangle output a little bit by reducing it like an octree. This is very useful for huge meshes like quake 3 levels. After we created the triangle selector, we attach it to the q3node. This is not necessary, but in this way, we do not need to care for the selector, for example dropping it after we do not need it anymore.
scene::ITriangleSelector* selector = 0;
if (q3node)
{
q3node->setPosition(core::vector3df(-1350,-130,-1400));
selector = smgr->createOctreeTriangleSelector(
q3node->getMesh(), q3node, 128);
q3node->setTriangleSelector(selector);
}
We add a first person shooter camera to the scene so that we can see and move in the quake 3 level like in tutorial 2. But this, time, we add a special animator to the camera: A Collision Response animator. This animator modifies the scene node to which it is attached to in order to prevent it moving through walls, and to add gravity to it. The only thing we have to tell the animator is how the world looks like, how big the scene node is, how much gravity to apply and so on. After the collision response animator is attached to the camera, we do not have to do anything more for collision detection, anything is done automatically. The rest of the collision detection code below is for picking. And please note another cool feature: The collision response animator can be attached also to all other scene nodes, not only to cameras. And it can be mixed with other scene node animators. In this way, collision detection and response in the Irrlicht engine is really easy.
Now we'll take a closer look on the parameters of createCollisionResponseAnimator(). The first parameter is the TriangleSelector, which specifies how the world, against collision detection is done looks like. The second parameter is the scene node, which is the object, which is affected by collision detection, in our case it is the camera. The third defines how big the object is, it is the radius of an ellipsoid. Try it out and change the radius to smaller values, the camera will be able to move closer to walls after this. The next parameter is the direction and speed of gravity. We'll set it to (0, -10, 0), which approximates to realistic gravity, assuming that our units are metres. You could set it to (0,0,0) to disable gravity. And the last value is just a translation: Without this, the ellipsoid with which collision detection is done would be around the camera, and the camera would be in the middle of the ellipsoid. But as human beings, we are used to have our eyes on top of the body, with which we collide with our world, not in the middle of it. So we place the scene node 50 units over the center of the ellipsoid with this parameter. And that's it, collision detection works now.
scene::ICameraSceneNode* camera =
smgr->addCameraSceneNodeFPS(0, 100.0f, .3f, ID_IsNotPickable, 0, 0, true, 3.f);
camera->setPosition(core::vector3df(50,50,-60));
camera->setTarget(core::vector3df(-70,30,-60));
if (selector)
{
scene::ISceneNodeAnimator* anim = smgr->createCollisionResponseAnimator(
selector, camera, core::vector3df(30,50,30),
core::vector3df(0,-10,0), core::vector3df(0,30,0));
selector->drop();
camera->addAnimator(anim);
anim->drop();
}
device->getCursorControl()->setVisible(false);
scene::IBillboardSceneNode * bill = smgr->addBillboardSceneNode();
bill->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR );
bill->setMaterialTexture(0, driver->getTexture("../../media/particle.bmp"));
bill->setMaterialFlag(video::EMF_LIGHTING, false);
bill->setMaterialFlag(video::EMF_ZBUFFER, false);
bill->setSize(core::dimension2d<f32>(20.0f, 20.0f));
bill->setID(ID_IsNotPickable);
Add 3 animated hominids, which we can pick using a ray-triangle intersection. They all animate quite slowly, to make it easier to see that accurate triangle selection is being performed.
scene::IAnimatedMeshSceneNode* node = 0;
video::SMaterial material;
node = smgr->addAnimatedMeshSceneNode(smgr->getMesh("../../media/faerie.md2"),
0, IDFlag_IsPickable | IDFlag_IsHighlightable);
node->setPosition(core::vector3df(-90,-15,-140));
node->setScale(core::vector3df(1.6f));
node->setMD2Animation(scene::EMAT_POINT);
node->setAnimationSpeed(20.f);
material.setTexture(0, driver->getTexture("../../media/faerie2.bmp"));
material.Lighting = true;
material.NormalizeNormals = true;
node->getMaterial(0) = material;
selector = smgr->createTriangleSelector(node);
node->setTriangleSelector(selector);
selector->drop();
node = smgr->addAnimatedMeshSceneNode(smgr->getMesh("../../media/ninja.b3d"),
0, IDFlag_IsPickable | IDFlag_IsHighlightable);
node->setScale(core::vector3df(10));
node->setPosition(core::vector3df(-75,-66,-80));
node->setRotation(core::vector3df(0,90,0));
node->setAnimationSpeed(8.f);
node->getMaterial(0).NormalizeNormals = true;
node->getMaterial(0).Lighting = true;
selector = smgr->createTriangleSelector(node);
node->setTriangleSelector(selector);
selector->drop();
node = smgr->addAnimatedMeshSceneNode(smgr->getMesh("../../media/dwarf.x"),
0, IDFlag_IsPickable | IDFlag_IsHighlightable);
node->setPosition(core::vector3df(-70,-66,-30));
node->setRotation(core::vector3df(0,-90,0));
node->setAnimationSpeed(20.f);
node->getMaterial(0).Lighting = true;
selector = smgr->createTriangleSelector(node);
node->setTriangleSelector(selector);
selector->drop();
node = smgr->addAnimatedMeshSceneNode(smgr->getMesh("../../media/yodan.mdl"),
0, IDFlag_IsPickable | IDFlag_IsHighlightable);
node->setPosition(core::vector3df(-90,-25,20));
node->setScale(core::vector3df(0.8f));
node->getMaterial(0).Lighting = true;
node->setAnimationSpeed(20.f);
selector = smgr->createTriangleSelector(node);
node->setTriangleSelector(selector);
selector->drop();
material.setTexture(0, 0);
material.Lighting = false;
scene::ILightSceneNode * light = smgr->addLightSceneNode(0, core::vector3df(-60,100,400),
video::SColorf(1.0f,1.0f,1.0f,1.0f), 600.0f);
light->setID(ID_IsNotPickable);
scene::ISceneNode* highlightedSceneNode = 0;
scene::ISceneCollisionManager* collMan = smgr->getSceneCollisionManager();
int lastFPS = -1;
material.Wireframe=true;
while(device->run())
if (device->isWindowActive())
{
driver->beginScene(true, true, 0);
smgr->drawAll();
if (highlightedSceneNode)
{
highlightedSceneNode->setMaterialFlag(video::EMF_LIGHTING, true);
highlightedSceneNode = 0;
}
core::line3d<f32> ray;
ray.start = camera->getPosition();
ray.end = ray.start + (camera->getTarget() - ray.start).normalize() * 1000.0f;
core::vector3df intersection;
core::triangle3df hitTriangle;
scene::ISceneNode * selectedSceneNode =
collMan->getSceneNodeAndCollisionPointFromRay(
ray,
intersection,
hitTriangle,
IDFlag_IsPickable,
0);
if(selectedSceneNode)
{
bill->setPosition(intersection);
driver->setTransform(video::ETS_WORLD, core::matrix4());
driver->setMaterial(material);
driver->draw3DTriangle(hitTriangle, video::SColor(0,255,0,0));
if((selectedSceneNode->getID() & IDFlag_IsHighlightable) == IDFlag_IsHighlightable)
{
highlightedSceneNode = selectedSceneNode;
highlightedSceneNode->setMaterialFlag(video::EMF_LIGHTING, false);
}
}
driver->endScene();
int fps = driver->getFPS();
if (lastFPS != fps)
{
core::stringw str = L"Collision detection example - Irrlicht Engine [";
str += driver->getName();
str += "] FPS:";
str += fps;
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
device->drop();
return 0;
}