// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #ifdef _IRR_COMPILE_WITH_SKINNED_MESH_SUPPORT_ #include "CSkinnedMesh.h" #include "CBoneSceneNode.h" #include "IAnimatedMeshSceneNode.h" #include "os.h" namespace { // Frames must always be increasing, so we remove objects where this isn't the case // return number of kicked keys template <class T> // T = objects containing a "frame" variable irr::u32 dropBadKeys(irr::core::array<T>& array) { if (array.size()<2) return 0; irr::u32 n=1; // new index for(irr::u32 j=1;j<array.size();++j) { if (array[j].frame < array[n-1].frame) continue; //bad frame, unneeded and may cause problems if ( n != j ) array[n] = array[j]; ++n; } irr::u32 d = array.size()-n; // remove already copied keys if ( d > 0 ) { array.erase(n, d); } return d; } // drop identical middle keys - we only need the first and last // return number of kicked keys template <class T, typename Cmp> // Cmp = comparison for keys of type T irr::u32 dropMiddleKeys(irr::core::array<T>& array, Cmp & cmp) { if ( array.size() < 3 ) return 0; irr::u32 s = 0; // old index for current key irr::u32 n = 1; // new index for next key for(irr::u32 j=1;j<array.size();++j) { if ( cmp(array[j], array[s]) ) continue; // same key, handle later if ( j > s+1 ) // had there been identical keys? array[n++] = array[j-1]; // keep the last array[n++] = array[j]; // keep the new one s = j; } if ( array.size() > s+1 ) // identical keys at the array end? array[n++] = array[array.size()-1]; // keep the last irr::u32 d = array.size()-n; // remove already copied keys if ( d > 0 ) { array.erase(n, d); } return d; } bool identicalPos(const irr::scene::ISkinnedMesh::SPositionKey& a, const irr::scene::ISkinnedMesh::SPositionKey& b) { return a.position == b.position; } bool identicalScale(const irr::scene::ISkinnedMesh::SScaleKey& a, const irr::scene::ISkinnedMesh::SScaleKey& b) { return a.scale == b.scale; } bool identicalRotation(const irr::scene::ISkinnedMesh::SRotationKey& a, const irr::scene::ISkinnedMesh::SRotationKey& b) { return a.rotation == b.rotation; } }; namespace irr { namespace scene { //! constructor CSkinnedMesh::CSkinnedMesh() : SkinningBuffers(0), EndFrame(0.f), FramesPerSecond(25.f), LastAnimatedFrame(-1), SkinnedLastFrame(false), InterpolationMode(EIM_LINEAR), HasAnimation(false), PreparedForSkinning(false), AnimateNormals(true), HardwareSkinning(false) { #ifdef _DEBUG setDebugName("CSkinnedMesh"); #endif SkinningBuffers=&LocalBuffers; } //! destructor CSkinnedMesh::~CSkinnedMesh() { for (u32 i=0; i<AllJoints.size(); ++i) delete AllJoints[i]; for (u32 j=0; j<LocalBuffers.size(); ++j) { if (LocalBuffers[j]) LocalBuffers[j]->drop(); } } //! returns the amount of frames in milliseconds. //! If the amount is 1, it is a static (=non animated) mesh. u32 CSkinnedMesh::getFrameCount() const { return core::floor32(EndFrame+1.f); } //! Gets the default animation speed of the animated mesh. /** \return Amount of frames per second. If the amount is 0, it is a static, non animated mesh. */ f32 CSkinnedMesh::getAnimationSpeed() const { return FramesPerSecond; } //! Gets the frame count of the animated mesh. /** \param fps Frames per second to play the animation with. If the amount is 0, it is not animated. The actual speed is set in the scene node the mesh is instantiated in.*/ void CSkinnedMesh::setAnimationSpeed(f32 fps) { FramesPerSecond=fps; } //! returns the animated mesh based on a detail level. 0 is the lowest, 255 the highest detail. Note, that some Meshes will ignore the detail level. IMesh* CSkinnedMesh::getMesh(s32 frame, s32 detailLevel, s32 startFrameLoop, s32 endFrameLoop) { //animate(frame,startFrameLoop, endFrameLoop); if (frame==-1) return this; animateMesh((f32)frame, 1.0f); skinMesh(); return this; } //-------------------------------------------------------------------------- // Keyframe Animation //-------------------------------------------------------------------------- //! Animates this mesh's joints based on frame input //! blend: {0-old position, 1-New position} void CSkinnedMesh::animateMesh(f32 frame, f32 blend) { if (!HasAnimation || LastAnimatedFrame==frame) return; LastAnimatedFrame=frame; SkinnedLastFrame=false; if (blend<=0.f) return; //No need to animate for (u32 i=0; i<AllJoints.size(); ++i) { //The joints can be animated here with no input from their //parents, but for setAnimationMode extra checks are needed //to their parents SJoint *joint = AllJoints[i]; const core::vector3df oldPosition = joint->Animatedposition; const core::vector3df oldScale = joint->Animatedscale; const core::quaternion oldRotation = joint->Animatedrotation; core::vector3df position = oldPosition; core::vector3df scale = oldScale; core::quaternion rotation = oldRotation; getFrameData(frame, joint, position, joint->positionHint, scale, joint->scaleHint, rotation, joint->rotationHint); if (blend==1.0f) { //No blending needed joint->Animatedposition = position; joint->Animatedscale = scale; joint->Animatedrotation = rotation; } else { //Blend animation joint->Animatedposition = core::lerp(oldPosition, position, blend); joint->Animatedscale = core::lerp(oldScale, scale, blend); joint->Animatedrotation.slerp(oldRotation, rotation, blend); } } //Note: //LocalAnimatedMatrix needs to be built at some point, but this function may be called lots of times for //one render (to play two animations at the same time) LocalAnimatedMatrix only needs to be built once. //a call to buildAllLocalAnimatedMatrices is needed before skinning the mesh, and before the user gets the joints to move //---------------- // Temp! buildAllLocalAnimatedMatrices(); //----------------- updateBoundingBox(); } void CSkinnedMesh::buildAllLocalAnimatedMatrices() { for (u32 i=0; i<AllJoints.size(); ++i) { SJoint *joint = AllJoints[i]; //Could be faster: if (joint->UseAnimationFrom && (joint->UseAnimationFrom->PositionKeys.size() || joint->UseAnimationFrom->ScaleKeys.size() || joint->UseAnimationFrom->RotationKeys.size() )) { joint->GlobalSkinningSpace=false; // IRR_TEST_BROKEN_QUATERNION_USE: TODO - switched to getMatrix_transposed instead of getMatrix for downward compatibility. // Not tested so far if this was correct or wrong before quaternion fix! joint->Animatedrotation.getMatrix_transposed(joint->LocalAnimatedMatrix); // --- joint->LocalAnimatedMatrix *= joint->Animatedrotation.getMatrix() --- f32 *m1 = joint->LocalAnimatedMatrix.pointer(); core::vector3df &Pos = joint->Animatedposition; m1[0] += Pos.X*m1[3]; m1[1] += Pos.Y*m1[3]; m1[2] += Pos.Z*m1[3]; m1[4] += Pos.X*m1[7]; m1[5] += Pos.Y*m1[7]; m1[6] += Pos.Z*m1[7]; m1[8] += Pos.X*m1[11]; m1[9] += Pos.Y*m1[11]; m1[10] += Pos.Z*m1[11]; m1[12] += Pos.X*m1[15]; m1[13] += Pos.Y*m1[15]; m1[14] += Pos.Z*m1[15]; // ----------------------------------- if (joint->ScaleKeys.size()) { /* core::matrix4 scaleMatrix; scaleMatrix.setScale(joint->Animatedscale); joint->LocalAnimatedMatrix *= scaleMatrix; */ // -------- joint->LocalAnimatedMatrix *= scaleMatrix ----------------- core::matrix4& mat = joint->LocalAnimatedMatrix; mat[0] *= joint->Animatedscale.X; mat[1] *= joint->Animatedscale.X; mat[2] *= joint->Animatedscale.X; mat[3] *= joint->Animatedscale.X; mat[4] *= joint->Animatedscale.Y; mat[5] *= joint->Animatedscale.Y; mat[6] *= joint->Animatedscale.Y; mat[7] *= joint->Animatedscale.Y; mat[8] *= joint->Animatedscale.Z; mat[9] *= joint->Animatedscale.Z; mat[10] *= joint->Animatedscale.Z; mat[11] *= joint->Animatedscale.Z; // ----------------------------------- } } else { joint->LocalAnimatedMatrix=joint->LocalMatrix; } } SkinnedLastFrame=false; } void CSkinnedMesh::buildAllGlobalAnimatedMatrices(SJoint *joint, SJoint *parentJoint) { if (!joint) { for (u32 i=0; i<RootJoints.size(); ++i) buildAllGlobalAnimatedMatrices(RootJoints[i], 0); return; } else { // Find global matrix... if (!parentJoint || joint->GlobalSkinningSpace) joint->GlobalAnimatedMatrix = joint->LocalAnimatedMatrix; else joint->GlobalAnimatedMatrix = parentJoint->GlobalAnimatedMatrix * joint->LocalAnimatedMatrix; } for (u32 j=0; j<joint->Children.size(); ++j) buildAllGlobalAnimatedMatrices(joint->Children[j], joint); } void CSkinnedMesh::getFrameData(f32 frame, SJoint *joint, core::vector3df &position, s32 &positionHint, core::vector3df &scale, s32 &scaleHint, core::quaternion &rotation, s32 &rotationHint) { s32 foundPositionIndex = -1; s32 foundScaleIndex = -1; s32 foundRotationIndex = -1; if (joint->UseAnimationFrom) { const core::array<SPositionKey> &PositionKeys=joint->UseAnimationFrom->PositionKeys; const core::array<SScaleKey> &ScaleKeys=joint->UseAnimationFrom->ScaleKeys; const core::array<SRotationKey> &RotationKeys=joint->UseAnimationFrom->RotationKeys; if (PositionKeys.size()) { foundPositionIndex = -1; //Test the Hints... if (positionHint>=0 && (u32)positionHint < PositionKeys.size()) { //check this hint if (positionHint>0 && PositionKeys[positionHint].frame>=frame && PositionKeys[positionHint-1].frame<frame ) foundPositionIndex=positionHint; else if (positionHint+1 < (s32)PositionKeys.size()) { //check the next index if ( PositionKeys[positionHint+1].frame>=frame && PositionKeys[positionHint+0].frame<frame) { positionHint++; foundPositionIndex=positionHint; } } } //The hint test failed, do a full scan... if (foundPositionIndex==-1) { for (u32 i=0; i<PositionKeys.size(); ++i) { if (PositionKeys[i].frame >= frame) //Keys should to be sorted by frame { foundPositionIndex=i; positionHint=i; break; } } } //Do interpolation... if (foundPositionIndex!=-1) { if (InterpolationMode==EIM_CONSTANT || foundPositionIndex==0) { position = PositionKeys[foundPositionIndex].position; } else if (InterpolationMode==EIM_LINEAR) { const SPositionKey& KeyA = PositionKeys[foundPositionIndex]; const SPositionKey& KeyB = PositionKeys[foundPositionIndex-1]; const f32 fd1 = frame - KeyA.frame; const f32 fd2 = KeyB.frame - frame; position = ((KeyB.position-KeyA.position)/(fd1+fd2))*fd1 + KeyA.position; } } } //------------------------------------------------------------ if (ScaleKeys.size()) { foundScaleIndex = -1; //Test the Hints... if (scaleHint>=0 && (u32)scaleHint < ScaleKeys.size()) { //check this hint if (scaleHint>0 && ScaleKeys[scaleHint].frame>=frame && ScaleKeys[scaleHint-1].frame<frame ) foundScaleIndex=scaleHint; else if (scaleHint+1 < (s32)ScaleKeys.size()) { //check the next index if ( ScaleKeys[scaleHint+1].frame>=frame && ScaleKeys[scaleHint+0].frame<frame) { scaleHint++; foundScaleIndex=scaleHint; } } } //The hint test failed, do a full scan... if (foundScaleIndex==-1) { for (u32 i=0; i<ScaleKeys.size(); ++i) { if (ScaleKeys[i].frame >= frame) //Keys should to be sorted by frame { foundScaleIndex=i; scaleHint=i; break; } } } //Do interpolation... if (foundScaleIndex!=-1) { if (InterpolationMode==EIM_CONSTANT || foundScaleIndex==0) { scale = ScaleKeys[foundScaleIndex].scale; } else if (InterpolationMode==EIM_LINEAR) { const SScaleKey& KeyA = ScaleKeys[foundScaleIndex]; const SScaleKey& KeyB = ScaleKeys[foundScaleIndex-1]; const f32 fd1 = frame - KeyA.frame; const f32 fd2 = KeyB.frame - frame; scale = ((KeyB.scale-KeyA.scale)/(fd1+fd2))*fd1 + KeyA.scale; } } } //------------------------------------------------------------- if (RotationKeys.size()) { foundRotationIndex = -1; //Test the Hints... if (rotationHint>=0 && (u32)rotationHint < RotationKeys.size()) { //check this hint if (rotationHint>0 && RotationKeys[rotationHint].frame>=frame && RotationKeys[rotationHint-1].frame<frame ) foundRotationIndex=rotationHint; else if (rotationHint+1 < (s32)RotationKeys.size()) { //check the next index if ( RotationKeys[rotationHint+1].frame>=frame && RotationKeys[rotationHint+0].frame<frame) { rotationHint++; foundRotationIndex=rotationHint; } } } //The hint test failed, do a full scan... if (foundRotationIndex==-1) { for (u32 i=0; i<RotationKeys.size(); ++i) { if (RotationKeys[i].frame >= frame) //Keys should be sorted by frame { foundRotationIndex=i; rotationHint=i; break; } } } //Do interpolation... if (foundRotationIndex!=-1) { if (InterpolationMode==EIM_CONSTANT || foundRotationIndex==0) { rotation = RotationKeys[foundRotationIndex].rotation; } else if (InterpolationMode==EIM_LINEAR) { const SRotationKey& KeyA = RotationKeys[foundRotationIndex]; const SRotationKey& KeyB = RotationKeys[foundRotationIndex-1]; const f32 fd1 = frame - KeyA.frame; const f32 fd2 = KeyB.frame - frame; const f32 t = fd1/(fd1+fd2); /* f32 t = 0; if (KeyA.frame!=KeyB.frame) t = (frame-KeyA.frame) / (KeyB.frame - KeyA.frame); */ rotation.slerp(KeyA.rotation, KeyB.rotation, t); } } } } } //-------------------------------------------------------------------------- // Software Skinning //-------------------------------------------------------------------------- //! Preforms a software skin on this mesh based of joint positions void CSkinnedMesh::skinMesh() { if (!HasAnimation || SkinnedLastFrame) return; //---------------- // This is marked as "Temp!". A shiny dubloon to whomever can tell me why. buildAllGlobalAnimatedMatrices(); //----------------- SkinnedLastFrame=true; if (!HardwareSkinning) { //Software skin.... u32 i; //rigid animation for (i=0; i<AllJoints.size(); ++i) { for (u32 j=0; j<AllJoints[i]->AttachedMeshes.size(); ++j) { SSkinMeshBuffer* Buffer=(*SkinningBuffers)[ AllJoints[i]->AttachedMeshes[j] ]; Buffer->Transformation=AllJoints[i]->GlobalAnimatedMatrix; } } //clear skinning helper array for (i=0; i<Vertices_Moved.size(); ++i) for (u32 j=0; j<Vertices_Moved[i].size(); ++j) Vertices_Moved[i][j]=false; //skin starting with the root joints for (i=0; i<RootJoints.size(); ++i) skinJoint(RootJoints[i], 0); for (i=0; i<SkinningBuffers->size(); ++i) (*SkinningBuffers)[i]->setDirty(EBT_VERTEX); } updateBoundingBox(); } void CSkinnedMesh::skinJoint(SJoint *joint, SJoint *parentJoint) { if (joint->Weights.size()) { //Find this joints pull on vertices... core::matrix4 jointVertexPull(core::matrix4::EM4CONST_NOTHING); jointVertexPull.setbyproduct(joint->GlobalAnimatedMatrix, joint->GlobalInversedMatrix); core::vector3df thisVertexMove, thisNormalMove; core::array<scene::SSkinMeshBuffer*> &buffersUsed=*SkinningBuffers; //Skin Vertices Positions and Normals... for (u32 i=0; i<joint->Weights.size(); ++i) { SWeight& weight = joint->Weights[i]; // Pull this vertex... jointVertexPull.transformVect(thisVertexMove, weight.StaticPos); if (AnimateNormals) jointVertexPull.rotateVect(thisNormalMove, weight.StaticNormal); if (! (*(weight.Moved)) ) { *(weight.Moved) = true; buffersUsed[weight.buffer_id]->getVertex(weight.vertex_id)->Pos = thisVertexMove * weight.strength; if (AnimateNormals) buffersUsed[weight.buffer_id]->getVertex(weight.vertex_id)->Normal = thisNormalMove * weight.strength; //*(weight._Pos) = thisVertexMove * weight.strength; } else { buffersUsed[weight.buffer_id]->getVertex(weight.vertex_id)->Pos += thisVertexMove * weight.strength; if (AnimateNormals) buffersUsed[weight.buffer_id]->getVertex(weight.vertex_id)->Normal += thisNormalMove * weight.strength; //*(weight._Pos) += thisVertexMove * weight.strength; } buffersUsed[weight.buffer_id]->boundingBoxNeedsRecalculated(); } } //Skin all children for (u32 j=0; j<joint->Children.size(); ++j) skinJoint(joint->Children[j], joint); } E_ANIMATED_MESH_TYPE CSkinnedMesh::getMeshType() const { return EAMT_SKINNED; } //! Gets joint count. u32 CSkinnedMesh::getJointCount() const { return AllJoints.size(); } //! Gets the name of a joint. const c8* CSkinnedMesh::getJointName(u32 number) const { if (number >= AllJoints.size()) return 0; return AllJoints[number]->Name.c_str(); } //! Gets a joint number from its name s32 CSkinnedMesh::getJointNumber(const c8* name) const { for (u32 i=0; i<AllJoints.size(); ++i) { if (AllJoints[i]->Name == name) return i; } return -1; } //! returns amount of mesh buffers. u32 CSkinnedMesh::getMeshBufferCount() const { return LocalBuffers.size(); } //! returns pointer to a mesh buffer IMeshBuffer* CSkinnedMesh::getMeshBuffer(u32 nr) const { if (nr < LocalBuffers.size()) return LocalBuffers[nr]; else return 0; } //! Returns pointer to a mesh buffer which fits a material IMeshBuffer* CSkinnedMesh::getMeshBuffer(const video::SMaterial &material) const { for (u32 i=0; i<LocalBuffers.size(); ++i) { if (LocalBuffers[i]->getMaterial() == material) return LocalBuffers[i]; } return 0; } //! returns an axis aligned bounding box const core::aabbox3d<f32>& CSkinnedMesh::getBoundingBox() const { return BoundingBox; } //! set user axis aligned bounding box void CSkinnedMesh::setBoundingBox( const core::aabbox3df& box) { BoundingBox = box; } //! sets a flag of all contained materials to a new value void CSkinnedMesh::setMaterialFlag(video::E_MATERIAL_FLAG flag, bool newvalue) { for (u32 i=0; i<LocalBuffers.size(); ++i) LocalBuffers[i]->Material.setFlag(flag,newvalue); } //! set the hardware mapping hint, for driver void CSkinnedMesh::setHardwareMappingHint(E_HARDWARE_MAPPING newMappingHint, E_BUFFER_TYPE buffer) { for (u32 i=0; i<LocalBuffers.size(); ++i) LocalBuffers[i]->setHardwareMappingHint(newMappingHint, buffer); } //! flags the meshbuffer as changed, reloads hardware buffers void CSkinnedMesh::setDirty(E_BUFFER_TYPE buffer) { for (u32 i=0; i<LocalBuffers.size(); ++i) LocalBuffers[i]->setDirty(buffer); } //! uses animation from another mesh bool CSkinnedMesh::useAnimationFrom(const ISkinnedMesh *mesh) { bool unmatched=false; for(u32 i=0;i<AllJoints.size();++i) { SJoint *joint=AllJoints[i]; joint->UseAnimationFrom=0; if (joint->Name=="") unmatched=true; else { for(u32 j=0;j<mesh->getAllJoints().size();++j) { SJoint *otherJoint=mesh->getAllJoints()[j]; if (joint->Name==otherJoint->Name) { joint->UseAnimationFrom=otherJoint; } } if (!joint->UseAnimationFrom) unmatched=true; } } checkForAnimation(); return !unmatched; } //!Update Normals when Animating //!False= Don't animate them, faster //!True= Update normals (default) void CSkinnedMesh::updateNormalsWhenAnimating(bool on) { AnimateNormals = on; } //!Sets Interpolation Mode void CSkinnedMesh::setInterpolationMode(E_INTERPOLATION_MODE mode) { InterpolationMode = mode; } core::array<scene::SSkinMeshBuffer*> &CSkinnedMesh::getMeshBuffers() { return LocalBuffers; } core::array<CSkinnedMesh::SJoint*> &CSkinnedMesh::getAllJoints() { return AllJoints; } const core::array<CSkinnedMesh::SJoint*> &CSkinnedMesh::getAllJoints() const { return AllJoints; } //! (This feature is not implemented in irrlicht yet) bool CSkinnedMesh::setHardwareSkinning(bool on) { if (HardwareSkinning!=on) { if (on) { //set mesh to static pose... for (u32 i=0; i<AllJoints.size(); ++i) { SJoint *joint=AllJoints[i]; for (u32 j=0; j<joint->Weights.size(); ++j) { const u16 buffer_id=joint->Weights[j].buffer_id; const u32 vertex_id=joint->Weights[j].vertex_id; LocalBuffers[buffer_id]->getVertex(vertex_id)->Pos = joint->Weights[j].StaticPos; LocalBuffers[buffer_id]->getVertex(vertex_id)->Normal = joint->Weights[j].StaticNormal; LocalBuffers[buffer_id]->boundingBoxNeedsRecalculated(); } } } HardwareSkinning=on; } return HardwareSkinning; } void CSkinnedMesh::calculateGlobalMatrices(SJoint *joint,SJoint *parentJoint) { if (!joint && parentJoint) // bit of protection from endless loops return; //Go through the root bones if (!joint) { for (u32 i=0; i<RootJoints.size(); ++i) calculateGlobalMatrices(RootJoints[i],0); return; } if (!parentJoint) joint->GlobalMatrix = joint->LocalMatrix; else joint->GlobalMatrix = parentJoint->GlobalMatrix * joint->LocalMatrix; joint->LocalAnimatedMatrix=joint->LocalMatrix; joint->GlobalAnimatedMatrix=joint->GlobalMatrix; if (joint->GlobalInversedMatrix.isIdentity())//might be pre calculated { joint->GlobalInversedMatrix = joint->GlobalMatrix; joint->GlobalInversedMatrix.makeInverse(); // slow } for (u32 j=0; j<joint->Children.size(); ++j) calculateGlobalMatrices(joint->Children[j],joint); SkinnedLastFrame=false; } void CSkinnedMesh::checkForAnimation() { u32 i,j; //Check for animation... HasAnimation = false; for(i=0;i<AllJoints.size();++i) { if (AllJoints[i]->UseAnimationFrom) { if (AllJoints[i]->UseAnimationFrom->PositionKeys.size() || AllJoints[i]->UseAnimationFrom->ScaleKeys.size() || AllJoints[i]->UseAnimationFrom->RotationKeys.size() ) { HasAnimation = true; } } } //meshes with weights, are still counted as animated for ragdolls, etc if (!HasAnimation) { for(i=0;i<AllJoints.size();++i) { if (AllJoints[i]->Weights.size()) HasAnimation = true; } } if (HasAnimation) { //--- Find the length of the animation --- EndFrame=0; for(i=0;i<AllJoints.size();++i) { if (AllJoints[i]->UseAnimationFrom) { if (AllJoints[i]->UseAnimationFrom->PositionKeys.size()) if (AllJoints[i]->UseAnimationFrom->PositionKeys.getLast().frame > EndFrame) EndFrame=AllJoints[i]->UseAnimationFrom->PositionKeys.getLast().frame; if (AllJoints[i]->UseAnimationFrom->ScaleKeys.size()) if (AllJoints[i]->UseAnimationFrom->ScaleKeys.getLast().frame > EndFrame) EndFrame=AllJoints[i]->UseAnimationFrom->ScaleKeys.getLast().frame; if (AllJoints[i]->UseAnimationFrom->RotationKeys.size()) if (AllJoints[i]->UseAnimationFrom->RotationKeys.getLast().frame > EndFrame) EndFrame=AllJoints[i]->UseAnimationFrom->RotationKeys.getLast().frame; } } } if (HasAnimation && !PreparedForSkinning) { PreparedForSkinning=true; //check for bugs: for(i=0; i < AllJoints.size(); ++i) { SJoint *joint = AllJoints[i]; for (j=0; j<joint->Weights.size(); ++j) { const u16 buffer_id=joint->Weights[j].buffer_id; const u32 vertex_id=joint->Weights[j].vertex_id; //check for invalid ids if (buffer_id>=LocalBuffers.size()) { os::Printer::log("Skinned Mesh: Weight buffer id too large", ELL_WARNING); joint->Weights[j].buffer_id = joint->Weights[j].vertex_id =0; } else if (vertex_id>=LocalBuffers[buffer_id]->getVertexCount()) { os::Printer::log("Skinned Mesh: Weight vertex id too large", ELL_WARNING); joint->Weights[j].buffer_id = joint->Weights[j].vertex_id =0; } } } //An array used in skinning for (i=0; i<Vertices_Moved.size(); ++i) for (j=0; j<Vertices_Moved[i].size(); ++j) Vertices_Moved[i][j] = false; // For skinning: cache weight values for speed for (i=0; i<AllJoints.size(); ++i) { SJoint *joint = AllJoints[i]; for (j=0; j<joint->Weights.size(); ++j) { const u16 buffer_id=joint->Weights[j].buffer_id; const u32 vertex_id=joint->Weights[j].vertex_id; joint->Weights[j].Moved = &Vertices_Moved[buffer_id] [vertex_id]; joint->Weights[j].StaticPos = LocalBuffers[buffer_id]->getVertex(vertex_id)->Pos; joint->Weights[j].StaticNormal = LocalBuffers[buffer_id]->getVertex(vertex_id)->Normal; //joint->Weights[j]._Pos=&Buffers[buffer_id]->getVertex(vertex_id)->Pos; } } // normalize weights normalizeWeights(); } SkinnedLastFrame=false; } //! called by loader after populating with mesh and bone data void CSkinnedMesh::finalize() { os::Printer::log("Skinned Mesh - finalize", ELL_DEBUG); u32 i; // Make sure we recalc the next frame LastAnimatedFrame=-1; SkinnedLastFrame=false; //calculate bounding box for (i=0; i<LocalBuffers.size(); ++i) { LocalBuffers[i]->recalculateBoundingBox(); } if (AllJoints.size() || RootJoints.size()) { // populate AllJoints or RootJoints, depending on which is empty if (!RootJoints.size()) { for(u32 CheckingIdx=0; CheckingIdx < AllJoints.size(); ++CheckingIdx) { bool foundParent=false; for(i=0; i < AllJoints.size(); ++i) { for(u32 n=0; n < AllJoints[i]->Children.size(); ++n) { if (AllJoints[i]->Children[n] == AllJoints[CheckingIdx]) foundParent=true; } } if (!foundParent) RootJoints.push_back(AllJoints[CheckingIdx]); } } else { AllJoints=RootJoints; } } for(i=0; i < AllJoints.size(); ++i) { AllJoints[i]->UseAnimationFrom=AllJoints[i]; } //Set array sizes... for (i=0; i<LocalBuffers.size(); ++i) { Vertices_Moved.push_back( core::array<bool>() ); Vertices_Moved[i].set_used(LocalBuffers[i]->getVertexCount()); } checkForAnimation(); if (HasAnimation) { irr::u32 redundantPosKeys = 0; irr::u32 unorderedPosKeys = 0; irr::u32 redundantScaleKeys = 0; irr::u32 unorderedScaleKeys = 0; irr::u32 redundantRotationKeys = 0; irr::u32 unorderedRotationKeys = 0; //--- optimize and check keyframes --- for(i=0;i<AllJoints.size();++i) { core::array<SPositionKey> &PositionKeys =AllJoints[i]->PositionKeys; core::array<SScaleKey> &ScaleKeys = AllJoints[i]->ScaleKeys; core::array<SRotationKey> &RotationKeys = AllJoints[i]->RotationKeys; // redundant = identical middle keys - we only need the first and last frame // unordered = frames which are out of order - we can't handle those redundantPosKeys += dropMiddleKeys<SPositionKey>(PositionKeys, identicalPos); unorderedPosKeys += dropBadKeys<SPositionKey>(PositionKeys); redundantScaleKeys += dropMiddleKeys<SScaleKey>(ScaleKeys, identicalScale); unorderedScaleKeys += dropBadKeys<SScaleKey>(ScaleKeys); redundantRotationKeys += dropMiddleKeys<SRotationKey>(RotationKeys, identicalRotation); unorderedRotationKeys += dropBadKeys<SRotationKey>(RotationKeys); //Fill empty keyframe areas if (PositionKeys.size()) { SPositionKey *Key; Key=&PositionKeys[0];//getFirst if (Key->frame!=0) { PositionKeys.push_front(*Key); Key=&PositionKeys[0];//getFirst Key->frame=0; } Key=&PositionKeys.getLast(); if (Key->frame!=EndFrame) { PositionKeys.push_back(*Key); Key=&PositionKeys.getLast(); Key->frame=EndFrame; } } if (ScaleKeys.size()) { SScaleKey *Key; Key=&ScaleKeys[0];//getFirst if (Key->frame!=0) { ScaleKeys.push_front(*Key); Key=&ScaleKeys[0];//getFirst Key->frame=0; } Key=&ScaleKeys.getLast(); if (Key->frame!=EndFrame) { ScaleKeys.push_back(*Key); Key=&ScaleKeys.getLast(); Key->frame=EndFrame; } } if (RotationKeys.size()) { SRotationKey *Key; Key=&RotationKeys[0];//getFirst if (Key->frame!=0) { RotationKeys.push_front(*Key); Key=&RotationKeys[0];//getFirst Key->frame=0; } Key=&RotationKeys.getLast(); if (Key->frame!=EndFrame) { RotationKeys.push_back(*Key); Key=&RotationKeys.getLast(); Key->frame=EndFrame; } } } if ( redundantPosKeys > 0 ) { os::Printer::log("Skinned Mesh - redundant position frames kicked", core::stringc(redundantPosKeys).c_str(), ELL_DEBUG); } if ( unorderedPosKeys > 0 ) { irr::os::Printer::log("Skinned Mesh - unsorted position frames kicked", irr::core::stringc(unorderedPosKeys).c_str(), irr::ELL_DEBUG); } if ( redundantScaleKeys > 0 ) { os::Printer::log("Skinned Mesh - redundant scale frames kicked", core::stringc(redundantScaleKeys).c_str(), ELL_DEBUG); } if ( unorderedScaleKeys > 0 ) { irr::os::Printer::log("Skinned Mesh - unsorted scale frames kicked", irr::core::stringc(unorderedScaleKeys).c_str(), irr::ELL_DEBUG); } if ( redundantRotationKeys > 0 ) { os::Printer::log("Skinned Mesh - redundant rotation frames kicked", core::stringc(redundantRotationKeys).c_str(), ELL_DEBUG); } if ( unorderedRotationKeys > 0 ) { irr::os::Printer::log("Skinned Mesh - unsorted rotation frames kicked", irr::core::stringc(unorderedRotationKeys).c_str(), irr::ELL_DEBUG); } } //Needed for animation and skinning... calculateGlobalMatrices(0,0); //animateMesh(0, 1); //buildAllLocalAnimatedMatrices(); //buildAllGlobalAnimatedMatrices(); //rigid animation for non animated meshes for (i=0; i<AllJoints.size(); ++i) { for (u32 j=0; j<AllJoints[i]->AttachedMeshes.size(); ++j) { SSkinMeshBuffer* Buffer=(*SkinningBuffers)[ AllJoints[i]->AttachedMeshes[j] ]; Buffer->Transformation=AllJoints[i]->GlobalAnimatedMatrix; } } //calculate bounding box if (LocalBuffers.empty()) BoundingBox.reset(0,0,0); else { irr::core::aabbox3df bb(LocalBuffers[0]->BoundingBox); LocalBuffers[0]->Transformation.transformBoxEx(bb); BoundingBox.reset(bb); for (u32 j=1; j<LocalBuffers.size(); ++j) { bb = LocalBuffers[j]->BoundingBox; LocalBuffers[j]->Transformation.transformBoxEx(bb); BoundingBox.addInternalBox(bb); } } } void CSkinnedMesh::updateBoundingBox(void) { if(!SkinningBuffers) return; core::array<SSkinMeshBuffer*> & buffer = *SkinningBuffers; BoundingBox.reset(0,0,0); if (!buffer.empty()) { for (u32 j=0; j<buffer.size(); ++j) { buffer[j]->recalculateBoundingBox(); core::aabbox3df bb = buffer[j]->BoundingBox; buffer[j]->Transformation.transformBoxEx(bb); BoundingBox.addInternalBox(bb); } } } scene::SSkinMeshBuffer *CSkinnedMesh::addMeshBuffer() { scene::SSkinMeshBuffer *buffer=new scene::SSkinMeshBuffer(); LocalBuffers.push_back(buffer); return buffer; } CSkinnedMesh::SJoint *CSkinnedMesh::addJoint(SJoint *parent) { SJoint *joint=new SJoint; AllJoints.push_back(joint); if (!parent) { //Add root joints to array in finalize() } else { //Set parent (Be careful of the mesh loader also setting the parent) parent->Children.push_back(joint); } return joint; } CSkinnedMesh::SPositionKey *CSkinnedMesh::addPositionKey(SJoint *joint) { if (!joint) return 0; joint->PositionKeys.push_back(SPositionKey()); return &joint->PositionKeys.getLast(); } CSkinnedMesh::SScaleKey *CSkinnedMesh::addScaleKey(SJoint *joint) { if (!joint) return 0; joint->ScaleKeys.push_back(SScaleKey()); return &joint->ScaleKeys.getLast(); } CSkinnedMesh::SRotationKey *CSkinnedMesh::addRotationKey(SJoint *joint) { if (!joint) return 0; joint->RotationKeys.push_back(SRotationKey()); return &joint->RotationKeys.getLast(); } CSkinnedMesh::SWeight *CSkinnedMesh::addWeight(SJoint *joint) { if (!joint) return 0; joint->Weights.push_back(SWeight()); return &joint->Weights.getLast(); } bool CSkinnedMesh::isStatic() { return !HasAnimation; } void CSkinnedMesh::normalizeWeights() { // note: unsure if weights ids are going to be used. // Normalise the weights on bones.... u32 i,j; core::array< core::array<f32> > verticesTotalWeight; verticesTotalWeight.reallocate(LocalBuffers.size()); for (i=0; i<LocalBuffers.size(); ++i) { verticesTotalWeight.push_back(core::array<f32>()); verticesTotalWeight[i].set_used(LocalBuffers[i]->getVertexCount()); } for (i=0; i<verticesTotalWeight.size(); ++i) for (j=0; j<verticesTotalWeight[i].size(); ++j) verticesTotalWeight[i][j] = 0; for (i=0; i<AllJoints.size(); ++i) { SJoint *joint=AllJoints[i]; for (j=0; j<joint->Weights.size(); ++j) { if (joint->Weights[j].strength<=0)//Check for invalid weights { joint->Weights.erase(j); --j; } else { verticesTotalWeight[joint->Weights[j].buffer_id] [joint->Weights[j].vertex_id] += joint->Weights[j].strength; } } } for (i=0; i<AllJoints.size(); ++i) { SJoint *joint=AllJoints[i]; for (j=0; j< joint->Weights.size(); ++j) { const f32 total = verticesTotalWeight[joint->Weights[j].buffer_id] [joint->Weights[j].vertex_id]; if (total != 0 && total != 1) joint->Weights[j].strength /= total; } } } void CSkinnedMesh::recoverJointsFromMesh(core::array<IBoneSceneNode*> &jointChildSceneNodes) { for (u32 i=0; i<AllJoints.size(); ++i) { IBoneSceneNode* node=jointChildSceneNodes[i]; SJoint *joint=AllJoints[i]; if ( joint->UseAnimationFrom ) // Seems to work better (else solution seems to mess up sometimes) and would be faster. Any disadvantage? { node->setPosition(joint->Animatedposition); core::quaternion qrot = joint->Animatedrotation; qrot.W *= -1.f; // Animation system uses right-handed rotations? Argh... irr::core::vector3df euler; qrot.toEuler(euler); euler *= core::RADTODEG; node->setRotation(euler); node->setScale(joint->Animatedscale); } else { node->setPosition(joint->LocalAnimatedMatrix.getTranslation()); node->setRotation(joint->LocalAnimatedMatrix.getRotationDegrees()); node->setScale(joint->LocalAnimatedMatrix.getScale()); } node->positionHint=joint->positionHint; node->scaleHint=joint->scaleHint; node->rotationHint=joint->rotationHint; node->updateAbsolutePosition(); } } void CSkinnedMesh::transferJointsToMesh(const core::array<IBoneSceneNode*> &jointChildSceneNodes) { for (u32 i=0; i<AllJoints.size(); ++i) { const IBoneSceneNode* const node=jointChildSceneNodes[i]; SJoint *joint=AllJoints[i]; joint->LocalAnimatedMatrix.setRotationDegrees(node->getRotation()); joint->LocalAnimatedMatrix.setTranslation(node->getPosition()); joint->LocalAnimatedMatrix *= core::matrix4().setScale(node->getScale()); joint->positionHint=node->positionHint; joint->scaleHint=node->scaleHint; joint->rotationHint=node->rotationHint; joint->GlobalSkinningSpace=(node->getSkinningSpace()==EBSS_GLOBAL); } // Make sure we recalc the next frame LastAnimatedFrame=-1; SkinnedLastFrame=false; } void CSkinnedMesh::transferOnlyJointsHintsToMesh(const core::array<IBoneSceneNode*> &jointChildSceneNodes) { for (u32 i=0; i<AllJoints.size(); ++i) { const IBoneSceneNode* const node=jointChildSceneNodes[i]; SJoint *joint=AllJoints[i]; joint->positionHint=node->positionHint; joint->scaleHint=node->scaleHint; joint->rotationHint=node->rotationHint; } SkinnedLastFrame=false; } void CSkinnedMesh::addJoints(core::array<IBoneSceneNode*> &jointChildSceneNodes, IAnimatedMeshSceneNode* node, ISceneManager* smgr) { //Create new joints for (u32 i=0; i<AllJoints.size(); ++i) { jointChildSceneNodes.push_back(new CBoneSceneNode(0, smgr, 0, i, AllJoints[i]->Name.c_str())); } //Match up parents for (u32 i=0; i<jointChildSceneNodes.size(); ++i) { const SJoint* const joint=AllJoints[i]; //should be fine s32 parentID=-1; for (u32 j=0;(parentID==-1)&&(j<AllJoints.size());++j) { if (i!=j) { const SJoint* const parentTest=AllJoints[j]; for (u32 n=0; n<parentTest->Children.size(); ++n) { if (parentTest->Children[n]==joint) { parentID=j; break; } } } } IBoneSceneNode* bone=jointChildSceneNodes[i]; if (parentID!=-1) bone->setParent(jointChildSceneNodes[parentID]); else bone->setParent(node); bone->drop(); } SkinnedLastFrame=false; } void CSkinnedMesh::convertMeshToTangents() { // now calculate tangents for (u32 b=0; b < LocalBuffers.size(); ++b) { if (LocalBuffers[b]) { LocalBuffers[b]->convertToTangents(); const s32 idxCnt = LocalBuffers[b]->getIndexCount(); u16* idx = LocalBuffers[b]->getIndices(); video::S3DVertexTangents* v = (video::S3DVertexTangents*)LocalBuffers[b]->getVertices(); for (s32 i=0; i<idxCnt; i+=3) { calculateTangents( v[idx[i+0]].Normal, v[idx[i+0]].Tangent, v[idx[i+0]].Binormal, v[idx[i+0]].Pos, v[idx[i+1]].Pos, v[idx[i+2]].Pos, v[idx[i+0]].TCoords, v[idx[i+1]].TCoords, v[idx[i+2]].TCoords); calculateTangents( v[idx[i+1]].Normal, v[idx[i+1]].Tangent, v[idx[i+1]].Binormal, v[idx[i+1]].Pos, v[idx[i+2]].Pos, v[idx[i+0]].Pos, v[idx[i+1]].TCoords, v[idx[i+2]].TCoords, v[idx[i+0]].TCoords); calculateTangents( v[idx[i+2]].Normal, v[idx[i+2]].Tangent, v[idx[i+2]].Binormal, v[idx[i+2]].Pos, v[idx[i+0]].Pos, v[idx[i+1]].Pos, v[idx[i+2]].TCoords, v[idx[i+0]].TCoords, v[idx[i+1]].TCoords); } } } } void CSkinnedMesh::calculateTangents( core::vector3df& normal, core::vector3df& tangent, core::vector3df& binormal, const core::vector3df& vt1, const core::vector3df& vt2, const core::vector3df& vt3, // vertices const core::vector2df& tc1, const core::vector2df& tc2, const core::vector2df& tc3) // texture coords { core::vector3df v1 = vt1 - vt2; core::vector3df v2 = vt3 - vt1; normal = v2.crossProduct(v1); normal.normalize(); // binormal f32 deltaX1 = tc1.X - tc2.X; f32 deltaX2 = tc3.X - tc1.X; binormal = (v1 * deltaX2) - (v2 * deltaX1); binormal.normalize(); // tangent f32 deltaY1 = tc1.Y - tc2.Y; f32 deltaY2 = tc3.Y - tc1.Y; tangent = (v1 * deltaY2) - (v2 * deltaY1); tangent.normalize(); // adjust core::vector3df txb = tangent.crossProduct(binormal); if (txb.dotProduct(normal) < 0.0f) { tangent *= -1.0f; binormal *= -1.0f; } } } // end namespace scene } // end namespace irr #endif // _IRR_COMPILE_WITH_SKINNED_MESH_SUPPORT_