// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "IBurningShader.h" #include "CSoftwareDriver2.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ // compile flag for this file #undef USE_ZBUFFER #undef IPOL_Z #undef CMP_Z #undef WRITE_Z #undef IPOL_W #undef CMP_W #undef WRITE_W #undef SUBTEXEL #undef INVERSE_W #undef IPOL_C0 #undef IPOL_C1 #undef IPOL_C2 #undef IPOL_C3 #undef IPOL_T0 #undef IPOL_T1 #undef IPOL_T2 #undef IPOL_L0 // define render case #define SUBTEXEL #define INVERSE_W #define USE_ZBUFFER #define IPOL_W #define CMP_W #define WRITE_W #define IPOL_C0 #define IPOL_C1 #define IPOL_C2 #define IPOL_C3 #define IPOL_T0 #define IPOL_T1 //#define IPOL_L0 // apply global override #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef INVERSE_W #endif #ifndef SOFTWARE_DRIVER_2_SUBTEXEL #undef SUBTEXEL #endif #if BURNING_MATERIAL_MAX_COLORS < 1 #undef IPOL_C0 #endif #if BURNING_MATERIAL_MAX_COLORS < 2 #undef IPOL_C1 #endif #if BURNING_MATERIAL_MAX_LIGHT_TANGENT < 1 #undef IPOL_L0 #endif #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER ) #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT #undef IPOL_W #endif #define IPOL_Z #ifdef CMP_W #undef CMP_W #define CMP_Z #endif #ifdef WRITE_W #undef WRITE_W #define WRITE_Z #endif #endif burning_namespace_start class CTRNormalMap : public IBurningShader { public: //! constructor CTRNormalMap(CBurningVideoDriver* driver,s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial); ~CTRNormalMap(); //! draws an indexed triangle list virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) IRR_OVERRIDE; virtual void OnSetMaterial(const SBurningShaderMaterial& material) IRR_OVERRIDE; virtual void OnSetConstants(IMaterialRendererServices* services, s32 userData) IRR_OVERRIDE; private: void fragmentShader(); }; //! constructor CTRNormalMap::CTRNormalMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial) : IBurningShader(driver, baseMaterial) { #ifdef _DEBUG setDebugName("CTRNormalMap"); #endif CallBack = this; outMaterialTypeNr = driver->addMaterialRenderer(this); } CTRNormalMap::~CTRNormalMap() { if (CallBack == this) CallBack = 0; } void CTRNormalMap::OnSetMaterial(const SBurningShaderMaterial& material) { } /*! */ void CTRNormalMap::fragmentShader() { tVideoSample* dst; #ifdef USE_ZBUFFER fp24* z; #endif s32 xStart; s32 xEnd; s32 dx; #ifdef SUBTEXEL f32 subPixel; #endif #ifdef IPOL_Z f32 slopeZ; #endif #ifdef IPOL_W fp24 slopeW; #endif #ifdef IPOL_C0 sVec4 slopeC[BURNING_MATERIAL_MAX_COLORS]; #endif #ifdef IPOL_T0 sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES]; #endif #ifdef IPOL_L0 sVec3Pack_unpack slopeL[BURNING_MATERIAL_MAX_LIGHT_TANGENT]; #endif // apply top-left fill-convention, left xStart = fill_convention_left(line.x[0]); xEnd = fill_convention_right(line.x[1]); dx = xEnd - xStart; if (dx < 0) return; // slopes const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]); #ifdef IPOL_Z slopeZ = (line.z[1] - line.z[0]) * invDeltaX; #endif #ifdef IPOL_W slopeW = (line.w[1] - line.w[0]) * invDeltaX; #endif #ifdef IPOL_C0 slopeC[0] = (line.c[0][1] - line.c[0][0]) * invDeltaX; #endif #ifdef IPOL_C1 slopeC[1] = (line.c[1][1] - line.c[1][0]) * invDeltaX; #endif #ifdef IPOL_C2 slopeC[2] = (line.c[2][1] - line.c[2][0]) * invDeltaX; #endif #ifdef IPOL_C3 slopeC[3] = (line.c[3][1] - line.c[3][0]) * invDeltaX; #endif #ifdef IPOL_T0 slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX; #endif #ifdef IPOL_T1 slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX; #endif #ifdef IPOL_T2 slopeT[2] = (line.t[2][1] - line.t[2][0]) * invDeltaX; #endif #ifdef IPOL_L0 slopeL[0] = (line.l[0][1] - line.l[0][0]) * invDeltaX; #endif #ifdef SUBTEXEL subPixel = ((f32)xStart) - line.x[0]; #ifdef IPOL_Z line.z[0] += slopeZ * subPixel; #endif #ifdef IPOL_W line.w[0] += slopeW * subPixel; #endif #ifdef IPOL_C0 line.c[0][0] += slopeC[0] * subPixel; #endif #ifdef IPOL_C1 line.c[1][0] += slopeC[1] * subPixel; #endif #ifdef IPOL_C2 line.c[2][0] += slopeC[2] * subPixel; #endif #ifdef IPOL_C3 line.c[3][0] += slopeC[3] * subPixel; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0] * subPixel; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1] * subPixel; #endif #ifdef IPOL_T2 line.t[2][0] += slopeT[2] * subPixel; #endif #ifdef IPOL_L0 line.l[0][0] += slopeL[0] * subPixel; #endif #endif SOFTWARE_DRIVER_2_CLIPCHECK; dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart; #ifdef USE_ZBUFFER z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart; #endif f32 inversew = FIX_POINT_F32_MUL; tFixPoint tx0, ty0; #ifdef IPOL_T1 tFixPoint tx1, ty1; #endif tFixPoint r0, g0, b0; tFixPoint r1, g1, b1; tFixPoint r2, g2, b2; #ifdef IPOL_L0 tFixPoint lx, ly, lz; #endif tFixPoint ndotl = FIX_POINT_ONE; #ifdef IPOL_C0 tFixPoint a3, r3, g3, b3; #endif #ifdef IPOL_C1 tFixPoint aFog = FIX_POINT_ONE; #endif #ifdef IPOL_C2 tFixPoint lx, ly, lz; #endif for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X) { #ifdef CMP_Z if (line.z[0] < z[i]) #endif #ifdef CMP_W if (line.w[0] >= z[i]) #endif { #ifdef INVERSE_W inversew = fix_inverse32(line.w[0]); #endif #ifdef IPOL_C0 //vertex alpha blend ( and omit depthwrite ,hacky..) a3 = tofix(line.c[0][0].a, inversew); if (a3 + 2 >= FIX_POINT_ONE) { #ifdef WRITE_Z z[i] = line.z[0]; #endif #ifdef WRITE_W z[i] = line.w[0]; #endif } #endif #ifdef IPOL_C1 //complete inside fog if (TL_Flag & TL_FOG) { aFog = tofix(line.c[1][0].a, inversew); if (aFog <= 0) { dst[i] = fog_color_sample; continue; } } #endif tx0 = tofix(line.t[0][0].x, inversew); ty0 = tofix(line.t[0][0].y, inversew); tx1 = tofix(line.t[1][0].x, inversew); ty1 = tofix(line.t[1][0].y, inversew); // diffuse map getSample_texture(r0, g0, b0, &IT[0], tx0, ty0); // normal map ( same texcoord0 but different mipmapping) getSample_texture(r1, g1, b1, &IT[1], tx1, ty1); // normal: xyz * 2 - 1 r1 = (r1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1); g1 = (g1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1); b1 = (b1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1); //lightvector #ifdef IPOL_L0 lx = tofix(line.l[0][0].x, inversew); ly = tofix(line.l[0][0].y, inversew); lz = tofix(line.l[0][0].z, inversew); // DOT 3 Normal Map light in tangent space //max(dot(LightVector, Normal), 0.0); ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz))); #endif lx = tofix(line.c[2][0].x, inversew); ly = tofix(line.c[2][0].y, inversew); lz = tofix(line.c[2][0].z, inversew); //omit normalize ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz))); #ifdef IPOL_C0 //LightColor[0] * lambert r3 = imulFix_simple(tofix(line.c[0][0].r, inversew), ndotl); g3 = imulFix_simple(tofix(line.c[0][0].g, inversew), ndotl); b3 = imulFix_simple(tofix(line.c[0][0].b, inversew), ndotl); //lightvector1 lx = tofix(line.c[3][0].x, inversew); ly = tofix(line.c[3][0].y, inversew); lz = tofix(line.c[3][0].z, inversew); //omit normalize ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz))); //LightColor[1] * lambert r3 += imulFix_simple(tofix(line.c[1][0].r, inversew), ndotl); g3 += imulFix_simple(tofix(line.c[1][0].g, inversew), ndotl); b3 += imulFix_simple(tofix(line.c[1][0].b, inversew), ndotl); // (Lambert0 * LightColor[0] + Lambert1 * LightColor[1]) * Diffuse Texture; r2 = clampfix_maxcolor(imulFix_simple(r3, r0)); g2 = clampfix_maxcolor(imulFix_simple(g3, g0)); b2 = clampfix_maxcolor(imulFix_simple(b3, b0)); //vertex alpha blend ( and omit depthwrite ,hacky..) if (a3 + 2 < FIX_POINT_ONE) { color_to_fix(r1, g1, b1, dst[i]); r2 = r1 + imulFix(a3, r2 - r1); g2 = g1 + imulFix(a3, g2 - g1); b2 = b1 + imulFix(a3, b2 - b1); } #ifdef IPOL_C1 //mix with distance if (aFog < FIX_POINT_ONE) //TL_Flag & TL_FOG) { r2 = fog_color[1] + imulFix(aFog, r2 - fog_color[1]); g2 = fog_color[2] + imulFix(aFog, g2 - fog_color[2]); b2 = fog_color[3] + imulFix(aFog, b2 - fog_color[3]); } #endif dst[i] = fix_to_sample(r2, g2, b2); #else r2 = imulFix_tex4(r0, r1); g2 = imulFix_tex4(g0, g1); b2 = imulFix_tex4(b0, b1); dst[i] = fix_to_sample(r2, g2, b2); #endif } #ifdef IPOL_Z line.z[0] += slopeZ; #endif #ifdef IPOL_W line.w[0] += slopeW; #endif #ifdef IPOL_C0 line.c[0][0] += slopeC[0]; #endif #ifdef IPOL_C1 line.c[1][0] += slopeC[1]; #endif #ifdef IPOL_C2 line.c[2][0] += slopeC[2]; #endif #ifdef IPOL_C3 line.c[3][0] += slopeC[3]; #endif #ifdef IPOL_T0 line.t[0][0] += slopeT[0]; #endif #ifdef IPOL_T1 line.t[1][0] += slopeT[1]; #endif #ifdef IPOL_T2 line.t[2][0] += slopeT[2]; #endif #ifdef IPOL_L0 line.l[0][0] += slopeL[0]; #endif } } void CTRNormalMap::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) { // sort on height, y if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b); if (F32_A_GREATER_B(b->Pos.y, c->Pos.y)) swapVertexPointer(&b, &c); if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b); const f32 ca = c->Pos.y - a->Pos.y; const f32 ba = b->Pos.y - a->Pos.y; const f32 cb = c->Pos.y - b->Pos.y; // calculate delta y of the edges scan.invDeltaY[0] = fill_step_y(ca); scan.invDeltaY[1] = fill_step_y(ba); scan.invDeltaY[2] = fill_step_y(cb); if (F32_LOWER_EQUAL_0(scan.invDeltaY[0])) return; // find if the major edge is left or right aligned f32 temp[4]; temp[0] = a->Pos.x - c->Pos.x; temp[1] = -ca; temp[2] = b->Pos.x - a->Pos.x; temp[3] = ba; scan.left = (temp[0] * temp[3] - temp[1] * temp[2]) < 0.f ? 1 : 0; scan.right = 1 - scan.left; // calculate slopes for the major edge scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0]; scan.x[0] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0]; scan.z[0] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0]; scan.w[0] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0]; scan.c[0][0] = a->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][0] = (c->Color[1] - a->Color[1]) * scan.invDeltaY[0]; scan.c[1][0] = a->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][0] = (c->Color[2] - a->Color[2]) * scan.invDeltaY[0]; scan.c[2][0] = a->Color[2]; #endif #ifdef IPOL_C3 scan.slopeC[3][0] = (c->Color[3] - a->Color[3]) * scan.invDeltaY[0]; scan.c[3][0] = a->Color[3]; #endif #ifdef IPOL_T0 scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0]; scan.t[0][0] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0]; scan.t[1][0] = a->Tex[1]; #endif #ifdef IPOL_T2 scan.slopeT[2][0] = (c->Tex[2] - a->Tex[2]) * scan.invDeltaY[0]; scan.t[2][0] = a->Tex[2]; #endif #ifdef IPOL_L0 scan.slopeL[0][0] = (c->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[0]; scan.l[0][0] = a->LightTangent[0]; #endif // top left fill convention y run s32 yStart; s32 yEnd; #ifdef SUBTEXEL f32 subPixel; #endif // rasterize upper sub-triangle if (F32_GREATER_0(scan.invDeltaY[1])) { // calculate slopes for top edge scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1]; scan.x[1] = a->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1]; scan.z[1] = a->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1]; scan.w[1] = a->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1]; scan.c[0][1] = a->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][1] = (b->Color[1] - a->Color[1]) * scan.invDeltaY[1]; scan.c[1][1] = a->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][1] = (b->Color[2] - a->Color[2]) * scan.invDeltaY[1]; scan.c[2][1] = a->Color[2]; #endif #ifdef IPOL_C3 scan.slopeC[3][1] = (b->Color[3] - a->Color[3]) * scan.invDeltaY[1]; scan.c[3][1] = a->Color[3]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1]; scan.t[0][1] = a->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1]; scan.t[1][1] = a->Tex[1]; #endif #ifdef IPOL_T2 scan.slopeT[2][1] = (b->Tex[2] - a->Tex[2]) * scan.invDeltaY[1]; scan.t[2][1] = a->Tex[2]; #endif #ifdef IPOL_L0 scan.slopeL[0][1] = (b->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[1]; scan.l[0][1] = a->LightTangent[0]; #endif // apply top-left fill convention, top part yStart = fill_convention_top(a->Pos.y); yEnd = fill_convention_down(b->Pos.y); #ifdef SUBTEXEL subPixel = ((f32)yStart) - a->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0] * subPixel; scan.c[0][1] += scan.slopeC[0][1] * subPixel; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0] * subPixel; scan.c[1][1] += scan.slopeC[1][1] * subPixel; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0] * subPixel; scan.c[2][1] += scan.slopeC[2][1] * subPixel; #endif #ifdef IPOL_C3 scan.c[3][0] += scan.slopeC[3][0] * subPixel; scan.c[3][1] += scan.slopeC[3][1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #ifdef IPOL_T2 scan.t[2][0] += scan.slopeT[2][0] * subPixel; scan.t[2][1] += scan.slopeT[2][1] * subPixel; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0] * subPixel; scan.l[0][1] += scan.slopeL[0][1] * subPixel; #endif #endif // rasterize the edge scanlines for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[0][scan.left] = scan.c[0][0]; line.c[0][scan.right] = scan.c[0][1]; #endif #ifdef IPOL_C1 line.c[1][scan.left] = scan.c[1][0]; line.c[1][scan.right] = scan.c[1][1]; #endif #ifdef IPOL_C2 line.c[2][scan.left] = scan.c[2][0]; line.c[2][scan.right] = scan.c[2][1]; #endif #ifdef IPOL_C3 line.c[3][scan.left] = scan.c[3][0]; line.c[3][scan.right] = scan.c[3][1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif #ifdef IPOL_T2 line.t[2][scan.left] = scan.t[2][0]; line.t[2][scan.right] = scan.t[2][1]; #endif #ifdef IPOL_L0 line.l[0][scan.left] = scan.l[0][0]; line.l[0][scan.right] = scan.l[0][1]; #endif // render a scanline if_interlace_scanline fragmentShader(); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0]; scan.c[0][1] += scan.slopeC[0][1]; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0]; scan.c[1][1] += scan.slopeC[1][1]; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0]; scan.c[2][1] += scan.slopeC[2][1]; #endif #ifdef IPOL_C3 scan.c[3][0] += scan.slopeC[3][0]; scan.c[3][1] += scan.slopeC[3][1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif #ifdef IPOL_T2 scan.t[2][0] += scan.slopeT[2][0]; scan.t[2][1] += scan.slopeT[2][1]; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0]; scan.l[0][1] += scan.slopeL[0][1]; #endif } } // rasterize lower sub-triangle if (F32_GREATER_0(scan.invDeltaY[2])) { // advance to middle point if (F32_GREATER_0(scan.invDeltaY[1])) { temp[0] = b->Pos.y - a->Pos.y; // dy scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0]; #ifdef IPOL_Z scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0]; #endif #ifdef IPOL_W scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0]; #endif #ifdef IPOL_C0 scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0]; #endif #ifdef IPOL_C1 scan.c[1][0] = a->Color[1] + scan.slopeC[1][0] * temp[0]; #endif #ifdef IPOL_C2 scan.c[2][0] = a->Color[2] + scan.slopeC[2][0] * temp[0]; #endif #ifdef IPOL_C3 scan.c[3][0] = a->Color[3] + scan.slopeC[3][0] * temp[0]; #endif #ifdef IPOL_T0 scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0]; #endif #ifdef IPOL_T1 scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0]; #endif #ifdef IPOL_T2 scan.t[2][0] = a->Tex[2] + scan.slopeT[2][0] * temp[0]; #endif #ifdef IPOL_L0 scan.l[0][0] = sVec3Pack_unpack(a->LightTangent[0]) + scan.slopeL[0][0] * temp[0]; #endif } // calculate slopes for bottom edge scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2]; scan.x[1] = b->Pos.x; #ifdef IPOL_Z scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2]; scan.z[1] = b->Pos.z; #endif #ifdef IPOL_W scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2]; scan.w[1] = b->Pos.w; #endif #ifdef IPOL_C0 scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2]; scan.c[0][1] = b->Color[0]; #endif #ifdef IPOL_C1 scan.slopeC[1][1] = (c->Color[1] - b->Color[1]) * scan.invDeltaY[2]; scan.c[1][1] = b->Color[1]; #endif #ifdef IPOL_C2 scan.slopeC[2][1] = (c->Color[2] - b->Color[2]) * scan.invDeltaY[2]; scan.c[2][1] = b->Color[2]; #endif #ifdef IPOL_C3 scan.slopeC[3][1] = (c->Color[3] - b->Color[3]) * scan.invDeltaY[2]; scan.c[3][1] = b->Color[3]; #endif #ifdef IPOL_T0 scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2]; scan.t[0][1] = b->Tex[0]; #endif #ifdef IPOL_T1 scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2]; scan.t[1][1] = b->Tex[1]; #endif #ifdef IPOL_T2 scan.slopeT[2][1] = (c->Tex[2] - b->Tex[2]) * scan.invDeltaY[2]; scan.t[2][1] = b->Tex[2]; #endif #ifdef IPOL_L0 scan.slopeL[0][1] = (c->LightTangent[0] - b->LightTangent[0]) * scan.invDeltaY[2]; scan.l[0][1] = b->LightTangent[0]; #endif // apply top-left fill convention, top part yStart = fill_convention_top(b->Pos.y); yEnd = fill_convention_down(c->Pos.y); #ifdef SUBTEXEL subPixel = ((f32)yStart) - b->Pos.y; // correct to pixel center scan.x[0] += scan.slopeX[0] * subPixel; scan.x[1] += scan.slopeX[1] * subPixel; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0] * subPixel; scan.z[1] += scan.slopeZ[1] * subPixel; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0] * subPixel; scan.w[1] += scan.slopeW[1] * subPixel; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0] * subPixel; scan.c[0][1] += scan.slopeC[0][1] * subPixel; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0] * subPixel; scan.c[1][1] += scan.slopeC[1][1] * subPixel; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0] * subPixel; scan.c[2][1] += scan.slopeC[2][1] * subPixel; #endif #ifdef IPOL_C3 scan.c[3][0] += scan.slopeC[3][0] * subPixel; scan.c[3][1] += scan.slopeC[3][1] * subPixel; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0] * subPixel; scan.t[0][1] += scan.slopeT[0][1] * subPixel; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0] * subPixel; scan.t[1][1] += scan.slopeT[1][1] * subPixel; #endif #ifdef IPOL_T2 scan.t[2][0] += scan.slopeT[2][0] * subPixel; scan.t[2][1] += scan.slopeT[2][1] * subPixel; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0] * subPixel; scan.l[0][1] += scan.slopeL[0][1] * subPixel; #endif #endif // rasterize the edge scanlines for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y) { line.x[scan.left] = scan.x[0]; line.x[scan.right] = scan.x[1]; #ifdef IPOL_Z line.z[scan.left] = scan.z[0]; line.z[scan.right] = scan.z[1]; #endif #ifdef IPOL_W line.w[scan.left] = scan.w[0]; line.w[scan.right] = scan.w[1]; #endif #ifdef IPOL_C0 line.c[0][scan.left] = scan.c[0][0]; line.c[0][scan.right] = scan.c[0][1]; #endif #ifdef IPOL_C1 line.c[1][scan.left] = scan.c[1][0]; line.c[1][scan.right] = scan.c[1][1]; #endif #ifdef IPOL_C2 line.c[2][scan.left] = scan.c[2][0]; line.c[2][scan.right] = scan.c[2][1]; #endif #ifdef IPOL_C3 line.c[3][scan.left] = scan.c[3][0]; line.c[3][scan.right] = scan.c[3][1]; #endif #ifdef IPOL_T0 line.t[0][scan.left] = scan.t[0][0]; line.t[0][scan.right] = scan.t[0][1]; #endif #ifdef IPOL_T1 line.t[1][scan.left] = scan.t[1][0]; line.t[1][scan.right] = scan.t[1][1]; #endif #ifdef IPOL_T2 line.t[2][scan.left] = scan.t[2][0]; line.t[2][scan.right] = scan.t[2][1]; #endif #ifdef IPOL_L0 line.l[0][scan.left] = scan.l[0][0]; line.l[0][scan.right] = scan.l[0][1]; #endif // render a scanline if_interlace_scanline fragmentShader(); scan.x[0] += scan.slopeX[0]; scan.x[1] += scan.slopeX[1]; #ifdef IPOL_Z scan.z[0] += scan.slopeZ[0]; scan.z[1] += scan.slopeZ[1]; #endif #ifdef IPOL_W scan.w[0] += scan.slopeW[0]; scan.w[1] += scan.slopeW[1]; #endif #ifdef IPOL_C0 scan.c[0][0] += scan.slopeC[0][0]; scan.c[0][1] += scan.slopeC[0][1]; #endif #ifdef IPOL_C1 scan.c[1][0] += scan.slopeC[1][0]; scan.c[1][1] += scan.slopeC[1][1]; #endif #ifdef IPOL_C2 scan.c[2][0] += scan.slopeC[2][0]; scan.c[2][1] += scan.slopeC[2][1]; #endif #ifdef IPOL_C3 scan.c[3][0] += scan.slopeC[3][0]; scan.c[3][1] += scan.slopeC[3][1]; #endif #ifdef IPOL_T0 scan.t[0][0] += scan.slopeT[0][0]; scan.t[0][1] += scan.slopeT[0][1]; #endif #ifdef IPOL_T1 scan.t[1][0] += scan.slopeT[1][0]; scan.t[1][1] += scan.slopeT[1][1]; #endif #ifdef IPOL_T2 scan.t[2][0] += scan.slopeT[2][0]; scan.t[2][1] += scan.slopeT[2][1]; #endif #ifdef IPOL_L0 scan.l[0][0] += scan.slopeL[0][0]; scan.l[0][1] += scan.slopeL[0][1]; #endif } } } //! Called by the engine when the vertex and/or pixel shader constants for an //! material renderer should be set. void CTRNormalMap::OnSetConstants(IMaterialRendererServices* services, s32 userData) { #if 0 video::IVideoDriver* driver = services->getVideoDriver(); // set transposed world matrix const core::matrix4& tWorld = driver->getTransform(video::ETS_WORLD).getTransposed(); services->setVertexShaderConstant(tWorld.pointer(), 0, 4); // set transposed worldViewProj matrix core::matrix4 worldViewProj(driver->getTransform(video::ETS_PROJECTION)); worldViewProj *= driver->getTransform(video::ETS_VIEW); worldViewProj *= driver->getTransform(video::ETS_WORLD); core::matrix4 tr(worldViewProj.getTransposed()); services->setVertexShaderConstant(tr.pointer(), 8, 4); // here we fetch the fixed function lights from the driver // and set them as constants u32 cnt = driver->getDynamicLightCount(); // Load the inverse world matrix. core::matrix4 invWorldMat; driver->getTransform(video::ETS_WORLD).getInverse(invWorldMat); for (u32 i = 0; i < 2; ++i) { video::SLight light; if (i < cnt) light = driver->getDynamicLight(i); else { light.DiffuseColor.set(0, 0, 0); // make light dark light.Radius = 1.0f; } light.DiffuseColor.a = 1.0f / (light.Radius * light.Radius); // set attenuation // Transform the light by the inverse world matrix to get it into object space. invWorldMat.transformVect(light.Position); services->setVertexShaderConstant( reinterpret_cast(&light.Position), 12 + (i * 2), 1); services->setVertexShaderConstant( reinterpret_cast(&light.DiffuseColor), 13 + (i * 2), 1); } #endif } burning_namespace_end #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ burning_namespace_start //! creates a triangle renderer IBurningShader* createTRNormalMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CTRNormalMap(driver, outMaterialTypeNr,baseMaterial); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } burning_namespace_end