// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "CNullDriver.h" #include "os.h" #include "CImage.h" #include "CAttributes.h" #include "IReadFile.h" #include "IWriteFile.h" #include "IImageLoader.h" #include "IImageWriter.h" #include "IMaterialRenderer.h" #include "IAnimatedMeshSceneNode.h" #include "CMeshManipulator.h" #include "CColorConverter.h" #include "IReferenceCounted.h" #include "IRenderTarget.h" namespace irr { namespace video { //! creates a loader which is able to load windows bitmaps IImageLoader* createImageLoaderBMP(); //! creates a loader which is able to load jpeg images IImageLoader* createImageLoaderJPG(); //! creates a loader which is able to load targa images IImageLoader* createImageLoaderTGA(); //! creates a loader which is able to load png images IImageLoader* createImageLoaderPNG(); //! creates a writer which is able to save jpg images IImageWriter* createImageWriterJPG(); //! creates a writer which is able to save png images IImageWriter* createImageWriterPNG(); //! constructor CNullDriver::CNullDriver(io::IFileSystem* io, const core::dimension2d<u32>& screenSize) : SharedRenderTarget(0), CurrentRenderTarget(0), CurrentRenderTargetSize(0, 0), FileSystem(io), MeshManipulator(0), ViewPort(0, 0, 0, 0), ScreenSize(screenSize), PrimitivesDrawn(0), MinVertexCountForVBO(500), TextureCreationFlags(0), OverrideMaterial2DEnabled(false), AllowZWriteOnTransparent(false) { #ifdef _DEBUG setDebugName("CNullDriver"); #endif DriverAttributes = new io::CAttributes(); DriverAttributes->addInt("MaxTextures", MATERIAL_MAX_TEXTURES); DriverAttributes->addInt("MaxSupportedTextures", MATERIAL_MAX_TEXTURES); DriverAttributes->addInt("MaxAnisotropy", 1); // DriverAttributes->addInt("MaxUserClipPlanes", 0); // DriverAttributes->addInt("MaxAuxBuffers", 0); DriverAttributes->addInt("MaxMultipleRenderTargets", 1); DriverAttributes->addInt("MaxIndices", -1); DriverAttributes->addInt("MaxTextureSize", -1); // DriverAttributes->addInt("MaxGeometryVerticesOut", 0); // DriverAttributes->addFloat("MaxTextureLODBias", 0.f); DriverAttributes->addInt("Version", 1); // DriverAttributes->addInt("ShaderLanguageVersion", 0); // DriverAttributes->addInt("AntiAlias", 0); setFog(); setTextureCreationFlag(ETCF_ALWAYS_32_BIT, true); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, true); setTextureCreationFlag(ETCF_AUTO_GENERATE_MIP_MAPS, true); setTextureCreationFlag(ETCF_ALLOW_MEMORY_COPY, true); ViewPort = core::rect<s32>(core::position2d<s32>(0,0), core::dimension2di(screenSize)); // create manipulator MeshManipulator = new scene::CMeshManipulator(); if (FileSystem) FileSystem->grab(); // create surface loaders and writers SurfaceLoader.push_back(video::createImageLoaderTGA()); SurfaceLoader.push_back(video::createImageLoaderPNG()); SurfaceLoader.push_back(video::createImageLoaderJPG()); SurfaceLoader.push_back(video::createImageLoaderBMP()); SurfaceWriter.push_back(video::createImageWriterJPG()); SurfaceWriter.push_back(video::createImageWriterPNG()); // set ExposedData to 0 memset((void*)&ExposedData, 0, sizeof(ExposedData)); for (u32 i=0; i<video::EVDF_COUNT; ++i) FeatureEnabled[i]=true; InitMaterial2D.AntiAliasing = video::EAAM_OFF; InitMaterial2D.Lighting = false; InitMaterial2D.ZWriteEnable = video::EZW_OFF; InitMaterial2D.ZBuffer = video::ECFN_DISABLED; InitMaterial2D.UseMipMaps = false; InitMaterial2D.forEachTexture([] (auto &tex) { // Using ETMINF_LINEAR_MIPMAP_NEAREST (bilinear) for 2D graphics looks // much better and doesn't have any downsides (e.g. regarding pixel art). tex.MinFilter = video::ETMINF_LINEAR_MIPMAP_NEAREST; tex.MagFilter = video::ETMAGF_NEAREST; tex.TextureWrapU = video::ETC_REPEAT; tex.TextureWrapV = video::ETC_REPEAT; tex.TextureWrapW = video::ETC_REPEAT; }); OverrideMaterial2D = InitMaterial2D; } //! destructor CNullDriver::~CNullDriver() { if (DriverAttributes) DriverAttributes->drop(); if (FileSystem) FileSystem->drop(); if (MeshManipulator) MeshManipulator->drop(); removeAllRenderTargets(); deleteAllTextures(); u32 i; for (i=0; i<SurfaceLoader.size(); ++i) SurfaceLoader[i]->drop(); for (i=0; i<SurfaceWriter.size(); ++i) SurfaceWriter[i]->drop(); // delete material renderers deleteMaterialRenders(); // delete hardware mesh buffers removeAllHardwareBuffers(); } //! Adds an external surface loader to the engine. void CNullDriver::addExternalImageLoader(IImageLoader* loader) { if (!loader) return; loader->grab(); SurfaceLoader.push_back(loader); } //! Adds an external surface writer to the engine. void CNullDriver::addExternalImageWriter(IImageWriter* writer) { if (!writer) return; writer->grab(); SurfaceWriter.push_back(writer); } //! Retrieve the number of image loaders u32 CNullDriver::getImageLoaderCount() const { return SurfaceLoader.size(); } //! Retrieve the given image loader IImageLoader* CNullDriver::getImageLoader(u32 n) { if (n < SurfaceLoader.size()) return SurfaceLoader[n]; return 0; } //! Retrieve the number of image writers u32 CNullDriver::getImageWriterCount() const { return SurfaceWriter.size(); } //! Retrieve the given image writer IImageWriter* CNullDriver::getImageWriter(u32 n) { if (n < SurfaceWriter.size()) return SurfaceWriter[n]; return 0; } //! deletes all textures void CNullDriver::deleteAllTextures() { // we need to remove previously set textures which might otherwise be kept in the // last set material member. Could be optimized to reduce state changes. setMaterial(SMaterial()); // reset render targets. for (u32 i=0; i<RenderTargets.size(); ++i) RenderTargets[i]->setTexture(0, 0); // remove textures. for (u32 i=0; i<Textures.size(); ++i) Textures[i].Surface->drop(); Textures.clear(); SharedDepthTextures.clear(); } bool CNullDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect) { PrimitivesDrawn = 0; return true; } bool CNullDriver::endScene() { FPSCounter.registerFrame(os::Timer::getRealTime(), PrimitivesDrawn); updateAllHardwareBuffers(); updateAllOcclusionQueries(); return true; } //! Disable a feature of the driver. void CNullDriver::disableFeature(E_VIDEO_DRIVER_FEATURE feature, bool flag) { FeatureEnabled[feature]=!flag; } //! queries the features of the driver, returns true if feature is available bool CNullDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { return false; } //! Get attributes of the actual video driver const io::IAttributes& CNullDriver::getDriverAttributes() const { return *DriverAttributes; } //! sets transformation void CNullDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { } //! Returns the transformation set by setTransform const core::matrix4& CNullDriver::getTransform(E_TRANSFORMATION_STATE state) const { return TransformationMatrix; } //! sets a material void CNullDriver::setMaterial(const SMaterial& material) { } //! Removes a texture from the texture cache and deletes it, freeing lot of //! memory. void CNullDriver::removeTexture(ITexture* texture) { if (!texture) return; SSurface s; s.Surface = texture; s32 last; s32 first = Textures.binary_search_multi(s, last); if (first == -1) return; for (u32 i = first; i <= (u32)last; i++) { if (Textures[i].Surface == texture) { texture->drop(); Textures.erase(i); return; } } } //! Removes all texture from the texture cache and deletes them, freeing lot of //! memory. void CNullDriver::removeAllTextures() { setMaterial ( SMaterial() ); deleteAllTextures(); } //! Returns amount of textures currently loaded u32 CNullDriver::getTextureCount() const { return Textures.size(); } ITexture* CNullDriver::addTexture(const core::dimension2d<u32>& size, const io::path& name, ECOLOR_FORMAT format) { if (0 == name.size()) { os::Printer::log("Could not create ITexture, texture needs to have a non-empty name.", ELL_WARNING); return 0; } IImage* image = new CImage(format, size); ITexture* t = 0; if (checkImage(image)) { t = createDeviceDependentTexture(name, image); } image->drop(); if (t) { addTexture(t); t->drop(); } return t; } ITexture* CNullDriver::addTexture(const io::path& name, IImage* image) { if (0 == name.size()) { os::Printer::log("Could not create ITexture, texture needs to have a non-empty name.", ELL_WARNING); return 0; } if (!image) return 0; ITexture* t = 0; if (checkImage(image)) { t = createDeviceDependentTexture(name, image); } if (t) { addTexture(t); t->drop(); } return t; } ITexture* CNullDriver::addTextureCubemap(const io::path& name, IImage* imagePosX, IImage* imageNegX, IImage* imagePosY, IImage* imageNegY, IImage* imagePosZ, IImage* imageNegZ) { if (0 == name.size() || !imagePosX || !imageNegX || !imagePosY || !imageNegY || !imagePosZ || !imageNegZ) return 0; ITexture* t = 0; core::array<IImage*> imageArray(6); imageArray.push_back(imagePosX); imageArray.push_back(imageNegX); imageArray.push_back(imagePosY); imageArray.push_back(imageNegY); imageArray.push_back(imagePosZ); imageArray.push_back(imageNegZ); if (checkImage(imageArray)) { t = createDeviceDependentTextureCubemap(name, imageArray); } if (t) { addTexture(t); t->drop(); } return t; } ITexture* CNullDriver::addTextureCubemap(const irr::u32 sideLen, const io::path& name, ECOLOR_FORMAT format) { if ( 0 == sideLen ) return 0; if (0 == name.size()) { os::Printer::log("Could not create ITexture, texture needs to have a non-empty name.", ELL_WARNING); return 0; } core::array<IImage*> imageArray(6); for ( int i=0; i < 6; ++i ) imageArray.push_back(new CImage(format, core::dimension2du(sideLen, sideLen))); ITexture* t = 0; if (checkImage(imageArray)) { t = createDeviceDependentTextureCubemap(name, imageArray); if (t) { addTexture(t); t->drop(); } } for ( int i=0; i < 6; ++i ) imageArray[i]->drop(); return t; } //! loads a Texture ITexture* CNullDriver::getTexture(const io::path& filename) { // Identify textures by their absolute filenames if possible. const io::path absolutePath = FileSystem->getAbsolutePath(filename); ITexture* texture = findTexture(absolutePath); if (texture) { texture->updateSource(ETS_FROM_CACHE); return texture; } // Then try the raw filename, which might be in an Archive texture = findTexture(filename); if (texture) { texture->updateSource(ETS_FROM_CACHE); return texture; } // Now try to open the file using the complete path. io::IReadFile* file = FileSystem->createAndOpenFile(absolutePath); if (!file) { // Try to open it using the raw filename. file = FileSystem->createAndOpenFile(filename); } if (file) { // Re-check name for actual archive names texture = findTexture(file->getFileName()); if (texture) { texture->updateSource(ETS_FROM_CACHE); file->drop(); return texture; } texture = loadTextureFromFile(file); file->drop(); if (texture) { texture->updateSource(ETS_FROM_FILE); addTexture(texture); texture->drop(); // drop it because we created it, one grab too much } else os::Printer::log("Could not load texture", filename, ELL_ERROR); return texture; } else { os::Printer::log("Could not open file of texture", filename, ELL_WARNING); return 0; } } //! loads a Texture ITexture* CNullDriver::getTexture(io::IReadFile* file) { ITexture* texture = 0; if (file) { texture = findTexture(file->getFileName()); if (texture) { texture->updateSource(ETS_FROM_CACHE); return texture; } texture = loadTextureFromFile(file); if (texture) { texture->updateSource(ETS_FROM_FILE); addTexture(texture); texture->drop(); // drop it because we created it, one grab too much } if (!texture) os::Printer::log("Could not load texture", file->getFileName(), ELL_WARNING); } return texture; } //! opens the file and loads it into the surface video::ITexture* CNullDriver::loadTextureFromFile(io::IReadFile* file, const io::path& hashName ) { ITexture *texture = nullptr; IImage *image = createImageFromFile(file); if (!image) return nullptr; if (checkImage(image)) { texture = createDeviceDependentTexture(hashName.size() ? hashName : file->getFileName(), image); if (texture) os::Printer::log("Loaded texture", file->getFileName(), ELL_DEBUG); } image->drop(); return texture; } //! adds a surface, not loaded or created by the Irrlicht Engine void CNullDriver::addTexture(video::ITexture* texture) { if (texture) { SSurface s; s.Surface = texture; texture->grab(); Textures.push_back(s); // the new texture is now at the end of the texture list. when searching for // the next new texture, the texture array will be sorted and the index of this texture // will be changed. } } //! looks if the image is already loaded video::ITexture* CNullDriver::findTexture(const io::path& filename) { SSurface s; SDummyTexture dummy(filename, ETT_2D); s.Surface = &dummy; s32 index = Textures.binary_search(s); if (index != -1) return Textures[index].Surface; return 0; } ITexture* CNullDriver::createDeviceDependentTexture(const io::path& name, IImage* image) { SDummyTexture* dummy = new SDummyTexture(name, ETT_2D); dummy->setSize(image->getDimension()); return dummy; } ITexture* CNullDriver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image) { return new SDummyTexture(name, ETT_CUBEMAP); } bool CNullDriver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { return false; } bool CNullDriver::setRenderTarget(ITexture* texture, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { if (texture) { // create render target if require. if (!SharedRenderTarget) SharedRenderTarget = addRenderTarget(); ITexture* depthTexture = 0; // try to find available depth texture with require size. for (u32 i = 0; i < SharedDepthTextures.size(); ++i) { if (SharedDepthTextures[i]->getSize() == texture->getSize()) { depthTexture = SharedDepthTextures[i]; break; } } // create depth texture if require. if (!depthTexture) { depthTexture = addRenderTargetTexture(texture->getSize(), "IRR_DEPTH_STENCIL", video::ECF_D24S8); SharedDepthTextures.push_back(depthTexture); } SharedRenderTarget->setTexture(texture, depthTexture); return setRenderTargetEx(SharedRenderTarget, clearFlag, clearColor, clearDepth, clearStencil); } else { return setRenderTargetEx(0, clearFlag, clearColor, clearDepth, clearStencil); } } //! sets a viewport void CNullDriver::setViewPort(const core::rect<s32>& area) { } //! gets the area of the current viewport const core::rect<s32>& CNullDriver::getViewPort() const { return ViewPort; } //! draws a vertex primitive list void CNullDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if ((iType==EIT_16BIT) && (vertexCount>65536)) os::Printer::log("Too many vertices for 16bit index type, render artifacts may occur."); PrimitivesDrawn += primitiveCount; } //! draws a vertex primitive list in 2d void CNullDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if ((iType==EIT_16BIT) && (vertexCount>65536)) os::Printer::log("Too many vertices for 16bit index type, render artifacts may occur."); PrimitivesDrawn += primitiveCount; } //! Draws a 3d line. void CNullDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { } //! Draws a 3d axis aligned box. void CNullDriver::draw3DBox(const core::aabbox3d<f32>& box, SColor color) { core::vector3df edges[8]; box.getEdges(edges); // TODO: optimize into one big drawIndexPrimitive call. draw3DLine(edges[5], edges[1], color); draw3DLine(edges[1], edges[3], color); draw3DLine(edges[3], edges[7], color); draw3DLine(edges[7], edges[5], color); draw3DLine(edges[0], edges[2], color); draw3DLine(edges[2], edges[6], color); draw3DLine(edges[6], edges[4], color); draw3DLine(edges[4], edges[0], color); draw3DLine(edges[1], edges[0], color); draw3DLine(edges[3], edges[2], color); draw3DLine(edges[7], edges[6], color); draw3DLine(edges[5], edges[4], color); } //! draws an 2d image void CNullDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos, bool useAlphaChannelOfTexture) { if (!texture) return; draw2DImage(texture,destPos, core::rect<s32>(core::position2d<s32>(0,0), core::dimension2di(texture->getOriginalSize())), 0, SColor(255,255,255,255), useAlphaChannelOfTexture ); } //! draws a set of 2d images, using a color and the alpha channel of the //! texture if desired. void CNullDriver::draw2DImageBatch(const video::ITexture* texture, const core::array<core::position2d<s32> >& positions, const core::array<core::rect<s32> >& sourceRects, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size()); for (u32 i=0; i<drawCount; ++i) { draw2DImage(texture, positions[i], sourceRects[i], clipRect, color, useAlphaChannelOfTexture); } } //! Draws a part of the texture into the rectangle. void CNullDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (destRect.isValid()) draw2DImage(texture, core::position2d<s32>(destRect.UpperLeftCorner), sourceRect, clipRect, colors?colors[0]:video::SColor(0xffffffff), useAlphaChannelOfTexture); } //! Draws a 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CNullDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { } //! Draw a 2d rectangle void CNullDriver::draw2DRectangle(SColor color, const core::rect<s32>& pos, const core::rect<s32>* clip) { draw2DRectangle(pos, color, color, color, color, clip); } //! Draws a 2d rectangle with a gradient. void CNullDriver::draw2DRectangle(const core::rect<s32>& pos, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect<s32>* clip) { } //! Draws a 2d line. void CNullDriver::draw2DLine(const core::position2d<s32>& start, const core::position2d<s32>& end, SColor color) { } //! returns color format ECOLOR_FORMAT CNullDriver::getColorFormat() const { return ECF_R5G6B5; } //! returns screen size const core::dimension2d<u32>& CNullDriver::getScreenSize() const { return ScreenSize; } //! get current render target IRenderTarget* CNullDriver::getCurrentRenderTarget() const { return CurrentRenderTarget; } const core::dimension2d<u32>& CNullDriver::getCurrentRenderTargetSize() const { if (CurrentRenderTargetSize.Width == 0) return ScreenSize; else return CurrentRenderTargetSize; } // returns current frames per second value s32 CNullDriver::getFPS() const { return FPSCounter.getFPS(); } //! returns amount of primitives (mostly triangles) were drawn in the last frame. //! very useful method for statistics. u32 CNullDriver::getPrimitiveCountDrawn( u32 param ) const { return (0 == param) ? FPSCounter.getPrimitive() : (1 == param) ? FPSCounter.getPrimitiveAverage() : FPSCounter.getPrimitiveTotal(); } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void CNullDriver::setAmbientLight(const SColorf& color) { AmbientLight = color; } const SColorf& CNullDriver::getAmbientLight() const { return AmbientLight; } //! \return Returns the name of the video driver. Example: In case of the DIRECT3D8 //! driver, it would return "Direct3D8". const wchar_t* CNullDriver::getName() const { return L"Irrlicht NullDevice"; } //! Creates a boolean alpha channel of the texture based of an color key. void CNullDriver::makeColorKeyTexture(video::ITexture* texture, video::SColor color) const { if (!texture) return; if (texture->getColorFormat() != ECF_A1R5G5B5 && texture->getColorFormat() != ECF_A8R8G8B8 ) { os::Printer::log("Error: Unsupported texture color format for making color key channel.", ELL_ERROR); return; } if (texture->getColorFormat() == ECF_A1R5G5B5) { u16 *p = (u16*)texture->lock(); if (!p) { os::Printer::log("Could not lock texture for making color key channel.", ELL_ERROR); return; } const core::dimension2d<u32> dim = texture->getSize(); const u32 pitch = texture->getPitch() / 2; // color with alpha disabled (i.e. fully transparent) const u16 refZeroAlpha = (0x7fff & color.toA1R5G5B5()); const u32 pixels = pitch * dim.Height; for (u32 pixel = 0; pixel < pixels; ++ pixel) { // If the color matches the reference color, ignoring alphas, // set the alpha to zero. if(((*p) & 0x7fff) == refZeroAlpha) (*p) = refZeroAlpha; ++p; } texture->unlock(); } else { u32 *p = (u32*)texture->lock(); if (!p) { os::Printer::log("Could not lock texture for making color key channel.", ELL_ERROR); return; } core::dimension2d<u32> dim = texture->getSize(); u32 pitch = texture->getPitch() / 4; // color with alpha disabled (fully transparent) const u32 refZeroAlpha = 0x00ffffff & color.color; const u32 pixels = pitch * dim.Height; for (u32 pixel = 0; pixel < pixels; ++ pixel) { // If the color matches the reference color, ignoring alphas, // set the alpha to zero. if(((*p) & 0x00ffffff) == refZeroAlpha) (*p) = refZeroAlpha; ++p; } texture->unlock(); } texture->regenerateMipMapLevels(); } //! Creates an boolean alpha channel of the texture based of an color key position. void CNullDriver::makeColorKeyTexture(video::ITexture* texture, core::position2d<s32> colorKeyPixelPos) const { if (!texture) return; if (texture->getColorFormat() != ECF_A1R5G5B5 && texture->getColorFormat() != ECF_A8R8G8B8 ) { os::Printer::log("Error: Unsupported texture color format for making color key channel.", ELL_ERROR); return; } SColor colorKey; if (texture->getColorFormat() == ECF_A1R5G5B5) { u16 *p = (u16*)texture->lock(ETLM_READ_ONLY); if (!p) { os::Printer::log("Could not lock texture for making color key channel.", ELL_ERROR); return; } u32 pitch = texture->getPitch() / 2; const u16 key16Bit = 0x7fff & p[colorKeyPixelPos.Y*pitch + colorKeyPixelPos.X]; colorKey = video::A1R5G5B5toA8R8G8B8(key16Bit); } else { u32 *p = (u32*)texture->lock(ETLM_READ_ONLY); if (!p) { os::Printer::log("Could not lock texture for making color key channel.", ELL_ERROR); return; } u32 pitch = texture->getPitch() / 4; colorKey = 0x00ffffff & p[colorKeyPixelPos.Y*pitch + colorKeyPixelPos.X]; } texture->unlock(); makeColorKeyTexture(texture, colorKey); } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 CNullDriver::getMaximalPrimitiveCount() const { return 0xFFFFFFFF; } //! checks triangle count and print warning if wrong bool CNullDriver::checkPrimitiveCount(u32 prmCount) const { const u32 m = getMaximalPrimitiveCount(); if (prmCount > m) { char tmp[128]; snprintf_irr(tmp, sizeof(tmp), "Could not draw triangles, too many primitives(%u), maximum is %u.", prmCount, m); os::Printer::log(tmp, ELL_ERROR); return false; } return true; } bool CNullDriver::checkImage(IImage *image) const { ECOLOR_FORMAT format = image->getColorFormat(); core::dimension2d<u32> size = image->getDimension(); switch (format) { case ECF_DXT1: case ECF_DXT2: case ECF_DXT3: case ECF_DXT4: case ECF_DXT5: if (!queryFeature(EVDF_TEXTURE_COMPRESSED_DXT)) { os::Printer::log("DXT texture compression not available.", ELL_ERROR); return false; } else if (size.getOptimalSize(true, false) != size) { os::Printer::log("Invalid size of image for DXT texture, size of image must be power of two.", ELL_ERROR); return false; } break; case ECF_PVRTC_RGB2: case ECF_PVRTC_ARGB2: case ECF_PVRTC_RGB4: case ECF_PVRTC_ARGB4: if (!queryFeature(EVDF_TEXTURE_COMPRESSED_PVRTC)) { os::Printer::log("PVRTC texture compression not available.", ELL_ERROR); return false; } else if (size.getOptimalSize(true, false) != size) { os::Printer::log("Invalid size of image for PVRTC compressed texture, size of image must be power of two and squared.", ELL_ERROR); return false; } break; case ECF_PVRTC2_ARGB2: case ECF_PVRTC2_ARGB4: if (!queryFeature(EVDF_TEXTURE_COMPRESSED_PVRTC2)) { os::Printer::log("PVRTC2 texture compression not available.", ELL_ERROR); return false; } break; case ECF_ETC1: if (!queryFeature(EVDF_TEXTURE_COMPRESSED_ETC1)) { os::Printer::log("ETC1 texture compression not available.", ELL_ERROR); return false; } break; case ECF_ETC2_RGB: case ECF_ETC2_ARGB: if (!queryFeature(EVDF_TEXTURE_COMPRESSED_ETC2)) { os::Printer::log("ETC2 texture compression not available.", ELL_ERROR); return false; } break; default: break; } return true; } bool CNullDriver::checkImage(const core::array<IImage*>& image) const { if (!image.size()) return false; ECOLOR_FORMAT lastFormat = image[0]->getColorFormat(); core::dimension2d<u32> lastSize = image[0]->getDimension(); for (u32 i = 0; i < image.size(); ++i) { ECOLOR_FORMAT format = image[i]->getColorFormat(); core::dimension2d<u32> size = image[i]->getDimension(); if (!checkImage(image[i])) return false; if (format != lastFormat || size != lastSize) return false; } return true; } //! Enables or disables a texture creation flag. void CNullDriver::setTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag, bool enabled) { if (enabled && ((flag == ETCF_ALWAYS_16_BIT) || (flag == ETCF_ALWAYS_32_BIT) || (flag == ETCF_OPTIMIZED_FOR_QUALITY) || (flag == ETCF_OPTIMIZED_FOR_SPEED))) { // disable other formats setTextureCreationFlag(ETCF_ALWAYS_16_BIT, false); setTextureCreationFlag(ETCF_ALWAYS_32_BIT, false); setTextureCreationFlag(ETCF_OPTIMIZED_FOR_QUALITY, false); setTextureCreationFlag(ETCF_OPTIMIZED_FOR_SPEED, false); } // set flag TextureCreationFlags = (TextureCreationFlags & (~flag)) | ((((u32)!enabled)-1) & flag); } //! Returns if a texture creation flag is enabled or disabled. bool CNullDriver::getTextureCreationFlag(E_TEXTURE_CREATION_FLAG flag) const { return (TextureCreationFlags & flag)!=0; } IImage *CNullDriver::createImageFromFile(const io::path& filename) { if (!filename.size()) return nullptr; io::IReadFile* file = FileSystem->createAndOpenFile(filename); if (!file) { os::Printer::log("Could not open file of image", filename, ELL_WARNING); return nullptr; } IImage *image = createImageFromFile(file); file->drop(); return image; } IImage *CNullDriver::createImageFromFile(io::IReadFile* file) { if (!file) return nullptr; // try to load file based on file extension for (int i = SurfaceLoader.size() - 1; i >= 0; --i) { if (!SurfaceLoader[i]->isALoadableFileExtension(file->getFileName())) continue; file->seek(0); // reset file position which might have changed due to previous loadImage calls if (IImage *image = SurfaceLoader[i]->loadImage(file)) return image; } // try to load file based on what is in it for (int i = SurfaceLoader.size() - 1; i >= 0; --i) { if (SurfaceLoader[i]->isALoadableFileExtension(file->getFileName())) continue; // extension was tried above already file->seek(0); // dito if (!SurfaceLoader[i]->isALoadableFileFormat(file)) continue; file->seek(0); if (IImage *image = SurfaceLoader[i]->loadImage(file)) return image; } return nullptr; } //! Writes the provided image to disk file bool CNullDriver::writeImageToFile(IImage* image, const io::path& filename,u32 param) { io::IWriteFile* file = FileSystem->createAndWriteFile(filename); if(!file) return false; bool result = writeImageToFile(image, file, param); file->drop(); return result; } //! Writes the provided image to a file. bool CNullDriver::writeImageToFile(IImage* image, io::IWriteFile * file, u32 param) { if(!file) return false; for (s32 i=SurfaceWriter.size()-1; i>=0; --i) { if (SurfaceWriter[i]->isAWriteableFileExtension(file->getFileName())) { bool written = SurfaceWriter[i]->writeImage(file, image, param); if (written) return true; } } return false; // failed to write } //! Creates a software image from a byte array. IImage* CNullDriver::createImageFromData(ECOLOR_FORMAT format, const core::dimension2d<u32>& size, void *data, bool ownForeignMemory, bool deleteMemory) { return new CImage(format, size, data, ownForeignMemory, deleteMemory); } //! Creates an empty software image. IImage* CNullDriver::createImage(ECOLOR_FORMAT format, const core::dimension2d<u32>& size) { return new CImage(format, size); } //! Creates a software image from part of a texture. IImage* CNullDriver::createImage(ITexture* texture, const core::position2d<s32>& pos, const core::dimension2d<u32>& size) { if ((pos==core::position2di(0,0)) && (size == texture->getSize())) { void * data = texture->lock(ETLM_READ_ONLY); if ( !data) return 0; IImage* image = new CImage(texture->getColorFormat(), size, data, false, false); texture->unlock(); return image; } else { // make sure to avoid buffer overruns // make the vector a separate variable for g++ 3.x const core::vector2d<u32> leftUpper(core::clamp(static_cast<u32>(pos.X), 0u, texture->getSize().Width), core::clamp(static_cast<u32>(pos.Y), 0u, texture->getSize().Height)); const core::rect<u32> clamped(leftUpper, core::dimension2du(core::clamp(static_cast<u32>(size.Width), 0u, texture->getSize().Width), core::clamp(static_cast<u32>(size.Height), 0u, texture->getSize().Height))); if (!clamped.isValid()) return 0; u8* src = static_cast<u8*>(texture->lock(ETLM_READ_ONLY)); if (!src) return 0; IImage* image = new CImage(texture->getColorFormat(), clamped.getSize()); u8* dst = static_cast<u8*>(image->getData()); src += clamped.UpperLeftCorner.Y * texture->getPitch() + image->getBytesPerPixel() * clamped.UpperLeftCorner.X; for (u32 i=0; i<clamped.getHeight(); ++i) { video::CColorConverter::convert_viaFormat(src, texture->getColorFormat(), clamped.getWidth(), dst, image->getColorFormat()); src += texture->getPitch(); dst += image->getPitch(); } texture->unlock(); return image; } } //! Sets the fog mode. void CNullDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { FogColor = color; FogType = fogType; FogStart = start; FogEnd = end; FogDensity = density; PixelFog = pixelFog; RangeFog = rangeFog; } //! Gets the fog mode. void CNullDriver::getFog(SColor& color, E_FOG_TYPE& fogType, f32& start, f32& end, f32& density, bool& pixelFog, bool& rangeFog) { color = FogColor; fogType = FogType; start = FogStart; end = FogEnd; density = FogDensity; pixelFog = PixelFog; rangeFog = RangeFog; } //! Draws a mesh buffer void CNullDriver::drawMeshBuffer(const scene::IMeshBuffer* mb) { if (!mb) return; //IVertexBuffer and IIndexBuffer later SHWBufferLink *HWBuffer=getBufferLink(mb); if (HWBuffer) drawHardwareBuffer(HWBuffer); else drawVertexPrimitiveList(mb->getVertices(), mb->getVertexCount(), mb->getIndices(), mb->getPrimitiveCount(), mb->getVertexType(), mb->getPrimitiveType(), mb->getIndexType()); } //! Draws the normals of a mesh buffer void CNullDriver::drawMeshBufferNormals(const scene::IMeshBuffer* mb, f32 length, SColor color) { const u32 count = mb->getVertexCount(); const bool normalize = mb->getMaterial().NormalizeNormals; for (u32 i=0; i < count; ++i) { core::vector3df normalizedNormal = mb->getNormal(i); if (normalize) normalizedNormal.normalize(); const core::vector3df& pos = mb->getPosition(i); draw3DLine(pos, pos + (normalizedNormal * length), color); } } CNullDriver::SHWBufferLink *CNullDriver::getBufferLink(const scene::IMeshBuffer* mb) { if (!mb || !isHardwareBufferRecommend(mb)) return 0; //search for hardware links SHWBufferLink *HWBuffer = reinterpret_cast<SHWBufferLink*>(mb->getHWBuffer()); if (HWBuffer) return HWBuffer; return createHardwareBuffer(mb); //no hardware links, and mesh wants one, create it } //! Update all hardware buffers, remove unused ones void CNullDriver::updateAllHardwareBuffers() { auto it = HWBufferList.begin(); while (it != HWBufferList.end()) { SHWBufferLink *Link = *it; ++it; if (!Link->MeshBuffer || Link->MeshBuffer->getReferenceCount() == 1) deleteHardwareBuffer(Link); } } void CNullDriver::deleteHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return; HWBufferList.erase(HWBuffer->listPosition); delete HWBuffer; } //! Remove hardware buffer void CNullDriver::removeHardwareBuffer(const scene::IMeshBuffer* mb) { if (!mb) return; SHWBufferLink *HWBuffer = reinterpret_cast<SHWBufferLink*>(mb->getHWBuffer()); if (HWBuffer) deleteHardwareBuffer(HWBuffer); } //! Remove all hardware buffers void CNullDriver::removeAllHardwareBuffers() { while (!HWBufferList.empty()) deleteHardwareBuffer(HWBufferList.front()); } bool CNullDriver::isHardwareBufferRecommend(const scene::IMeshBuffer* mb) { if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER)) return false; if (mb->getVertexCount()<MinVertexCountForVBO) return false; return true; } //! Create occlusion query. /** Use node for identification and mesh for occlusion test. */ void CNullDriver::addOcclusionQuery(scene::ISceneNode* node, const scene::IMesh* mesh) { if (!node) return; if (!mesh) { if ((node->getType() != scene::ESNT_MESH) && (node->getType() != scene::ESNT_ANIMATED_MESH)) return; else if (node->getType() == scene::ESNT_MESH) mesh = static_cast<scene::IMeshSceneNode*>(node)->getMesh(); else mesh = static_cast<scene::IAnimatedMeshSceneNode*>(node)->getMesh()->getMesh(0); if (!mesh) return; } //search for query s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].Mesh != mesh) { OcclusionQueries[index].Mesh->drop(); OcclusionQueries[index].Mesh = mesh; mesh->grab(); } } else { OcclusionQueries.push_back(SOccQuery(node, mesh)); node->setAutomaticCulling(node->getAutomaticCulling() | scene::EAC_OCC_QUERY); } } //! Remove occlusion query. void CNullDriver::removeOcclusionQuery(scene::ISceneNode* node) { //search for query s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { node->setAutomaticCulling(node->getAutomaticCulling() & ~scene::EAC_OCC_QUERY); OcclusionQueries.erase(index); } } //! Remove all occlusion queries. void CNullDriver::removeAllOcclusionQueries() { for (s32 i=OcclusionQueries.size()-1; i>=0; --i) { removeOcclusionQuery(OcclusionQueries[i].Node); } } //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall be rendered visible, use flag to enable the proper material setting. */ void CNullDriver::runOcclusionQuery(scene::ISceneNode* node, bool visible) { if(!node) return; s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index==-1) return; OcclusionQueries[index].Run=0; if (!visible) { SMaterial mat; mat.Lighting=false; mat.AntiAliasing=0; mat.ColorMask=ECP_NONE; mat.GouraudShading=false; mat.ZWriteEnable=EZW_OFF; setMaterial(mat); } setTransform(video::ETS_WORLD, node->getAbsoluteTransformation()); const scene::IMesh* mesh = OcclusionQueries[index].Mesh; for (u32 i=0; i<mesh->getMeshBufferCount(); ++i) { if (visible) setMaterial(mesh->getMeshBuffer(i)->getMaterial()); drawMeshBuffer(mesh->getMeshBuffer(i)); } } //! Run all occlusion queries. Draws all meshes stored in queries. /** If the meshes shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ void CNullDriver::runAllOcclusionQueries(bool visible) { for (u32 i=0; i<OcclusionQueries.size(); ++i) runOcclusionQuery(OcclusionQueries[i].Node, visible); } //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void CNullDriver::updateOcclusionQuery(scene::ISceneNode* node, bool block) { } //! Update all occlusion queries. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void CNullDriver::updateAllOcclusionQueries(bool block) { for (u32 i=0; i<OcclusionQueries.size(); ++i) { if (OcclusionQueries[i].Run==u32(~0)) continue; updateOcclusionQuery(OcclusionQueries[i].Node, block); ++OcclusionQueries[i].Run; if (OcclusionQueries[i].Run>1000) removeOcclusionQuery(OcclusionQueries[i].Node); } } //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger then the actual value of pixels. */ u32 CNullDriver::getOcclusionQueryResult(scene::ISceneNode* node) const { return ~0; } //! Create render target. IRenderTarget* CNullDriver::addRenderTarget() { return 0; } //! Remove render target. void CNullDriver::removeRenderTarget(IRenderTarget* renderTarget) { if (!renderTarget) return; for (u32 i = 0; i < RenderTargets.size(); ++i) { if (RenderTargets[i] == renderTarget) { RenderTargets[i]->drop(); RenderTargets.erase(i); return; } } } //! Remove all render targets. void CNullDriver::removeAllRenderTargets() { for (u32 i = 0; i < RenderTargets.size(); ++i) RenderTargets[i]->drop(); RenderTargets.clear(); SharedRenderTarget = 0; } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void CNullDriver::OnResize(const core::dimension2d<u32>& size) { if (ViewPort.getWidth() == (s32)ScreenSize.Width && ViewPort.getHeight() == (s32)ScreenSize.Height) ViewPort = core::rect<s32>(core::position2d<s32>(0,0), core::dimension2di(size)); ScreenSize = size; } // adds a material renderer and drops it afterwards. To be used for internal creation s32 CNullDriver::addAndDropMaterialRenderer(IMaterialRenderer* m) { s32 i = addMaterialRenderer(m); if (m) m->drop(); return i; } //! Adds a new material renderer to the video device. s32 CNullDriver::addMaterialRenderer(IMaterialRenderer* renderer, const char* name) { if (!renderer) return -1; SMaterialRenderer r; r.Renderer = renderer; r.Name = name; if (name == 0 && (MaterialRenderers.size() < (sizeof(sBuiltInMaterialTypeNames) / sizeof(char*))-1 )) { // set name of built in renderer so that we don't have to implement name // setting in all available renderers. r.Name = sBuiltInMaterialTypeNames[MaterialRenderers.size()]; } MaterialRenderers.push_back(r); renderer->grab(); return MaterialRenderers.size()-1; } //! Sets the name of a material renderer. void CNullDriver::setMaterialRendererName(u32 idx, const char* name) { if (idx < (sizeof(sBuiltInMaterialTypeNames) / sizeof(char*))-1 || idx >= MaterialRenderers.size()) return; MaterialRenderers[idx].Name = name; } void CNullDriver::swapMaterialRenderers(u32 idx1, u32 idx2, bool swapNames) { if ( idx1 < MaterialRenderers.size() && idx2 < MaterialRenderers.size() ) { irr::core::swap(MaterialRenderers[idx1].Renderer, MaterialRenderers[idx2].Renderer); if ( swapNames ) irr::core::swap(MaterialRenderers[idx1].Name, MaterialRenderers[idx2].Name); } } //! Returns driver and operating system specific data about the IVideoDriver. const SExposedVideoData& CNullDriver::getExposedVideoData() { return ExposedData; } //! Returns type of video driver E_DRIVER_TYPE CNullDriver::getDriverType() const { return EDT_NULL; } //! deletes all material renderers void CNullDriver::deleteMaterialRenders() { // delete material renderers for (u32 i=0; i<MaterialRenderers.size(); ++i) if (MaterialRenderers[i].Renderer) MaterialRenderers[i].Renderer->drop(); MaterialRenderers.clear(); } //! Returns pointer to material renderer or null IMaterialRenderer* CNullDriver::getMaterialRenderer(u32 idx) const { if ( idx < MaterialRenderers.size() ) return MaterialRenderers[idx].Renderer; else return 0; } //! Returns amount of currently available material renderers. u32 CNullDriver::getMaterialRendererCount() const { return MaterialRenderers.size(); } //! Returns name of the material renderer const char* CNullDriver::getMaterialRendererName(u32 idx) const { if ( idx < MaterialRenderers.size() ) return MaterialRenderers[idx].Name.c_str(); return 0; } //! Returns pointer to the IGPUProgrammingServices interface. IGPUProgrammingServices* CNullDriver::getGPUProgrammingServices() { return this; } //! Adds a new material renderer to the VideoDriver, based on a high level shading language. s32 CNullDriver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { os::Printer::log("High level shader materials not available (yet) in this driver, sorry"); return -1; } //! Like IGPUProgrammingServices::addShaderMaterial() (look there for a detailed description), //! but tries to load the programs from files. s32 CNullDriver::addHighLevelShaderMaterialFromFiles( const io::path& vertexShaderProgramFileName, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const io::path& pixelShaderProgramFileName, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const io::path& geometryShaderProgramFileName, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { io::IReadFile* vsfile = 0; io::IReadFile* psfile = 0; io::IReadFile* gsfile = 0; if (vertexShaderProgramFileName.size() ) { vsfile = FileSystem->createAndOpenFile(vertexShaderProgramFileName); if (!vsfile) { os::Printer::log("Could not open vertex shader program file", vertexShaderProgramFileName, ELL_WARNING); } } if (pixelShaderProgramFileName.size() ) { psfile = FileSystem->createAndOpenFile(pixelShaderProgramFileName); if (!psfile) { os::Printer::log("Could not open pixel shader program file", pixelShaderProgramFileName, ELL_WARNING); } } if (geometryShaderProgramFileName.size() ) { gsfile = FileSystem->createAndOpenFile(geometryShaderProgramFileName); if (!gsfile) { os::Printer::log("Could not open geometry shader program file", geometryShaderProgramFileName, ELL_WARNING); } } s32 result = addHighLevelShaderMaterialFromFiles( vsfile, vertexShaderEntryPointName, vsCompileTarget, psfile, pixelShaderEntryPointName, psCompileTarget, gsfile, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback, baseMaterial, userData); if (psfile) psfile->drop(); if (vsfile) vsfile->drop(); if (gsfile) gsfile->drop(); return result; } //! Like IGPUProgrammingServices::addShaderMaterial() (look there for a detailed description), //! but tries to load the programs from files. s32 CNullDriver::addHighLevelShaderMaterialFromFiles( io::IReadFile* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, io::IReadFile* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, io::IReadFile* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { c8* vs = 0; c8* ps = 0; c8* gs = 0; if (vertexShaderProgram) { const long size = vertexShaderProgram->getSize(); if (size) { vs = new c8[size+1]; vertexShaderProgram->read(vs, size); vs[size] = 0; } } if (pixelShaderProgram) { const long size = pixelShaderProgram->getSize(); if (size) { // if both handles are the same we must reset the file if (pixelShaderProgram==vertexShaderProgram) pixelShaderProgram->seek(0); ps = new c8[size+1]; pixelShaderProgram->read(ps, size); ps[size] = 0; } } if (geometryShaderProgram) { const long size = geometryShaderProgram->getSize(); if (size) { // if both handles are the same we must reset the file if ((geometryShaderProgram==vertexShaderProgram) || (geometryShaderProgram==pixelShaderProgram)) geometryShaderProgram->seek(0); gs = new c8[size+1]; geometryShaderProgram->read(gs, size); gs[size] = 0; } } s32 result = this->addHighLevelShaderMaterial( vs, vertexShaderEntryPointName, vsCompileTarget, ps, pixelShaderEntryPointName, psCompileTarget, gs, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback, baseMaterial, userData); delete [] vs; delete [] ps; delete [] gs; return result; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 CNullDriver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { os::Printer::log("Shader materials not implemented yet in this driver, sorry."); return -1; } //! Like IGPUProgrammingServices::addShaderMaterial(), but tries to load the //! programs from files. s32 CNullDriver::addShaderMaterialFromFiles(io::IReadFile* vertexShaderProgram, io::IReadFile* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { c8* vs = 0; c8* ps = 0; if (vertexShaderProgram) { const long size = vertexShaderProgram->getSize(); if (size) { vs = new c8[size+1]; vertexShaderProgram->read(vs, size); vs[size] = 0; } } if (pixelShaderProgram) { const long size = pixelShaderProgram->getSize(); if (size) { ps = new c8[size+1]; pixelShaderProgram->read(ps, size); ps[size] = 0; } } s32 result = addShaderMaterial(vs, ps, callback, baseMaterial, userData); delete [] vs; delete [] ps; return result; } //! Like IGPUProgrammingServices::addShaderMaterial(), but tries to load the //! programs from files. s32 CNullDriver::addShaderMaterialFromFiles(const io::path& vertexShaderProgramFileName, const io::path& pixelShaderProgramFileName, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { io::IReadFile* vsfile = 0; io::IReadFile* psfile = 0; if (vertexShaderProgramFileName.size()) { vsfile = FileSystem->createAndOpenFile(vertexShaderProgramFileName); if (!vsfile) { os::Printer::log("Could not open vertex shader program file", vertexShaderProgramFileName, ELL_WARNING); return -1; } } if (pixelShaderProgramFileName.size()) { psfile = FileSystem->createAndOpenFile(pixelShaderProgramFileName); if (!psfile) { os::Printer::log("Could not open pixel shader program file", pixelShaderProgramFileName, ELL_WARNING); if (vsfile) vsfile->drop(); return -1; } } s32 result = addShaderMaterialFromFiles(vsfile, psfile, callback, baseMaterial, userData); if (psfile) psfile->drop(); if (vsfile) vsfile->drop(); return result; } //! Creates a render target texture. ITexture* CNullDriver::addRenderTargetTexture(const core::dimension2d<u32>& size, const io::path&name, const ECOLOR_FORMAT format) { return 0; } ITexture* CNullDriver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format) { return 0; } void CNullDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { } //! Returns a pointer to the mesh manipulator. scene::IMeshManipulator* CNullDriver::getMeshManipulator() { return MeshManipulator; } //! Returns an image created from the last rendered frame. IImage* CNullDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { return 0; } // prints renderer version void CNullDriver::printVersion() { core::stringw namePrint = L"Using renderer: "; namePrint += getName(); os::Printer::log(namePrint.c_str(), ELL_INFORMATION); } //! creates a video driver IVideoDriver* createNullDriver(io::IFileSystem* io, const core::dimension2d<u32>& screenSize) { CNullDriver* nullDriver = new CNullDriver(io, screenSize); // create empty material renderers for(u32 i=0; sBuiltInMaterialTypeNames[i]; ++i) { IMaterialRenderer* imr = new IMaterialRenderer(); nullDriver->addMaterialRenderer(imr); imr->drop(); } return nullDriver; } //! Set/unset a clipping plane. //! There are at least 6 clipping planes available for the user to set at will. //! \param index: The plane index. Must be between 0 and MaxUserClipPlanes. //! \param plane: The plane itself. //! \param enable: If true, enable the clipping plane else disable it. bool CNullDriver::setClipPlane(u32 index, const core::plane3df& plane, bool enable) { return false; } //! Enable/disable a clipping plane. void CNullDriver::enableClipPlane(u32 index, bool enable) { // not necessary } ITexture* CNullDriver::createRenderTargetTexture(const core::dimension2d<u32>& size, const c8* name) { os::Printer::log("createRenderTargetTexture is deprecated, use addRenderTargetTexture instead"); ITexture* tex = addRenderTargetTexture(size, name); tex->grab(); return tex; } void CNullDriver::setMinHardwareBufferVertexCount(u32 count) { MinVertexCountForVBO = count; } SOverrideMaterial& CNullDriver::getOverrideMaterial() { return OverrideMaterial; } //! Get the 2d override material for altering its values SMaterial& CNullDriver::getMaterial2D() { return OverrideMaterial2D; } //! Enable the 2d override material void CNullDriver::enableMaterial2D(bool enable) { OverrideMaterial2DEnabled=enable; } core::dimension2du CNullDriver::getMaxTextureSize() const { return core::dimension2du(0x10000,0x10000); // maybe large enough } bool CNullDriver::needsTransparentRenderPass(const irr::video::SMaterial& material) const { // TODO: I suspect it would be nice if the material had an enum for further control. // Especially it probably makes sense to allow disabling transparent render pass as soon as material.ZWriteEnable is on. // But then we might want an enum for the renderpass in material instead of just a transparency flag in material - and that's more work. // Or we could at least set return false when material.ZWriteEnable is EZW_ON? Still considering that... // Be careful - this function is deeply connected to getWriteZBuffer as transparent render passes are usually about rendering with // zwrite disabled and getWriteZBuffer calls this function. video::IMaterialRenderer* rnd = getMaterialRenderer(material.MaterialType); // TODO: I suspect IMaterialRenderer::isTransparent also often could use SMaterial as parameter // We could for example then get rid of IsTransparent function in SMaterial and move that to the software material renderer. if (rnd && rnd->isTransparent()) return true; return false; } //! Color conversion convenience function /** Convert an image (as array of pixels) from source to destination array, thereby converting the color format. The pixel size is determined by the color formats. \param sP Pointer to source \param sF Color format of source \param sN Number of pixels to convert, both array must be large enough \param dP Pointer to destination \param dF Color format of destination */ void CNullDriver::convertColor(const void* sP, ECOLOR_FORMAT sF, s32 sN, void* dP, ECOLOR_FORMAT dF) const { video::CColorConverter::convert_viaFormat(sP, sF, sN, dP, dF); } } // end namespace } // end namespace