irrlicht/source/Irrlicht/CSoftwareDriver2.h
cutealien ffd7b63af0 API BREAKER: Replacing defines in irrTypes.h which are conflicting with c++ reserved identifier rules.
C++ has undefined behavior for identifiers starting with __ or with _ followed by an uppercase letter.
We still have many more (in IrrCompileConfig.h and in all header-guards), will likely replace those later as well.
As a workaround for users which might use irrlicht defines in their code, I've added the header irrLegacyDefines.h
Including that allows to continue using old defines for a while - or make it easier to have code which compiles 
with old and new Irrlicht library versions.


git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6251 dfc29bdd-3216-0410-991c-e03cc46cb475
2021-08-27 12:55:10 +00:00

451 lines
18 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __C_VIDEO_2_SOFTWARE_H_INCLUDED__
#define __C_VIDEO_2_SOFTWARE_H_INCLUDED__
#include "SoftwareDriver2_compile_config.h"
#include "IBurningShader.h"
#include "CNullDriver.h"
#include "CImage.h"
#include "os.h"
#include "irrString.h"
#include "SIrrCreationParameters.h"
namespace irr
{
namespace video
{
class CBurningVideoDriver : public CNullDriver, public IMaterialRendererServices
{
public:
//! constructor
CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter);
//! destructor
virtual ~CBurningVideoDriver();
//! queries the features of the driver, returns true if feature is available
virtual bool queryFeature(E_VIDEO_DRIVER_FEATURE feature) const IRR_OVERRIDE;
//! Create render target.
virtual IRenderTarget* addRenderTarget() IRR_OVERRIDE;
//! sets transformation
virtual void setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) IRR_OVERRIDE;
//! sets a material
virtual void setMaterial(const SMaterial& material) IRR_OVERRIDE;
virtual bool setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor,
f32 clearDepth, u8 clearStencil) IRR_OVERRIDE;
//! sets a viewport
virtual void setViewPort(const core::rect<s32>& area) IRR_OVERRIDE;
virtual void setScissor(int x, int y, int width, int height);
virtual bool beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil,
const SExposedVideoData& videoData, core::rect<s32>* sourceRect) IRR_OVERRIDE;
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
virtual bool beginScene(bool backBuffer, bool zBuffer, SColor color,
const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
u16 flag = 0;
if (backBuffer) flag |= ECBF_COLOR;
if (zBuffer) flag |= ECBF_DEPTH;
return beginScene(flag, color, 1.f, 0, videoData, sourceRect);
}
virtual bool setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color);
#endif
virtual bool endScene() IRR_OVERRIDE;
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
virtual void OnResize(const core::dimension2d<u32>& size) IRR_OVERRIDE;
//! returns size of the current render target
virtual const core::dimension2d<u32>& getCurrentRenderTargetSize() const IRR_OVERRIDE;
//! deletes all dynamic lights there are
virtual void deleteAllDynamicLights() IRR_OVERRIDE;
//! adds a dynamic light, returning an index to the light
//! \param light: the light data to use to create the light
//! \return An index to the light, or -1 if an error occurs
virtual s32 addDynamicLight(const SLight& light) IRR_OVERRIDE;
//! Turns a dynamic light on or off
//! \param lightIndex: the index returned by addDynamicLight
//! \param turnOn: true to turn the light on, false to turn it off
virtual void turnLightOn(s32 lightIndex, bool turnOn) IRR_OVERRIDE;
//! returns the maximal amount of dynamic lights the device can handle
virtual u32 getMaximalDynamicLightAmount() const IRR_OVERRIDE;
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
virtual void setAmbientLight(const SColorf& color) IRR_OVERRIDE;
//! draws a vertex primitive list
virtual void drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) IRR_OVERRIDE;
//! draws a vertex primitive list in 2d
virtual void draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) IRR_OVERRIDE;
//! draws an 2d image
//virtual void draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos, bool useAlphaChannelOfTexture) IRR_OVERRIDE;
/* NullDriver calls
draw2DImage(texture, destPos,
core::rect<s32>(core::position2d<s32>(0, 0), core::dimension2di(texture->getOriginalSize())),
0,
SColor(255, 255, 255, 255),
useAlphaChannelOfTexture
*/
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
virtual void draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
SColor color=SColor(255,255,255,255), bool useAlphaChannelOfTexture=false) IRR_OVERRIDE;
//! Draws a part of the texture into the rectangle.
virtual void draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect = 0,
const video::SColor* const colors=0, bool useAlphaChannelOfTexture=false) IRR_OVERRIDE;
//! Draws a 3d line.
virtual void draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color_start) IRR_OVERRIDE;
//! draw an 2d rectangle
//virtual void draw2DRectangle(SColor color, const core::rect<s32>& pos,
// const core::rect<s32>* clip = 0) IRR_OVERRIDE;
/* NullDriver calls
draw2DRectangle(pos, color, color, color, color, clip);
*/
//!Draws an 2d rectangle with a gradient.
virtual void draw2DRectangle(const core::rect<s32>& pos,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip = 0) IRR_OVERRIDE;
//! Draws a 2d line.
virtual void draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color=SColor(255,255,255,255)) IRR_OVERRIDE;
//! Draws a single pixel
virtual void drawPixel(u32 x, u32 y, const SColor & color) IRR_OVERRIDE;
//! \return Returns the name of the video driver. Example: In case of the DirectX8
//! driver, it would return "Direct3D8.1".
virtual const wchar_t* getName() const IRR_OVERRIDE;
//! Returns type of video driver
virtual E_DRIVER_TYPE getDriverType() const IRR_OVERRIDE;
//! get color format of the current color buffer
virtual ECOLOR_FORMAT getColorFormat() const IRR_OVERRIDE;
//! Returns the transformation set by setTransform
virtual const core::matrix4& getTransform(E_TRANSFORMATION_STATE state) const IRR_OVERRIDE;
//! Creates a render target texture.
virtual ITexture* addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format = ECF_UNKNOWN
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
, const bool useStencil = false
#endif
) IRR_OVERRIDE;
virtual void clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) IRR_OVERRIDE;
//! Returns an image created from the last rendered frame.
virtual IImage* createScreenShot(video::ECOLOR_FORMAT format=video::ECF_UNKNOWN, video::E_RENDER_TARGET target=video::ERT_FRAME_BUFFER) IRR_OVERRIDE;
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
virtual u32 getMaximalPrimitiveCount() const IRR_OVERRIDE;
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Then, use IVideoDriver::drawStencilShadow() to visualize the shadow.
virtual void drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail=true, u32 debugDataVisible=0) IRR_OVERRIDE;
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
virtual void drawStencilShadow(bool clearStencilBuffer=false,
video::SColor leftUpEdge = video::SColor(0,0,0,0),
video::SColor rightUpEdge = video::SColor(0,0,0,0),
video::SColor leftDownEdge = video::SColor(0,0,0,0),
video::SColor rightDownEdge = video::SColor(0,0,0,0)) IRR_OVERRIDE;
//! Enable the 2d override material
virtual void enableMaterial2D(bool enable = true) IRR_OVERRIDE;
//! Returns the graphics card vendor name.
virtual core::stringc getVendorInfo() IRR_OVERRIDE;
//! Returns the maximum texture size supported.
virtual core::dimension2du getMaxTextureSize() const IRR_OVERRIDE;
//! Check if the driver supports creating textures with the given color format
virtual bool queryTextureFormat(ECOLOR_FORMAT format) const IRR_OVERRIDE;
#if !defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
//! Used by some SceneNodes to check if a material should be rendered in the transparent render pass
virtual bool needsTransparentRenderPass(const irr::video::SMaterial& material) const IRR_OVERRIDE;
#endif
IDepthBuffer * getDepthBuffer () { return DepthBuffer; }
IStencilBuffer * getStencilBuffer () { return StencilBuffer; }
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
virtual s32 addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData) IRR_OVERRIDE;
//! Adds a new material renderer to the VideoDriver, based on a high level shading
//! language. Currently only HLSL in D3D9 is supported.
virtual s32 addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName = 0,
E_VERTEX_SHADER_TYPE vsCompileTarget = EVST_VS_1_1,
const c8* pixelShaderProgram = 0,
const c8* pixelShaderEntryPointName = 0,
E_PIXEL_SHADER_TYPE psCompileTarget = EPST_PS_1_1,
const c8* geometryShaderProgram = 0,
const c8* geometryShaderEntryPointName = "main",
E_GEOMETRY_SHADER_TYPE gsCompileTarget = EGST_GS_4_0,
scene::E_PRIMITIVE_TYPE inType = scene::EPT_TRIANGLES,
scene::E_PRIMITIVE_TYPE outType = scene::EPT_TRIANGLE_STRIP,
u32 verticesOut = 0,
IShaderConstantSetCallBack* callback = 0,
E_MATERIAL_TYPE baseMaterial = video::EMT_SOLID,
s32 userData = 0
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
, E_GPU_SHADING_LANGUAGE shadingLang = EGSL_DEFAULT
#endif
) IRR_OVERRIDE;
//IMaterialRendererService
virtual void setBasicRenderStates(const SMaterial& material,
const SMaterial& lastMaterial,
bool resetAllRenderstates) IRR_OVERRIDE;
//pass BaseMaterialID
void setFallback_Material(E_MATERIAL_TYPE fallback_MaterialType);
//! Return an index constant for the vertex shader based on a name.
virtual s32 getVertexShaderConstantID(const c8* name) IRR_OVERRIDE;
virtual bool setVertexShaderConstant(s32 index, const f32* floats, int count) IRR_OVERRIDE;
virtual bool setVertexShaderConstant(s32 index, const s32* ints, int count) IRR_OVERRIDE;
virtual bool setVertexShaderConstant(s32 index, const u32* ints, int count) IRR_OVERRIDE;
virtual void setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) IRR_OVERRIDE;
//! Return an index constant for the pixel shader based on a name.
virtual s32 getPixelShaderConstantID(const c8* name) IRR_OVERRIDE;
virtual bool setPixelShaderConstant(s32 index, const f32* floats, int count) IRR_OVERRIDE;
virtual bool setPixelShaderConstant(s32 index, const s32* ints, int count) IRR_OVERRIDE;
virtual bool setPixelShaderConstant(s32 index, const u32* ints, int count) IRR_OVERRIDE;
virtual void setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) IRR_OVERRIDE;
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
virtual bool setVertexShaderConstant(const c8* name, const f32* floats, int count)
{
return setVertexShaderConstant(getVertexShaderConstantID(name), floats, count);
}
virtual bool setVertexShaderConstant(const c8* name, const bool* bools, int count)
{
return setVertexShaderConstant(getVertexShaderConstantID(name), (const s32*)bools, count);
}
virtual bool setVertexShaderConstant(const c8* name, const s32* ints, int count)
{
return setVertexShaderConstant(getVertexShaderConstantID(name), ints, count);
}
virtual bool setPixelShaderConstant(const c8* name, const f32* floats, int count)
{
return setPixelShaderConstant(getPixelShaderConstantID(name), floats, count);
}
virtual bool setPixelShaderConstant(const c8* name, const bool* bools, int count)
{
return setPixelShaderConstant(getPixelShaderConstantID(name), (const s32*)bools, count);
}
virtual bool setPixelShaderConstant(const c8* name, const s32* ints, int count)
{
return setPixelShaderConstant(getPixelShaderConstantID(name), ints, count);
}
#endif
//! Get pointer to the IVideoDriver interface
/** \return Pointer to the IVideoDriver interface */
virtual IVideoDriver* getVideoDriver() IRR_OVERRIDE;
protected:
void saveBuffer();
//! sets a render target
void setRenderTargetImage2(video::IImage* color, video::IImage* depth=0, video::IImage* stencil=0);
//! sets the current Texture
//bool setTexture(u32 stage, video::ITexture* texture);
virtual ITexture* createDeviceDependentTexture(const io::path& name, IImage* image) IRR_OVERRIDE;
virtual ITexture* createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image) IRR_OVERRIDE;
video::CImage* BackBuffer;
video::IImagePresenter* Presenter;
void* WindowId;
core::rect<s32>* SceneSourceRect;
video::ITexture* RenderTargetTexture;
video::IImage* RenderTargetSurface;
core::dimension2d<u32> RenderTargetSize;
sVec4 RatioRenderTargetScreen; // Smaller Render Target
IBurningShader* CurrentShader;
IBurningShader* BurningShader[ETR2_COUNT];
IDepthBuffer* DepthBuffer;
IStencilBuffer* StencilBuffer;
/*
extend Matrix Stack
-> combined CameraProjection
-> combined CameraProjectionWorld
-> ClipScale from NDC to DC Space
*/
enum E_TRANSFORMATION_STATE_BURNING_VIDEO
{
ETS_VIEW_PROJECTION = ETS_COUNT,
ETS_PROJ_MODEL_VIEW,
ETS_MODEL_VIEW,
ETS_NORMAL, //3x3 ModelView Tansposed Inverse
ETS_COUNT_BURNING = 16
};
// align manually to 16 byte start address
//u8 _pack_0[8];
enum E_TRANSFORMATION_FLAG
{
ETF_VALID = 1,
ETF_IDENTITY = 2,
ETF_TEXGEN_CAMERA_SPHERE = 4,
ETF_TEXGEN_CAMERA_REFLECTION = 8,
ETF_TEXGEN_WRAP = 16,
ETF_TEXGEN_MASK = ETF_TEXGEN_CAMERA_SPHERE | ETF_TEXGEN_CAMERA_REFLECTION | ETF_TEXGEN_WRAP
};
size_t TransformationStack; // 0 .. 3D , 1 .. 2D
core::matrix4 ALIGN(16) Transformation[2][ETS_COUNT_BURNING];
size_t TransformationFlag[2][ETS_COUNT_BURNING]; // E_TRANSFORMATION_FLAG
void setRenderStates2DMode(const video::SColor& color,const video::ITexture* texture,bool useAlphaChannelOfTexture);
void setRenderStates3DMode();
//ETS_CLIPSCALE, // moved outside to stay at 16 matrices
f32 Transformation_ETS_CLIPSCALE[2][4];
void transform_calc(E_TRANSFORMATION_STATE_BURNING_VIDEO state);
//core::recti ViewPort;
AbsRectangle Scissor;
// Vertex Cache
SVertexCache VertexCache;
int VertexCache_reset (const void* vertices, u32 vertexCount,
const void* indices, u32 indexCount,
E_VERTEX_TYPE vType,scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType);
void VertexCache_get (s4DVertexPair* face[4] );
void VertexCache_map_source_format();
void VertexCache_fill ( const u32 sourceIndex,const u32 destIndex );
s4DVertexPair* VertexCache_getVertex ( const u32 sourceIndex ) const;
// culling & clipping
//size_t inline clipToHyperPlane (s4DVertexPair* burning_restrict dest, const s4DVertexPair* burning_restrict source, const size_t inCount, const sVec4 &plane );
//size_t inline clipToFrustumTest ( const s4DVertex * v ) const;
public:
size_t clipToFrustum( const size_t vIn /*, const size_t clipmask_for_face*/ );
protected:
// holds transformed, clipped vertices for a triangle. triangle expands on clipping
// Buffer is in in pairs of 4DVertex (0 ... ndc, 1 .. dc and projected)
SAligned4DVertex Clipper;
SAligned4DVertex Clipper_temp;
#ifdef SOFTWARE_DRIVER_2_LIGHTING
void lightVertex_eye ( s4DVertex *dest, u32 vertexargb );
#endif
//! Sets the fog mode.
virtual void setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog) IRR_OVERRIDE;
void ndc_2_dc_and_project (s4DVertexPair* dest,const s4DVertexPair* source, const size_t vIn ) const;
//const is misleading. **v is const that true, but not *v..
f32 screenarea_inside (const s4DVertexPair* burning_restrict const face[] ) const;
s32 lodFactor_inside ( const s4DVertexPair* burning_restrict const face[], const size_t tex, const f32 dc_area, const f32 lod_bias ) const;
void select_polygon_mipmap_inside ( s4DVertex* burning_restrict face[], const size_t tex, const CSoftwareTexture2_Bound& b ) const;
void getCameraPosWorldSpace();
SBurningShaderEyeSpace EyeSpace;
SBurningShaderMaterial Material;
static const sVec4 NDCPlane[6+2];
//! Built-in 2D quad for 2D rendering.
S3DVertex Quad2DVertices[4];
interlaced_control Interlaced;
#if defined(PATCH_SUPERTUX_8_0_1_with_1_9_0)
core::array<IRenderTarget*> RenderTargets;
inline bool getWriteZBuffer(const SMaterial& material) const
{
return material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent());
}
virtual video::ITexture* createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData = 0)
{
return createDeviceDependentTexture(name, surface);
}
#endif
};
} // end namespace video
} // end namespace irr
#endif