irrlicht/source/Irrlicht/COGLES2Driver.cpp
Gregor Parzefall 5ececc7d29 Split up texture filtering properties of SMaterialLayer into MinFilter and MagFilter
You can now set the filter used when scaling textures down and the filter used when scaling textures up separately.
2023-07-16 13:02:26 +02:00

2806 lines
89 KiB
C++

// Copyright (C) 2014 Patryk Nadrowski
// Copyright (C) 2009-2010 Amundis
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in Irrlicht.h
#include "COGLES2Driver.h"
#include "CNullDriver.h"
#include "IContextManager.h"
#ifdef _IRR_COMPILE_WITH_OGLES2_
#include "COpenGLCoreTexture.h"
#include "COpenGLCoreRenderTarget.h"
#include "COpenGLCoreCacheHandler.h"
#include "COGLES2MaterialRenderer.h"
#include "COGLES2FixedPipelineRenderer.h"
#include "COGLES2Renderer2D.h"
#include "EVertexAttributes.h"
#include "CImage.h"
#include "os.h"
#ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_
#include "android_native_app_glue.h"
#endif
#include "mt_opengl.h"
namespace irr
{
namespace video
{
COGLES2Driver::COGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager) :
CNullDriver(io, params.WindowSize), COGLES2ExtensionHandler(), CacheHandler(0),
Params(params), ResetRenderStates(true), LockRenderStateMode(false), AntiAlias(params.AntiAlias),
MaterialRenderer2DActive(0), MaterialRenderer2DTexture(0), MaterialRenderer2DNoTexture(0),
CurrentRenderMode(ERM_NONE), Transformation3DChanged(true),
OGLES2ShaderPath(params.OGLES2ShaderPath),
ColorFormat(ECF_R8G8B8), ContextManager(contextManager)
{
#ifdef _DEBUG
setDebugName("COGLES2Driver");
#endif
if (!ContextManager)
return;
ContextManager->grab();
ContextManager->generateSurface();
ContextManager->generateContext();
ExposedData = ContextManager->getContext();
ContextManager->activateContext(ExposedData, false);
GL.LoadAllProcedures(ContextManager);
}
COGLES2Driver::~COGLES2Driver()
{
deleteMaterialRenders();
CacheHandler->getTextureCache().clear();
removeAllRenderTargets();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
delete MaterialRenderer2DTexture;
delete MaterialRenderer2DNoTexture;
delete CacheHandler;
if (ContextManager)
{
ContextManager->destroyContext();
ContextManager->destroySurface();
ContextManager->terminate();
ContextManager->drop();
}
}
bool COGLES2Driver::genericDriverInit(const core::dimension2d<u32>& screenSize, bool stencilBuffer)
{
Name = glGetString(GL_VERSION);
printVersion();
// print renderer information
VendorName = glGetString(GL_VENDOR);
os::Printer::log(VendorName.c_str(), ELL_INFORMATION);
// load extensions
initExtensions();
// reset cache handler
delete CacheHandler;
CacheHandler = new COGLES2CacheHandler(this);
StencilBuffer = stencilBuffer;
DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits);
// DriverAttributes->setAttribute("MaxLights", MaxLights);
DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy);
// DriverAttributes->setAttribute("MaxUserClipPlanes", MaxUserClipPlanes);
// DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers);
// DriverAttributes->setAttribute("MaxMultipleRenderTargets", MaxMultipleRenderTargets);
DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices);
DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize);
DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias);
DriverAttributes->setAttribute("Version", Version);
DriverAttributes->setAttribute("AntiAlias", AntiAlias);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
UserClipPlane.reallocate(0);
for (s32 i = 0; i < ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f));
glClearDepthf(1.0f);
glHint(GL_GENERATE_MIPMAP_HINT, GL_NICEST);
glFrontFace(GL_CW);
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
testGLError(__LINE__);
return true;
}
void COGLES2Driver::loadShaderData(const io::path& vertexShaderName, const io::path& fragmentShaderName, c8** vertexShaderData, c8** fragmentShaderData)
{
io::path vsPath(OGLES2ShaderPath);
vsPath += vertexShaderName;
io::path fsPath(OGLES2ShaderPath);
fsPath += fragmentShaderName;
*vertexShaderData = 0;
*fragmentShaderData = 0;
io::IReadFile* vsFile = FileSystem->createAndOpenFile(vsPath);
if ( !vsFile )
{
core::stringw warning(L"Warning: Missing shader files needed to simulate fixed function materials:\n");
warning += core::stringw(vsPath) + L"\n";
warning += L"Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
io::IReadFile* fsFile = FileSystem->createAndOpenFile(fsPath);
if ( !fsFile )
{
core::stringw warning(L"Warning: Missing shader files needed to simulate fixed function materials:\n");
warning += core::stringw(fsPath) + L"\n";
warning += L"Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
long size = vsFile->getSize();
if (size)
{
*vertexShaderData = new c8[size+1];
vsFile->read(*vertexShaderData, size);
(*vertexShaderData)[size] = 0;
}
size = fsFile->getSize();
if (size)
{
// if both handles are the same we must reset the file
if (fsFile == vsFile)
fsFile->seek(0);
*fragmentShaderData = new c8[size+1];
fsFile->read(*fragmentShaderData, size);
(*fragmentShaderData)[size] = 0;
}
vsFile->drop();
fsFile->drop();
}
void COGLES2Driver::createMaterialRenderers()
{
// Create callbacks.
COGLES2MaterialSolidCB* SolidCB = new COGLES2MaterialSolidCB();
COGLES2MaterialSolidCB* TransparentAlphaChannelCB = new COGLES2MaterialSolidCB();
COGLES2MaterialSolidCB* TransparentAlphaChannelRefCB = new COGLES2MaterialSolidCB();
COGLES2MaterialSolidCB* TransparentVertexAlphaCB = new COGLES2MaterialSolidCB();
COGLES2MaterialOneTextureBlendCB* OneTextureBlendCB = new COGLES2MaterialOneTextureBlendCB();
// Create built-in materials.
core::stringc VertexShader = OGLES2ShaderPath + "COGLES2Solid.vsh";
core::stringc FragmentShader = OGLES2ShaderPath + "COGLES2Solid.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, SolidCB, EMT_SOLID, 0);
FragmentShader = OGLES2ShaderPath + "COGLES2TransparentAlphaChannel.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
FragmentShader = OGLES2ShaderPath + "COGLES2TransparentAlphaChannelRef.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelRefCB, EMT_SOLID, 0);
FragmentShader = OGLES2ShaderPath + "COGLES2TransparentVertexAlpha.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentVertexAlphaCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
FragmentShader = OGLES2ShaderPath + "COGLES2OneTextureBlend.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, OneTextureBlendCB, EMT_ONETEXTURE_BLEND, 0);
// Drop callbacks.
SolidCB->drop();
TransparentAlphaChannelCB->drop();
TransparentAlphaChannelRefCB->drop();
TransparentVertexAlphaCB->drop();
OneTextureBlendCB->drop();
// Create 2D material renderers
c8* vs2DData = 0;
c8* fs2DData = 0;
loadShaderData(io::path("COGLES2Renderer2D.vsh"), io::path("COGLES2Renderer2D.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DTexture = new COGLES2Renderer2D(vs2DData, fs2DData, this, true);
delete[] vs2DData;
delete[] fs2DData;
vs2DData = 0;
fs2DData = 0;
loadShaderData(io::path("COGLES2Renderer2D.vsh"), io::path("COGLES2Renderer2D_noTex.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DNoTexture = new COGLES2Renderer2D(vs2DData, fs2DData, this, false);
delete[] vs2DData;
delete[] fs2DData;
}
bool COGLES2Driver::setMaterialTexture(irr::u32 layerIdx, const irr::video::ITexture* texture)
{
Material.TextureLayer[layerIdx].Texture = const_cast<ITexture*>(texture); // function uses const-pointer for texture because all draw functions use const-pointers already
return CacheHandler->getTextureCache().set(0, texture);
}
bool COGLES2Driver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
if (ContextManager)
ContextManager->activateContext(videoData, true);
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
bool COGLES2Driver::endScene()
{
CNullDriver::endScene();
glFlush();
if (ContextManager)
return ContextManager->swapBuffers();
return false;
}
//! Returns the transformation set by setTransform
const core::matrix4& COGLES2Driver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COGLES2Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
}
bool COGLES2Driver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* vertices = mb->getVertices();
const u32 vertexCount = mb->getVertexCount();
const E_VERTEX_TYPE vType = mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
const void *buffer = vertices;
size_t bufferSize = vertexSize * vertexCount;
//get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_verticesID)
{
glGenBuffers(1, &HWBuffer->vbo_verticesID);
if (!HWBuffer->vbo_verticesID) return false;
newBuffer = true;
}
else if (HWBuffer->vbo_verticesSize < bufferSize)
{
newBuffer = true;
}
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ARRAY_BUFFER, 0, bufferSize, buffer);
else
{
HWBuffer->vbo_verticesSize = bufferSize;
if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC)
glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_STATIC_DRAW);
else
glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
bool COGLES2Driver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* indices = mb->getIndices();
u32 indexCount = mb->getIndexCount();
GLenum indexSize;
switch (mb->getIndexType())
{
case(EIT_16BIT):
{
indexSize = sizeof(u16);
break;
}
case(EIT_32BIT):
{
indexSize = sizeof(u32);
break;
}
default:
{
return false;
}
}
//get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_indicesID)
{
glGenBuffers(1, &HWBuffer->vbo_indicesID);
if (!HWBuffer->vbo_indicesID) return false;
newBuffer = true;
}
else if (HWBuffer->vbo_indicesSize < indexCount*indexSize)
{
newBuffer = true;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
else
{
HWBuffer->vbo_indicesSize = indexCount * indexSize;
if (HWBuffer->Mapped_Index == scene::EHM_STATIC)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW);
else
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
//! updates hardware buffer if needed
bool COGLES2Driver::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex()
|| !static_cast<SHWBufferLink_opengl*>(HWBuffer)->vbo_verticesID)
{
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer(static_cast<SHWBufferLink_opengl*>(HWBuffer)))
return false;
}
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index()
|| !static_cast<SHWBufferLink_opengl*>(HWBuffer)->vbo_indicesID)
{
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
COGLES2Driver::SHWBufferLink *COGLES2Driver::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb);
//add to map
HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer);
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex();
HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index();
HWBuffer->vbo_verticesID = 0;
HWBuffer->vbo_indicesID = 0;
HWBuffer->vbo_verticesSize = 0;
HWBuffer->vbo_indicesSize = 0;
if (!updateHardwareBuffer(HWBuffer))
{
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
void COGLES2Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl*>(_HWBuffer);
if (HWBuffer->vbo_verticesID)
{
glDeleteBuffers(1, &HWBuffer->vbo_verticesID);
HWBuffer->vbo_verticesID = 0;
}
if (HWBuffer->vbo_indicesID)
{
glDeleteBuffers(1, &HWBuffer->vbo_indicesID);
HWBuffer->vbo_indicesID = 0;
}
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COGLES2Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl*>(_HWBuffer);
updateHardwareBuffer(HWBuffer); //check if update is needed
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void *vertices = mb->getVertices();
const void *indexList = mb->getIndices();
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
{
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
vertices = 0;
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
{
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
indexList = 0;
}
drawVertexPrimitiveList(vertices, mb->getVertexCount(),
indexList, mb->getPrimitiveCount(),
mb->getVertexType(), mb->getPrimitiveType(),
mb->getIndexType());
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
IRenderTarget* COGLES2Driver::addRenderTarget()
{
COGLES2RenderTarget* renderTarget = new COGLES2RenderTarget(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
// small helper function to create vertex buffer object adress offsets
static inline u8* buffer_offset(const long offset)
{
return ((u8*)0 + offset);
}
//! draws a vertex primitive list
void COGLES2Driver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
setRenderStates3DMode();
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_NORMAL);
glEnableVertexAttribArray(EVA_TCOORD0);
switch (vType)
{
case EVT_STANDARD:
if (vertices)
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Normal);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
}
else
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), 0);
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex), buffer_offset(12));
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), buffer_offset(24));
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
glEnableVertexAttribArray(EVA_TCOORD1);
if (vertices)
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Normal);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords);
glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2);
}
else
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(0));
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(12));
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex2TCoords), buffer_offset(24));
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexAttribPointer(EVA_TCOORD1, 2, GL_FLOAT, false, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
glEnableVertexAttribArray(EVA_TANGENT);
glEnableVertexAttribArray(EVA_BINORMAL);
if (vertices)
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Normal);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords);
glVertexAttribPointer(EVA_TANGENT, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Tangent);
glVertexAttribPointer(EVA_BINORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Binormal);
}
else
{
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(0));
glVertexAttribPointer(EVA_NORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(12));
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertexTangents), buffer_offset(24));
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexAttribPointer(EVA_TANGENT, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(36));
glVertexAttribPointer(EVA_BINORMAL, 3, GL_FLOAT, false, sizeof(S3DVertexTangents), buffer_offset(48));
}
break;
}
GLenum indexSize = 0;
switch (iType)
{
case(EIT_16BIT):
{
indexSize = GL_UNSIGNED_SHORT;
break;
}
case(EIT_32BIT):
{
#ifdef GL_OES_element_index_uint
#ifndef GL_UNSIGNED_INT
#define GL_UNSIGNED_INT 0x1405
#endif
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint])
indexSize = GL_UNSIGNED_INT;
else
#endif
indexSize = GL_UNSIGNED_SHORT;
break;
}
}
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
glDrawArrays(GL_POINTS, 0, primitiveCount);
break;
case scene::EPT_LINE_STRIP:
glDrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList);
break;
case scene::EPT_LINE_LOOP:
glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
break;
case scene::EPT_LINES:
glDrawElements(GL_LINES, primitiveCount*2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
glDrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
glDrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLES:
glDrawElements((LastMaterial.Wireframe) ? GL_LINES : (LastMaterial.PointCloud) ? GL_POINTS : GL_TRIANGLES, primitiveCount*3, indexSize, indexList);
break;
default:
break;
}
switch (vType)
{
case EVT_2TCOORDS:
glDisableVertexAttribArray(EVA_TCOORD1);
break;
case EVT_TANGENTS:
glDisableVertexAttribArray(EVA_TANGENT);
glDisableVertexAttribArray(EVA_BINORMAL);
break;
default:
break;
}
glDisableVertexAttribArray(EVA_POSITION);
glDisableVertexAttribArray(EVA_NORMAL);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_TCOORD0);
}
void COGLES2Driver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos(destPos);
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner);
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X < 0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < 0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2d<u32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
(isRTT ? (sourcePos.Y + sourceSize.Height) : sourcePos.Y) * invH,
(sourcePos.X + sourceSize.Width) * invW,
(isRTT ? sourcePos.Y : (sourcePos.Y + sourceSize.Height)) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
chooseMaterial2D();
if (!setMaterialTexture(0, texture ))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
f32 left = (f32)poss.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)poss.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)poss.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)poss.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_TCOORD0);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_TCOORD0);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
void COGLES2Driver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2du& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) *invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
chooseMaterial2D();
if (!setMaterialTexture(0, texture ))
return;
setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 ||
useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255,
true, useAlphaChannelOfTexture);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
f32 left = (f32)destRect.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)destRect.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)destRect.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)destRect.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
u16 indices[] = { 0, 1, 2, 3 };
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_TCOORD0);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_TCOORD0);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
if (clipRect)
glDisable(GL_SCISSOR_TEST);
testGLError(__LINE__);
}
void COGLES2Driver::draw2DImage(const video::ITexture* texture, u32 layer, bool flip)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture ))
return;
setRenderStates2DMode(false, true, true);
u16 quad2DIndices[] = { 0, 1, 2, 3 };
S3DVertex quad2DVertices[4];
quad2DVertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f);
quad2DVertices[1].Pos = core::vector3df(1.f, 1.f, 0.f);
quad2DVertices[2].Pos = core::vector3df(1.f, -1.f, 0.f);
quad2DVertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f);
f32 modificator = (flip) ? 1.f : 0.f;
quad2DVertices[0].TCoords = core::vector2df(0.f, 0.f + modificator);
quad2DVertices[1].TCoords = core::vector2df(1.f, 0.f + modificator);
quad2DVertices[2].TCoords = core::vector2df(1.f, 1.f - modificator);
quad2DVertices[3].TCoords = core::vector2df(0.f, 1.f - modificator);
quad2DVertices[0].Color = SColor(0xFFFFFFFF);
quad2DVertices[1].Color = SColor(0xFFFFFFFF);
quad2DVertices[2].Color = SColor(0xFFFFFFFF);
quad2DVertices[3].Color = SColor(0xFFFFFFFF);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_TCOORD0);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(quad2DVertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(quad2DVertices))[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(quad2DVertices))[0].TCoords);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, quad2DIndices);
glDisableVertexAttribArray(EVA_TCOORD0);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
void COGLES2Driver::draw2DImageBatch(const video::ITexture* texture,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect,
SColor color, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
core::array<S3DVertex> vtx(drawCount * 4);
core::array<u16> indices(drawCount * 6);
for (u32 i = 0; i < drawCount; i++)
{
core::position2d<s32> targetPos = positions[i];
core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
continue;
}
}
// clip these coordinates
if (targetPos.X < 0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < 0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
continue;
}
// ok, we've clipped everything.
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
f32 left = (f32)poss.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)poss.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)poss.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)poss.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
vtx.push_back(S3DVertex(left, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex(right, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex(right, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vtx.push_back(S3DVertex(left, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
const u32 curPos = vtx.size() - 4;
indices.push_back(0 + curPos);
indices.push_back(1 + curPos);
indices.push_back(2 + curPos);
indices.push_back(0 + curPos);
indices.push_back(2 + curPos);
indices.push_back(3 + curPos);
}
if (vtx.size())
{
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_TCOORD0);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &vtx[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &vtx[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &vtx[0].TCoords);
glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_SHORT, indices.pointer());
glDisableVertexAttribArray(EVA_TCOORD0);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
}
//! draws a set of 2d images, using a color and the alpha channel
void COGLES2Driver::draw2DImageBatch(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::array<core::rect<s32> >& sourceRects,
const core::array<s32>& indices, s32 kerningWidth,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
const core::dimension2du& ss = texture->getOriginalSize();
core::position2d<s32> targetPos(pos);
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
core::array<S3DVertex> vertices;
core::array<u16> quadIndices;
vertices.reallocate(indices.size()*4);
quadIndices.reallocate(indices.size()*3);
for (u32 i = 0; i < indices.size(); ++i)
{
const s32 currentIndex = indices[i];
if (!sourceRects[currentIndex].isValid())
break;
const core::rect<f32> tcoords(
sourceRects[currentIndex].UpperLeftCorner.X * invW,
(isRTT ? sourceRects[currentIndex].LowerRightCorner.Y : sourceRects[currentIndex].UpperLeftCorner.Y) * invH,
sourceRects[currentIndex].LowerRightCorner.X * invW,
(isRTT ? sourceRects[currentIndex].UpperLeftCorner.Y : sourceRects[currentIndex].LowerRightCorner.Y) * invH);
const core::rect<s32> poss(targetPos, sourceRects[currentIndex].getSize());
f32 left = (f32)poss.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)poss.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)poss.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)poss.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
const u32 vstart = vertices.size();
vertices.push_back(S3DVertex(left, top, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex(right, top, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex(right, down, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vertices.push_back(S3DVertex(left, down, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+1);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart+3);
targetPos.X += sourceRects[currentIndex].getWidth();
}
if (vertices.size())
{
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glEnableVertexAttribArray(EVA_TCOORD0);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &vertices[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &vertices[0].Color);
glVertexAttribPointer(EVA_TCOORD0, 2, GL_FLOAT, false, sizeof(S3DVertex), &vertices[0].TCoords);
glDrawElements(GL_TRIANGLES, quadIndices.size(), GL_UNSIGNED_SHORT, quadIndices.pointer());
glDisableVertexAttribArray(EVA_TCOORD0);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
if (clipRect)
glDisable(GL_SCISSOR_TEST);
testGLError(__LINE__);
}
//! draw a 2d rectangle
void COGLES2Driver::draw2DRectangle(SColor color,
const core::rect<s32>& position,
const core::rect<s32>* clip)
{
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, color, 0, 0);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, color, 0, 0);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, color, 0, 0);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
//! draw an 2d rectangle
void COGLES2Driver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp,
SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, colorLeftUp, 0, 0);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, colorRightUp, 0, 0);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, colorRightDown, 0, 0);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, colorLeftDown, 0, 0);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
//! Draws a 2d line.
void COGLES2Driver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end, SColor color)
{
if (start==end)
drawPixel(start.X, start.Y, color);
else
{
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 startX = (f32)start.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 endX = (f32)end.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 startY = 2.f - (f32)start.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 endY = 2.f - (f32)end.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
u16 indices[] = {0, 1};
S3DVertex vertices[2];
vertices[0] = S3DVertex(startX, startY, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(endX, endY, 0, 0, 0, 1, color, 1, 1);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawElements(GL_LINES, 2, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
}
//! Draws a pixel
void COGLES2Driver::drawPixel(u32 x, u32 y, const SColor &color)
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height)
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
f32 X = (f32)x / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 Y = 2.f - (f32)y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[1];
vertices[0] = S3DVertex(X, Y, 0, 0, 0, 1, color, 0, 0);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawArrays(GL_POINTS, 0, 1);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
ITexture* COGLES2Driver::createDeviceDependentTexture(const io::path& name, IImage* image)
{
core::array<IImage*> imageArray(1);
imageArray.push_back(image);
COGLES2Texture* texture = new COGLES2Texture(name, imageArray, ETT_2D, this);
return texture;
}
ITexture* COGLES2Driver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image)
{
COGLES2Texture* texture = new COGLES2Texture(name, image, ETT_CUBEMAP, this);
return texture;
}
//! Sets a material.
void COGLES2Driver::setMaterial(const SMaterial& material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i = 0; i < Feature.MaxTextureUnits; ++i)
{
CacheHandler->getTextureCache().set(i, material.getTexture(i));
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i));
}
}
//! prints error if an error happened.
bool COGLES2Driver::testGLError(int code)
{
#ifdef _DEBUG
GLenum g = glGetError();
switch (g)
{
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR);
break;
};
return true;
#else
return false;
#endif
}
//! prints error if an error happened.
bool COGLES2Driver::testEGLError()
{
#if defined(EGL_VERSION_1_0) && defined(_DEBUG)
EGLint g = eglGetError();
switch (g)
{
case EGL_SUCCESS:
return false;
case EGL_NOT_INITIALIZED :
os::Printer::log("Not Initialized", ELL_ERROR);
break;
case EGL_BAD_ACCESS:
os::Printer::log("Bad Access", ELL_ERROR);
break;
case EGL_BAD_ALLOC:
os::Printer::log("Bad Alloc", ELL_ERROR);
break;
case EGL_BAD_ATTRIBUTE:
os::Printer::log("Bad Attribute", ELL_ERROR);
break;
case EGL_BAD_CONTEXT:
os::Printer::log("Bad Context", ELL_ERROR);
break;
case EGL_BAD_CONFIG:
os::Printer::log("Bad Config", ELL_ERROR);
break;
case EGL_BAD_CURRENT_SURFACE:
os::Printer::log("Bad Current Surface", ELL_ERROR);
break;
case EGL_BAD_DISPLAY:
os::Printer::log("Bad Display", ELL_ERROR);
break;
case EGL_BAD_SURFACE:
os::Printer::log("Bad Surface", ELL_ERROR);
break;
case EGL_BAD_MATCH:
os::Printer::log("Bad Match", ELL_ERROR);
break;
case EGL_BAD_PARAMETER:
os::Printer::log("Bad Parameter", ELL_ERROR);
break;
case EGL_BAD_NATIVE_PIXMAP:
os::Printer::log("Bad Native Pixmap", ELL_ERROR);
break;
case EGL_BAD_NATIVE_WINDOW:
os::Printer::log("Bad Native Window", ELL_ERROR);
break;
case EGL_CONTEXT_LOST:
os::Printer::log("Context Lost", ELL_ERROR);
break;
};
return true;
#else
return false;
#endif
}
void COGLES2Driver::setRenderStates3DMode()
{
if ( LockRenderStateMode )
return;
if (CurrentRenderMode != ERM_3D)
{
// Reset Texture Stages
CacheHandler->setBlend(false);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material)
{
// unset old material
// unset last 3d material
if (CurrentRenderMode == ERM_2D && MaterialRenderer2DActive)
{
MaterialRenderer2DActive->OnUnsetMaterial();
MaterialRenderer2DActive = 0;
}
else if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COGLES2Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates)
{
// ZBuffer
switch (material.ZBuffer)
{
case ECFN_DISABLED:
CacheHandler->setDepthTest(false);
break;
case ECFN_LESSEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_ALWAYS);
break;
case ECFN_NEVER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NEVER);
break;
default:
break;
}
// ZWrite
if (getWriteZBuffer(material))
{
CacheHandler->setDepthMask(true);
}
else
{
CacheHandler->setDepthMask(false);
}
// Back face culling
if ((material.FrontfaceCulling) && (material.BackfaceCulling))
{
CacheHandler->setCullFaceFunc(GL_FRONT_AND_BACK);
CacheHandler->setCullFace(true);
}
else if (material.BackfaceCulling)
{
CacheHandler->setCullFaceFunc(GL_BACK);
CacheHandler->setCullFace(true);
}
else if (material.FrontfaceCulling)
{
CacheHandler->setCullFaceFunc(GL_FRONT);
CacheHandler->setCullFace(true);
}
else
{
CacheHandler->setCullFace(false);
}
// Color Mask
CacheHandler->setColorMask(material.ColorMask);
// Blend Equation
if (material.BlendOperation == EBO_NONE)
CacheHandler->setBlend(false);
else
{
CacheHandler->setBlend(true);
switch (material.BlendOperation)
{
case EBO_ADD:
CacheHandler->setBlendEquation(GL_FUNC_ADD);
break;
case EBO_SUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT);
break;
case EBO_REVSUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
break;
default:
break;
}
}
// Blend Factor
if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF?
&& material.MaterialType != EMT_ONETEXTURE_BLEND
)
{
E_BLEND_FACTOR srcRGBFact = EBF_ZERO;
E_BLEND_FACTOR dstRGBFact = EBF_ZERO;
E_BLEND_FACTOR srcAlphaFact = EBF_ZERO;
E_BLEND_FACTOR dstAlphaFact = EBF_ZERO;
E_MODULATE_FUNC modulo = EMFN_MODULATE_1X;
u32 alphaSource = 0;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor);
CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact),
getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact));
}
// TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver.
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
// Anti aliasing
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing)
{
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE);
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE);
}
// Texture parameters
setTextureRenderStates(material, resetAllRenderStates);
}
//! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call.
void COGLES2Driver::setTextureRenderStates(const SMaterial& material, bool resetAllRenderstates)
{
// Set textures to TU/TIU and apply filters to them
for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i)
{
const COGLES2Texture* tmpTexture = CacheHandler->getTextureCache()[i];
if (!tmpTexture)
continue;
GLenum tmpTextureType = tmpTexture->getOpenGLTextureType();
CacheHandler->setActiveTexture(GL_TEXTURE0 + i);
if (resetAllRenderstates)
tmpTexture->getStatesCache().IsCached = false;
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].MagFilter != tmpTexture->getStatesCache().MagFilter)
{
E_TEXTURE_MAG_FILTER magFilter = material.TextureLayer[i].MagFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER,
magFilter == ETMAGF_BILINEAR ? GL_LINEAR : GL_NEAREST);
tmpTexture->getStatesCache().MagFilter = magFilter;
}
if (material.UseMipMaps && tmpTexture->hasMipMaps())
{
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].MinFilter != tmpTexture->getStatesCache().MinFilter ||
!tmpTexture->getStatesCache().MipMapStatus)
{
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayer[i].MinFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
minFilter == ETMINF_TRILINEAR ? GL_LINEAR_MIPMAP_LINEAR :
minFilter == ETMINF_BILINEAR ? GL_LINEAR_MIPMAP_NEAREST :
GL_NEAREST_MIPMAP_NEAREST);
tmpTexture->getStatesCache().MinFilter = minFilter;
tmpTexture->getStatesCache().MipMapStatus = true;
}
}
else
{
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].MinFilter != tmpTexture->getStatesCache().MinFilter ||
tmpTexture->getStatesCache().MipMapStatus)
{
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayer[i].MinFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
(minFilter == ETMINF_TRILINEAR || minFilter == ETMINF_BILINEAR) ? GL_LINEAR : GL_NEAREST);
tmpTexture->getStatesCache().MinFilter = minFilter;
tmpTexture->getStatesCache().MipMapStatus = false;
}
}
#ifdef GL_EXT_texture_filter_anisotropic
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_filter_anisotropic] &&
(!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].AnisotropicFilter != tmpTexture->getStatesCache().AnisotropicFilter))
{
glTexParameteri(tmpTextureType, GL_TEXTURE_MAX_ANISOTROPY_EXT,
material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1);
tmpTexture->getStatesCache().AnisotropicFilter = material.TextureLayer[i].AnisotropicFilter;
}
#endif
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapU != tmpTexture->getStatesCache().WrapU)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[i].TextureWrapU));
tmpTexture->getStatesCache().WrapU = material.TextureLayer[i].TextureWrapU;
}
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapV != tmpTexture->getStatesCache().WrapV)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[i].TextureWrapV));
tmpTexture->getStatesCache().WrapV = material.TextureLayer[i].TextureWrapV;
}
tmpTexture->getStatesCache().IsCached = true;
}
}
// Get OpenGL ES2.0 texture wrap mode from Irrlicht wrap mode.
GLint COGLES2Driver::getTextureWrapMode(u8 clamp) const
{
switch (clamp)
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
return GL_CLAMP_TO_EDGE;
case ETC_MIRROR:
return GL_REPEAT;
default:
return GL_REPEAT;
}
}
//! sets the needed renderstates
void COGLES2Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if ( LockRenderStateMode )
return;
COGLES2Renderer2D* nextActiveRenderer = texture ? MaterialRenderer2DTexture : MaterialRenderer2DNoTexture;
if (CurrentRenderMode != ERM_2D)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
CurrentRenderMode = ERM_2D;
}
else if ( MaterialRenderer2DActive && MaterialRenderer2DActive != nextActiveRenderer)
{
MaterialRenderer2DActive->OnUnsetMaterial();
}
MaterialRenderer2DActive = nextActiveRenderer;
MaterialRenderer2DActive->OnSetMaterial(Material, LastMaterial, true, 0);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
// no alphaChannel without texture
alphaChannel &= texture;
if (alphaChannel || alpha)
{
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
CacheHandler->setBlendEquation(GL_FUNC_ADD);
}
else
CacheHandler->setBlend(false);
Material.setTexture(0, const_cast<COGLES2Texture*>(CacheHandler->getTextureCache().get(0)));
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
if (texture)
{
if (OverrideMaterial2DEnabled)
setTextureRenderStates(OverrideMaterial2D, false);
else
setTextureRenderStates(InitMaterial2D, false);
}
MaterialRenderer2DActive->OnRender(this, video::EVT_STANDARD);
}
void COGLES2Driver::chooseMaterial2D()
{
if (!OverrideMaterial2DEnabled)
Material = InitMaterial2D;
if (OverrideMaterial2DEnabled)
{
OverrideMaterial2D.Lighting=false;
OverrideMaterial2D.ZWriteEnable=EZW_OFF;
OverrideMaterial2D.ZBuffer=ECFN_DISABLED; // it will be ECFN_DISABLED after merge
OverrideMaterial2D.Lighting=false;
Material = OverrideMaterial2D;
}
}
//! \return Returns the name of the video driver.
const wchar_t* COGLES2Driver::getName() const
{
return Name.c_str();
}
void COGLES2Driver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
void COGLES2Driver::setViewPortRaw(u32 width, u32 height)
{
CacheHandler->setViewport(0, 0, width, height);
ViewPort = core::recti(0, 0, width, height);
}
//! Draws a shadow volume into the stencil buffer.
void COGLES2Driver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
const u32 count=triangles.size();
if (!StencilBuffer || !count)
return;
bool fog = Material.FogEnable;
bool lighting = Material.Lighting;
E_MATERIAL_TYPE materialType = Material.MaterialType;
Material.FogEnable = false;
Material.Lighting = false;
Material.MaterialType = EMT_SOLID; // Dedicated material in future.
setRenderStates3DMode();
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LESS);
CacheHandler->setDepthMask(false);
if (!(debugDataVisible & (scene::EDS_SKELETON|scene::EDS_MESH_WIRE_OVERLAY)))
{
CacheHandler->setColorMask(ECP_NONE);
glEnable(GL_STENCIL_TEST);
}
glEnableVertexAttribArray(EVA_POSITION);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(core::vector3df), triangles.const_pointer());
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
GLenum decr = GL_DECR;
GLenum incr = GL_INCR;
#if defined(GL_OES_stencil_wrap)
if (FeatureAvailable[IRR_OES_stencil_wrap])
{
decr = GL_DECR_WRAP_OES;
incr = GL_INCR_WRAP_OES;
}
#endif
CacheHandler->setCullFace(true);
if (zfail)
{
CacheHandler->setCullFaceFunc(GL_FRONT);
glStencilOp(GL_KEEP, incr, GL_KEEP);
glDrawArrays(GL_TRIANGLES, 0, count);
CacheHandler->setCullFaceFunc(GL_BACK);
glStencilOp(GL_KEEP, decr, GL_KEEP);
glDrawArrays(GL_TRIANGLES, 0, count);
}
else // zpass
{
CacheHandler->setCullFaceFunc(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, incr);
glDrawArrays(GL_TRIANGLES, 0, count);
CacheHandler->setCullFaceFunc(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, decr);
glDrawArrays(GL_TRIANGLES, 0, count);
}
glDisableVertexAttribArray(EVA_POSITION);
glDisable(GL_STENCIL_TEST);
Material.FogEnable = fog;
Material.Lighting = lighting;
Material.MaterialType = materialType;
}
void COGLES2Driver::drawStencilShadow(bool clearStencilBuffer,
video::SColor leftUpEdge, video::SColor rightUpEdge,
video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(true, false, false);
CacheHandler->setDepthMask(false);
CacheHandler->setColorMask(ECP_ALL);
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex(-1.f, 1.f, 0.9f, 0, 0, 1, leftDownEdge, 0, 0);
vertices[1] = S3DVertex(1.f, 1.f, 0.9f, 0, 0, 1, leftUpEdge, 0, 0);
vertices[2] = S3DVertex(1.f, -1.f, 0.9f, 0, 0, 1, rightUpEdge, 0, 0);
vertices[3] = S3DVertex(-1.f, -1.f, 0.9f, 0, 0, 1, rightDownEdge, 0, 0);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
if (clearStencilBuffer)
glClear(GL_STENCIL_BUFFER_BIT);
glDisable(GL_STENCIL_TEST);
}
//! Draws a 3d line.
void COGLES2Driver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setRenderStates3DMode();
u16 indices[] = {0, 1};
S3DVertex vertices[2];
vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0);
glEnableVertexAttribArray(EVA_POSITION);
glEnableVertexAttribArray(EVA_COLOR);
glVertexAttribPointer(EVA_POSITION, 3, GL_FLOAT, false, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
glVertexAttribPointer(EVA_COLOR, 4, GL_UNSIGNED_BYTE, true, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color);
glDrawElements(GL_LINES, 2, GL_UNSIGNED_SHORT, indices);
glDisableVertexAttribArray(EVA_COLOR);
glDisableVertexAttribArray(EVA_POSITION);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COGLES2Driver::OnResize(const core::dimension2d<u32>& size)
{
CNullDriver::OnResize(size);
CacheHandler->setViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COGLES2Driver::getDriverType() const
{
return EDT_OGLES2;
}
//! returns color format
ECOLOR_FORMAT COGLES2Driver::getColorFormat() const
{
return ColorFormat;
}
//! Get a vertex shader constant index.
s32 COGLES2Driver::getVertexShaderConstantID(const c8* name)
{
return getPixelShaderConstantID(name);
}
//! Get a pixel shader constant index.
s32 COGLES2Driver::getPixelShaderConstantID(const c8* name)
{
os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID().");
return -1;
}
//! Sets a vertex shader constant.
void COGLES2Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setPixelShaderConstant().");
}
//! Sets a pixel shader constant.
void COGLES2Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
}
//! Sets a constant for the vertex shader based on an index.
bool COGLES2Driver::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Int interface for the above.
bool COGLES2Driver::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
bool COGLES2Driver::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Sets a constant for the pixel shader based on an index.
bool COGLES2Driver::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Int interface for the above.
bool COGLES2Driver::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
bool COGLES2Driver::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 COGLES2Driver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
os::Printer::log("No shader support.");
return -1;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COGLES2Driver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
COGLES2MaterialRenderer* r = new COGLES2MaterialRenderer(
this, nr, vertexShaderProgram,
pixelShaderProgram,
callback, baseMaterial, userData);
r->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* COGLES2Driver::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices* COGLES2Driver::getGPUProgrammingServices()
{
return this;
}
ITexture* COGLES2Driver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
COGLES2Texture* renderTargetTexture = new COGLES2Texture(name, size, ETT_2D, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
ITexture* COGLES2Driver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
const core::dimension2d<u32> size(sideLen, sideLen);
core::dimension2du destSize(size);
if (!supportForFBO)
{
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COGLES2Texture* renderTargetTexture = new COGLES2Texture(name, destSize, ETT_CUBEMAP, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
//! Returns the maximum amount of primitives
u32 COGLES2Driver::getMaximalPrimitiveCount() const
{
return 65535;
}
bool COGLES2Driver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != EDT_OGLES2 && target->getDriverType() != EDT_WEBGL1)
{
os::Printer::log("Fatal Error: Tried to set a render target not owned by OGLES2 driver.", ELL_ERROR);
return false;
}
core::dimension2d<u32> destRenderTargetSize(0, 0);
if (target)
{
COGLES2RenderTarget* renderTarget = static_cast<COGLES2RenderTarget*>(target);
CacheHandler->setFBO(renderTarget->getBufferID());
renderTarget->update();
destRenderTargetSize = renderTarget->getSize();
setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height);
}
else
{
CacheHandler->setFBO(0);
destRenderTargetSize = core::dimension2d<u32>(0, 0);
setViewPortRaw(ScreenSize.Width, ScreenSize.Height);
}
if (CurrentRenderTargetSize != destRenderTargetSize)
{
CurrentRenderTargetSize = destRenderTargetSize;
Transformation3DChanged = true;
}
CurrentRenderTarget = target;
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
void COGLES2Driver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
GLbitfield mask = 0;
u8 colorMask = 0;
bool depthMask = false;
CacheHandler->getColorMask(colorMask);
CacheHandler->getDepthMask(depthMask);
if (flag & ECBF_COLOR)
{
CacheHandler->setColorMask(ECP_ALL);
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (flag & ECBF_DEPTH)
{
CacheHandler->setDepthMask(true);
glClearDepthf(depth);
mask |= GL_DEPTH_BUFFER_BIT;
}
if (flag & ECBF_STENCIL)
{
glClearStencil(stencil);
mask |= GL_STENCIL_BUFFER_BIT;
}
if (mask)
glClear(mask);
CacheHandler->setColorMask(colorMask);
CacheHandler->setDepthMask(depthMask);
}
//! Returns an image created from the last rendered frame.
// We want to read the front buffer to get the latest render finished.
// This is not possible under ogl-es, though, so one has to call this method
// outside of the render loop only.
IImage* COGLES2Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target==video::ERT_MULTI_RENDER_TEXTURES || target==video::ERT_RENDER_TEXTURE || target==video::ERT_STEREO_BOTH_BUFFERS)
return 0;
GLint internalformat = GL_RGBA;
GLint type = GL_UNSIGNED_BYTE;
{
// glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &internalformat);
// glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &type);
// there's a format we don't support ATM
if (GL_UNSIGNED_SHORT_4_4_4_4 == type)
{
internalformat = GL_RGBA;
type = GL_UNSIGNED_BYTE;
}
}
IImage* newImage = 0;
if (GL_RGBA == internalformat)
{
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_A1R5G5B5, ScreenSize);
}
else
{
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_R5G6B5, ScreenSize);
}
if (!newImage)
return 0;
u8* pixels = static_cast<u8*>(newImage->getData());
if (!pixels)
{
newImage->drop();
return 0;
}
glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels);
testGLError(__LINE__);
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch = newImage->getPitch();
u8* p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8* tmpBuffer = new u8[pitch];
for (u32 i = 0; i < ScreenSize.Height; i += 2)
{
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete [] tmpBuffer;
// also GL_RGBA doesn't match the internal encoding of the image (which is BGRA)
if (GL_RGBA == internalformat && GL_UNSIGNED_BYTE == type)
{
pixels = static_cast<u8*>(newImage->getData());
for (u32 i = 0; i < ScreenSize.Height; i++)
{
for (u32 j = 0; j < ScreenSize.Width; j++)
{
u32 c = *(u32*) (pixels + 4 * j);
*(u32*) (pixels + 4 * j) = (c & 0xFF00FF00) |
((c & 0x00FF0000) >> 16) | ((c & 0x000000FF) << 16);
}
pixels += pitch;
}
}
if (testGLError(__LINE__))
{
newImage->drop();
return 0;
}
testGLError(__LINE__);
return newImage;
}
void COGLES2Driver::removeTexture(ITexture* texture)
{
CacheHandler->getTextureCache().remove(texture);
CNullDriver::removeTexture(texture);
}
//! Set/unset a clipping plane.
bool COGLES2Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= UserClipPlane.size())
UserClipPlane.push_back(SUserClipPlane());
UserClipPlane[index].Plane = plane;
UserClipPlane[index].Enabled = enable;
return true;
}
//! Enable/disable a clipping plane.
void COGLES2Driver::enableClipPlane(u32 index, bool enable)
{
UserClipPlane[index].Enabled = enable;
}
//! Get the ClipPlane Count
u32 COGLES2Driver::getClipPlaneCount() const
{
return UserClipPlane.size();
}
const core::plane3df& COGLES2Driver::getClipPlane(irr::u32 index) const
{
if (index < UserClipPlane.size())
return UserClipPlane[index].Plane;
else
{
_IRR_DEBUG_BREAK_IF(true) // invalid index
static const core::plane3df dummy;
return dummy;
}
}
core::dimension2du COGLES2Driver::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
GLenum COGLES2Driver::getGLBlend(E_BLEND_FACTOR factor) const
{
static GLenum const blendTable[] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE
};
return blendTable[factor];
}
GLenum COGLES2Driver::getZBufferBits() const
{
// TODO: never used, so not sure what this was really about (zbuffer used by device? Or for RTT's?)
GLenum bits = 0;
switch (Params.ZBufferBits)
{
case 24:
#if defined(GL_OES_depth24)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth24))
bits = GL_DEPTH_COMPONENT24_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
case 32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32))
bits = GL_DEPTH_COMPONENT32_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
default:
bits = GL_DEPTH_COMPONENT16;
break;
}
return bits;
}
bool COGLES2Driver::getColorFormatParameters(ECOLOR_FORMAT format, GLint& internalFormat, GLenum& pixelFormat,
GLenum& pixelType, void(**converter)(const void*, s32, void*)) const
{
bool supported = false;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_BYTE;
*converter = 0;
switch (format)
{
case ECF_A1R5G5B5:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_SHORT_5_5_5_1;
*converter = CColorConverter::convert_A1R5G5B5toR5G5B5A1;
break;
case ECF_R5G6B5:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_SHORT_5_6_5;
break;
case ECF_R8G8B8:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_BYTE;
break;
case ECF_A8R8G8B8:
supported = true;
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_IMG_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_APPLE_texture_format_BGRA8888))
{
pixelFormat = GL_BGRA;
}
else
{
pixelFormat = GL_RGBA;
*converter = CColorConverter::convert_A8R8G8B8toA8B8G8R8;
}
pixelType = GL_UNSIGNED_BYTE;
break;
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT1:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
break;
#endif
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT2:
case ECF_DXT3:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
break;
#endif
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT4:
case ECF_DXT5:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_RGB2:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_ARGB2:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_RGB4:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_ARGB4:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc2
case ECF_PVRTC2_ARGB2:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc2
case ECF_PVRTC2_ARGB4:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG;
break;
#endif
#ifdef GL_OES_compressed_ETC1_RGB8_texture
case ECF_ETC1:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_ETC1_RGB8_OES;
break;
#endif
#ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available
case ECF_ETC2_RGB:
supported = true;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB8_ETC2;
break;
#endif
#ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available
case ECF_ETC2_ARGB:
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA8_ETC2_EAC;
break;
#endif
case ECF_D16:
supported = true;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_SHORT;
break;
case ECF_D32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32))
{
supported = true;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_INT;
}
#endif
break;
case ECF_D24S8:
#ifdef GL_OES_packed_depth_stencil
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_packed_depth_stencil))
{
supported = true;
pixelFormat = GL_DEPTH_STENCIL_OES;
pixelType = GL_UNSIGNED_INT_24_8_OES;
}
#endif
break;
case ECF_R8:
#if defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg))
{
supported = true;
pixelFormat = GL_RED_EXT;
pixelType = GL_UNSIGNED_BYTE;
}
#endif
break;
case ECF_R8G8:
#if defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg))
{
supported = true;
pixelFormat = GL_RG_EXT;
pixelType = GL_UNSIGNED_BYTE;
}
#endif
break;
case ECF_R16:
break;
case ECF_R16G16:
break;
case ECF_R16F:
#if defined(GL_OES_texture_half_float) && defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)
&& queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float)
)
{
supported = true;
pixelFormat = GL_RED_EXT;
pixelType = GL_HALF_FLOAT_OES ;
}
#endif
break;
case ECF_G16R16F:
#if defined(GL_OES_texture_half_float) && defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)
&& queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float)
)
{
supported = true;
pixelFormat = GL_RG_EXT;
pixelType = GL_HALF_FLOAT_OES ;
}
#endif
break;
case ECF_A16B16G16R16F:
#if defined(GL_OES_texture_half_float)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float))
{
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_HALF_FLOAT_OES ;
}
#endif
break;
case ECF_R32F:
#if defined(GL_OES_texture_float) && defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)
&& queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_float)
)
{
supported = true;
pixelFormat = GL_RED_EXT;
pixelType = GL_FLOAT;
}
#endif
break;
case ECF_G32R32F:
#if defined(GL_OES_texture_float) && defined(GL_EXT_texture_rg)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)
&& queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_float)
)
{
supported = true;
pixelFormat = GL_RG_EXT;
pixelType = GL_FLOAT;
}
#endif
break;
case ECF_A32B32G32R32F:
#if defined(GL_OES_texture_float)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float))
{
supported = true;
pixelFormat = GL_RGBA;
pixelType = GL_FLOAT ;
}
#endif
break;
default:
break;
}
// ES 2.0 says internalFormat must match pixelFormat (chapter 3.7.1 in Spec).
// Doesn't mention if "match" means "equal" or some other way of matching, but
// some bug on Emscripten and browsing discussions by others lead me to believe
// it means they have to be equal. Note that this was different in OpenGL.
internalFormat = pixelFormat;
#ifdef _IRR_IOS_PLATFORM_
if (internalFormat == GL_BGRA)
internalFormat = GL_RGBA;
#endif
return supported;
}
bool COGLES2Driver::queryTextureFormat(ECOLOR_FORMAT format) const
{
GLint dummyInternalFormat;
GLenum dummyPixelFormat;
GLenum dummyPixelType;
void (*dummyConverter)(const void*, s32, void*);
return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter);
}
bool COGLES2Driver::needsTransparentRenderPass(const irr::video::SMaterial& material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation();
}
const SMaterial& COGLES2Driver::getCurrentMaterial() const
{
return Material;
}
COGLES2CacheHandler* COGLES2Driver::getCacheHandler() const
{
return CacheHandler;
}
} // end namespace
} // end namespace
#endif // _IRR_COMPILE_WITH_OGLES2_
namespace irr
{
namespace video
{
#ifndef _IRR_COMPILE_WITH_OGLES2_
class IVideoDriver;
class IContextManager;
#endif
IVideoDriver* createOGLES2Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager)
{
#ifdef _IRR_COMPILE_WITH_OGLES2_
COGLES2Driver* driver = new COGLES2Driver(params, io, contextManager);
driver->genericDriverInit(params.WindowSize, params.Stencilbuffer); // don't call in constructor, it uses virtual function calls of driver
return driver;
#else
return 0;
#endif // _IRR_COMPILE_WITH_OGLES2_
}
} // end namespace
} // end namespace