irrlicht/source/Irrlicht/CGLTFMeshFileLoader.cpp

268 lines
7.9 KiB
C++

#include "CGLTFMeshFileLoader.h"
#include "CMeshBuffer.h"
#include "coreutil.h"
#include "IAnimatedMesh.h"
#include "IReadFile.h"
#include "irrTypes.h"
#include "path.h"
#include "S3DVertex.h"
#include "SAnimatedMesh.h"
#include "SColor.h"
#include "SMesh.h"
#include "vector3d.h"
#include <vector>
#include <tuple>
#define TINYGLTF_IMPLEMENTATION
#include <tiny_gltf.h>
#include <cstddef>
#include <cstring>
#include <memory>
#include <string>
template <class T>
struct Span
{
T* buffer = nullptr;
std::size_t size = 0;
};
class BufferOffset
{
public:
BufferOffset(const std::vector<unsigned char>& buf,
const std::size_t offset)
: m_buf(buf)
, m_offset(offset)
{
}
BufferOffset(const BufferOffset& other, const std::size_t fromOffset)
: m_buf(other.m_buf)
, m_offset(other.m_offset + fromOffset)
{
}
unsigned char at(const std::size_t fromOffset) const
{
return m_buf.at(m_offset + fromOffset);
}
private:
const std::vector<unsigned char>& m_buf;
std::size_t m_offset;
};
// A helper function to disable tinygltf embedded image loading
bool turn_off_textures_hack(tinygltf::Image *a, const int b, std::string *c,
std::string *d, int e, int f, const unsigned char * g,int h, void *user_pointer)
{
};
namespace irr
{
namespace scene
{
static bool tryParseGLTF(io::IReadFile* file, tinygltf::Model& model)
{
tinygltf::TinyGLTF loader {};
// Stop embedded textures from making model fail to load
void *the_void = 0;
loader.SetImageLoader(turn_off_textures_hack, the_void);
std::string err {};
std::string warn {};
auto buf = std::make_unique<char[]>(file->getSize());
file->read(buf.get(), file->getSize());
if (err != "" || warn != "") {
return false;
}
return loader.LoadASCIIFromString(&model, &err, &warn, buf.get(), file->getSize(), "", 1);
}
template <class T>
static T readPrimitive(const BufferOffset& readFrom)
{
unsigned char d[sizeof(T)]{};
for (std::size_t i = 0; i < sizeof(T); ++i) {
d[i] = readFrom.at(i);
}
T dest;
std::memcpy(&dest, d, sizeof(dest));
return dest;
}
static core::vector2df readVec2DF(const BufferOffset& readFrom)
{
return core::vector2df( readPrimitive<float>(readFrom), readPrimitive<float>( BufferOffset( readFrom, sizeof(float) ) ) );
}
static core::vector3df readVec3DF(const BufferOffset& readFrom,
const float scale = 1.0f)
{
// glTF's coordinate system is right-handed, Irrlicht's is left-handed
// glTF's +Z axis corresponds to Irrlicht's -Z axis
return core::vector3df(
scale * readPrimitive<float>(readFrom),
scale * readPrimitive<float>(BufferOffset(readFrom, sizeof(float))),
-scale * readPrimitive<float>(BufferOffset(readFrom, 2 * sizeof(float))));
}
float getScale(const tinygltf::Model& model)
{
if (model.nodes[0].scale.size() > 0) {
return static_cast<float>(model.nodes[0].scale[0]);
}
return 1.0f;
}
static void copyPositions(const tinygltf::Model& model, const Span<video::S3DVertex> vertices, const std::size_t accessorId)
{
const auto& view = model.bufferViews[ model.accessors[accessorId].bufferView];
const auto& buffer = model.buffers[view.buffer];
const auto count = model.accessors[accessorId].count;
float scale = getScale(model);
for (std::size_t i = 0; i < count; i++) {
const auto v = readVec3DF(BufferOffset( buffer.data, view.byteOffset + (3 * sizeof(float) * i)), scale);
vertices.buffer[i].Pos = v;
}
}
static void copyNormals(const tinygltf::Model& model, const Span<video::S3DVertex> vertices, const std::size_t accessorId)
{
const auto& view = model.bufferViews[model.accessors[accessorId].bufferView];
const auto& buffer = model.buffers[view.buffer];
const auto count = model.accessors[accessorId].count;
for (std::size_t i = 0; i < count; ++i) {
const auto n = readVec3DF(BufferOffset( buffer.data, view.byteOffset + 3 * sizeof(float) * i ));
vertices.buffer[i].Normal = n;
}
}
static void copyTCoords(const tinygltf::Model& model, const Span<video::S3DVertex> vertices, const std::size_t accessorId)
{
const auto& view = model.bufferViews[ model.accessors[accessorId].bufferView ];
const auto& buffer = model.buffers[view.buffer];
const auto count = model.accessors[accessorId].count;
for (std::size_t i = 0; i < count; ++i) {
const auto t = readVec2DF(BufferOffset(buffer.data, view.byteOffset + 2 * sizeof(float) * i));
vertices.buffer[i].TCoords = t;
}
}
static void getIndices(const tinygltf::Model& model, const std::size_t accessorId, std::vector<u16> *indicesBuffer)
{
const auto& view = model.bufferViews[model.accessors[accessorId].bufferView];
const auto& modelIndices = model.buffers[view.buffer];
auto bufferobject = BufferOffset(modelIndices.data, view.byteOffset);
auto count = model.accessors[accessorId].count;
for (std::size_t i = 0; i < count; i++) {
auto current = readPrimitive<u16>(BufferOffset(bufferobject, i * sizeof(u16)));
// Inverse the order of indices
indicesBuffer->insert(indicesBuffer->begin(), current);
}
}
// Returns a tuple of the current counts (current_vertex_index, current_normals_index, current_tcoords_index)
static void getVertices
( const tinygltf::Model& model, const std::size_t accessorId, Span<video::S3DVertex> *verticesBuffer,
std::size_t mesh_index, std::size_t primitive_index )
{
copyPositions(model, *verticesBuffer, accessorId);
const auto normalsField = model.meshes[mesh_index].primitives[primitive_index].attributes.find("NORMAL");
if (normalsField != model.meshes[mesh_index].primitives[primitive_index].attributes.end()) {
copyNormals(model, *verticesBuffer, normalsField->second);
}
const auto tCoordsField = model.meshes[mesh_index].primitives[primitive_index].attributes.find("TEXCOORD_0");
if (tCoordsField != model.meshes[mesh_index].primitives[primitive_index].attributes.end()) {
copyTCoords(model, *verticesBuffer, tCoordsField->second);
}
}
CGLTFMeshFileLoader::CGLTFMeshFileLoader()
{
}
bool CGLTFMeshFileLoader::isALoadableFileExtension(
const io::path& filename) const
{
return core::hasFileExtension(filename, "gltf");
}
IAnimatedMesh* CGLTFMeshFileLoader::createMesh(io::IReadFile* file)
{
tinygltf::Model model{};
if (file->getSize() == 0 || !tryParseGLTF(file, model)) {
return nullptr;
}
// Create the base mesh
SMesh* mesh { new SMesh {} };
// Iterate models
for (std::size_t mesh_index = 0; mesh_index < model.meshes.size(); mesh_index++) {
// Iterate primitives
for (std::size_t primitive_index = 0; primitive_index < model.meshes[mesh_index].primitives.size(); primitive_index++) {
const auto positionAccessorId = model.meshes[mesh_index].primitives[primitive_index].attributes["POSITION"];
const auto indicesAccessorId = model.meshes[mesh_index].primitives[primitive_index].indices;
// Creates counts for preallocation
std::size_t vertices_count = model.accessors[positionAccessorId].count;
// We must count to create containers for the data
// Create new buffer for vertices, positions, and normals. Will loop through this soon
auto* vertexBuffer = new video::S3DVertex[vertices_count]{};
// This is used to copy data into the vertexBuffer
Span<video::S3DVertex> verticesBuffer{ vertexBuffer, vertices_count };
// Create dynamic indices buffer so it's easier to work with
std::vector<u16> indicesBuffer;
getIndices(model, indicesAccessorId, &indicesBuffer);
getVertices(model, positionAccessorId, &verticesBuffer, mesh_index, primitive_index);
// Create the mesh buffer
SMeshBuffer* meshbuf { new SMeshBuffer {} };
meshbuf->append(vertexBuffer, vertices_count, indicesBuffer.data(), indicesBuffer.size());
mesh->addMeshBuffer(meshbuf);
}
}
// Create the mesh animations
SAnimatedMesh* animatedMesh { new SAnimatedMesh {} };
animatedMesh->addMesh(mesh);
return animatedMesh;
}
} // namespace scene
} // namespace irr