mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-26 09:40:21 +01:00
8310a3fbad
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6000 dfc29bdd-3216-0410-991c-e03cc46cb475
224 lines
6.0 KiB
C++
224 lines
6.0 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 2003, Dr Brian Gladman < >, Worcester, UK.
|
|
All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The free distribution and use of this software in both source and binary
|
|
form is allowed (with or without changes) provided that:
|
|
|
|
1. distributions of this source code include the above copyright
|
|
notice, this list of conditions and the following disclaimer;
|
|
|
|
2. distributions in binary form include the above copyright
|
|
notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other associated materials;
|
|
|
|
3. the copyright holder's name is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 26/08/2003
|
|
|
|
*/
|
|
|
|
#define DO_TABLES
|
|
|
|
#include "aesopt.h"
|
|
|
|
#if defined(FIXED_TABLES)
|
|
|
|
/* implemented in case of wrong call for fixed tables */
|
|
|
|
void gen_tabs(void)
|
|
{
|
|
}
|
|
|
|
#else /* dynamic table generation */
|
|
|
|
#if !defined(FF_TABLES)
|
|
|
|
/* Generate the tables for the dynamic table option
|
|
|
|
It will generally be sensible to use tables to compute finite
|
|
field multiplies and inverses but where memory is scarse this
|
|
code might sometimes be better. But it only has effect during
|
|
initialisation so its pretty unimportant in overall terms.
|
|
*/
|
|
|
|
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
|
|
set in x with x in the range 1 < x < 0x00000200. This form is
|
|
used so that locals within fi can be bytes rather than words
|
|
*/
|
|
|
|
static aes_08t hibit(const aes_32t x)
|
|
{ aes_08t r = (aes_08t)((x >> 1) | (x >> 2));
|
|
|
|
r |= (r >> 2);
|
|
r |= (r >> 4);
|
|
return (r + 1) >> 1;
|
|
}
|
|
|
|
/* return the inverse of the finite field element x */
|
|
|
|
static aes_08t fi(const aes_08t x)
|
|
{ aes_08t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
|
|
|
if(x < 2) return x;
|
|
|
|
for(;;)
|
|
{
|
|
if(!n1) return v1;
|
|
|
|
while(n2 >= n1)
|
|
{
|
|
n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
|
|
}
|
|
|
|
if(!n2) return v2;
|
|
|
|
while(n1 >= n2)
|
|
{
|
|
n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* The forward and inverse affine transformations used in the S-box */
|
|
|
|
#define fwd_affine(x) \
|
|
(w = (aes_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(aes_08t)(w^(w>>8)))
|
|
|
|
#define inv_affine(x) \
|
|
(w = (aes_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(aes_08t)(w^(w>>8)))
|
|
|
|
static int init = 0;
|
|
|
|
void gen_tabs(void)
|
|
{ aes_32t i, w;
|
|
|
|
#if defined(FF_TABLES)
|
|
|
|
aes_08t pow[512], log[256];
|
|
|
|
if(init) return;
|
|
/* log and power tables for GF(2^8) finite field with
|
|
WPOLY as modular polynomial - the simplest primitive
|
|
root is 0x03, used here to generate the tables
|
|
*/
|
|
|
|
i = 0; w = 1;
|
|
do
|
|
{
|
|
pow[i] = (aes_08t)w;
|
|
pow[i + 255] = (aes_08t)w;
|
|
log[w] = (aes_08t)i++;
|
|
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
|
}
|
|
while (w != 1);
|
|
|
|
#else
|
|
if(init) return;
|
|
#endif
|
|
|
|
for(i = 0, w = 1; i < RC_LENGTH; ++i)
|
|
{
|
|
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
|
|
w = f2(w);
|
|
}
|
|
|
|
for(i = 0; i < 256; ++i)
|
|
{ aes_08t b;
|
|
|
|
b = fwd_affine(fi((aes_08t)i));
|
|
w = bytes2word(f2(b), b, b, f3(b));
|
|
|
|
#ifdef SBX_SET
|
|
t_set(s,box)[i] = b;
|
|
#endif
|
|
|
|
#ifdef FT1_SET /* tables for a normal encryption round */
|
|
t_set(f,n)[i] = w;
|
|
#endif
|
|
#ifdef FT4_SET
|
|
t_set(f,n)[0][i] = w;
|
|
t_set(f,n)[1][i] = upr(w,1);
|
|
t_set(f,n)[2][i] = upr(w,2);
|
|
t_set(f,n)[3][i] = upr(w,3);
|
|
#endif
|
|
w = bytes2word(b, 0, 0, 0);
|
|
|
|
#ifdef FL1_SET /* tables for last encryption round (may also */
|
|
t_set(f,l)[i] = w; /* be used in the key schedule) */
|
|
#endif
|
|
#ifdef FL4_SET
|
|
t_set(f,l)[0][i] = w;
|
|
t_set(f,l)[1][i] = upr(w,1);
|
|
t_set(f,l)[2][i] = upr(w,2);
|
|
t_set(f,l)[3][i] = upr(w,3);
|
|
#endif
|
|
|
|
#ifdef LS1_SET /* table for key schedule if t_set(f,l) above is */
|
|
t_set(l,s)[i] = w; /* not of the required form */
|
|
#endif
|
|
#ifdef LS4_SET
|
|
t_set(l,s)[0][i] = w;
|
|
t_set(l,s)[1][i] = upr(w,1);
|
|
t_set(l,s)[2][i] = upr(w,2);
|
|
t_set(l,s)[3][i] = upr(w,3);
|
|
#endif
|
|
|
|
b = fi(inv_affine((aes_08t)i));
|
|
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
|
|
|
#ifdef IM1_SET /* tables for the inverse mix column operation */
|
|
t_set(i,m)[b] = w;
|
|
#endif
|
|
#ifdef IM4_SET
|
|
t_set(i,m)[0][b] = w;
|
|
t_set(i,m)[1][b] = upr(w,1);
|
|
t_set(i,m)[2][b] = upr(w,2);
|
|
t_set(i,m)[3][b] = upr(w,3);
|
|
#endif
|
|
|
|
#ifdef ISB_SET
|
|
t_set(i,box)[i] = b;
|
|
#endif
|
|
#ifdef IT1_SET /* tables for a normal decryption round */
|
|
t_set(i,n)[i] = w;
|
|
#endif
|
|
#ifdef IT4_SET
|
|
t_set(i,n)[0][i] = w;
|
|
t_set(i,n)[1][i] = upr(w,1);
|
|
t_set(i,n)[2][i] = upr(w,2);
|
|
t_set(i,n)[3][i] = upr(w,3);
|
|
#endif
|
|
w = bytes2word(b, 0, 0, 0);
|
|
#ifdef IL1_SET /* tables for last decryption round */
|
|
t_set(i,l)[i] = w;
|
|
#endif
|
|
#ifdef IL4_SET
|
|
t_set(i,l)[0][i] = w;
|
|
t_set(i,l)[1][i] = upr(w,1);
|
|
t_set(i,l)[2][i] = upr(w,2);
|
|
t_set(i,l)[3][i] = upr(w,3);
|
|
#endif
|
|
}
|
|
init = 1;
|
|
}
|
|
|
|
#endif
|
|
|