irrlicht/source/Irrlicht/SoftwareDriver2_helper.h
cutealien 54f5ac4982 Remove 'register' keyword in all c++ code.
It's never really done much in c++, was deprecated in c++11 and is reserved since c++17.
Thanks @Maksym Hamarnyk for remdinding me about this.
Note: there are few more register commands in third library .c code. It's still a valid keyword there.


git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6130 dfc29bdd-3216-0410-991c-e03cc46cb475
2020-06-21 11:38:31 +00:00

1244 lines
32 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
/*
History:
- changed behavior for log2 textures ( replaced multiplies by shift )
*/
#ifndef __S_VIDEO_2_SOFTWARE_HELPER_H_INCLUDED__
#define __S_VIDEO_2_SOFTWARE_HELPER_H_INCLUDED__
#include "SoftwareDriver2_compile_config.h"
#include "irrMath.h"
#include "irrMathFastCompat.h"
#include "CSoftwareTexture2.h"
#include "SMaterial.h"
namespace irr
{
// supporting different packed pixel needs many defines...
#ifdef SOFTWARE_DRIVER_2_32BIT
typedef u32 tVideoSample;
typedef u32 tStencilSample;
#define MASK_A 0xFF000000
#define MASK_R 0x00FF0000
#define MASK_G 0x0000FF00
#define MASK_B 0x000000FF
#define SHIFT_A (unsigned)24
#define SHIFT_R (unsigned)16
#define SHIFT_G (unsigned)8
#define SHIFT_B (unsigned)0
#define COLOR_MAX 0xFF
#define COLOR_MAX_LOG2 8
#define COLOR_BRIGHT_WHITE 0xFFFFFFFF
#define VIDEO_SAMPLE_GRANULARITY (unsigned)2
#else
typedef u16 tVideoSample;
typedef u8 tStencilSample;
#define MASK_A 0x8000
#define MASK_R 0x7C00
#define MASK_G 0x03E0
#define MASK_B 0x001F
#define SHIFT_A (unsigned)15
#define SHIFT_R (unsigned)10
#define SHIFT_G (unsigned)5
#define SHIFT_B (unsigned)0
#define COLOR_MAX 0x1F
#define COLOR_MAX_LOG2 5
#define COLOR_BRIGHT_WHITE 0xFFFF
#define VIDEO_SAMPLE_GRANULARITY (unsigned)1
#endif
// ----------------------- Generic ----------------------------------
//! align_next - align to next upper 2^n
#define align_next(num,to) (((num) + (to-1)) & (~(to-1)))
//! a more useful memset for pixel. dest must be aligned at least to 4 byte
// (standard memset only works with 8-bit values)
inline void memset32(void * dest, const u32 value, size_t bytesize)
{
u32 * d = (u32*) dest;
size_t i;
// loops unrolled to reduce the number of increments by factor ~8.
i = bytesize >> (2 + 3);
while (i)
{
d[0] = value;
d[1] = value;
d[2] = value;
d[3] = value;
d[4] = value;
d[5] = value;
d[6] = value;
d[7] = value;
d += 8;
i -= 1;
}
i = (bytesize >> 2 ) & 7;
while (i)
{
d[0] = value;
d += 1;
i -= 1;
}
}
//! a more useful memset for pixel. dest must be aligned at least to 2 byte
// (standard memset only works with 8-bit values)
inline void memset16(void * dest, const u16 value, size_t bytesize)
{
u16 * d = (u16*) dest;
size_t i;
// loops unrolled to reduce the number of increments by factor ~8.
i = bytesize >> (1 + 3);
while (i)
{
d[0] = value;
d[1] = value;
d[2] = value;
d[3] = value;
d[4] = value;
d[5] = value;
d[6] = value;
d[7] = value;
d += 8;
--i;
}
i = (bytesize >> 1 ) & 7;
while (i)
{
d[0] = value;
++d;
--i;
}
}
// byte-align structures
#include "irrpack.h"
//IEEE Standard for Floating - Point Arithmetic(IEEE 754)
typedef union {
float f;
unsigned int u;
struct { unsigned int frac:23; unsigned exp:8; unsigned int sign:1; } fields;
struct { unsigned int frac_exp:31; } abs;
} ieee754 PACK_STRUCT;
// Default alignment
#include "irrunpack.h"
// 0.5f as integer
#define ieee754_zero_dot_5 0x3f000000
#define ieee754_one 0x3f800000
#define ieee754_two 0x40000000
#if 0
// integer log2 of a float ieee 754. [not used anymore]
static inline s32 s32_log2_f32( f32 f)
{
//u32 x = IR ( f ); return ((x & 0x7F800000) >> 23) - 127;
ieee754 _log2;
_log2.f = f;
return _log2.fields.exp ? _log2.fields.exp - 127 : 10000000; /*denormal very high number*/
}
#endif
// integer log2 of an integer. returning 0 as denormal
static inline s32 s32_log2_s32(u32 in)
{
s32 ret = 0;
while (in > 1)
{
in >>= 1;
ret++;
}
return ret;
//return s32_log2_f32( (f32) x);
//ieee754 _log2;_log2.f = (f32) in; return _log2.fields.exp - 127;
}
#if 0
static inline s32 s32_abs(s32 x)
{
s32 b = x >> 31;
return (x ^ b ) - b;
}
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_mask_a_else_b ( const u32 mask, const u32 a, const u32 b )
{
return ( mask & ( a ^ b ) ) ^ b;
}
#endif
// ------------------ Video---------------------------------------
/*!
Pixel = dest * ( 1 - alpha ) + source * alpha
alpha [0;256]
*/
REALINLINE u32 PixelBlend32 ( const u32 c2, const u32 c1, const u32 alpha )
{
u32 srcRB = c1 & 0x00FF00FF;
u32 srcXG = c1 & 0x0000FF00;
u32 dstRB = c2 & 0x00FF00FF;
u32 dstXG = c2 & 0x0000FF00;
u32 rb = srcRB - dstRB;
u32 xg = srcXG - dstXG;
rb *= alpha;
xg *= alpha;
rb >>= 8;
xg >>= 8;
rb += dstRB;
xg += dstXG;
rb &= 0x00FF00FF;
xg &= 0x0000FF00;
return rb | xg;
}
/*!
Pixel = dest * ( 1 - alpha ) + source * alpha
alpha [0;32]
*/
inline u16 PixelBlend16 ( const u16 c2, const u16 c1, const u16 alpha )
{
const u16 srcRB = c1 & 0x7C1F;
const u16 srcXG = c1 & 0x03E0;
const u16 dstRB = c2 & 0x7C1F;
const u16 dstXG = c2 & 0x03E0;
u32 rb = srcRB - dstRB;
u32 xg = srcXG - dstXG;
rb *= alpha;
xg *= alpha;
rb >>= 5;
xg >>= 5;
rb += dstRB;
xg += dstXG;
rb &= 0x7C1F;
xg &= 0x03E0;
return (u16)(rb | xg);
}
/*
Pixel = c0 * (c1/31). c0 Alpha retain
*/
inline u16 PixelMul16 ( const u16 c0, const u16 c1)
{
return (u16)((( ( (c0 & 0x7C00) * (c1 & 0x7C00) ) & 0x3E000000 ) >> 15 ) |
(( ( (c0 & 0x03E0) * (c1 & 0x03E0) ) & 0x000F8000 ) >> 10 ) |
(( ( (c0 & 0x001F) * (c1 & 0x001F) ) & 0x000003E0 ) >> 5 ) |
(c0 & 0x8000));
}
/*
Pixel = c0 * (c1/31).
*/
inline u16 PixelMul16_2 ( u16 c0, u16 c1)
{
return (u16)(( ( (c0 & 0x7C00) * (c1 & 0x7C00) ) & 0x3E000000 ) >> 15 |
( ( (c0 & 0x03E0) * (c1 & 0x03E0) ) & 0x000F8000 ) >> 10 |
( ( (c0 & 0x001F) * (c1 & 0x001F) ) & 0x000003E0 ) >> 5 |
( c0 & c1 & 0x8000));
}
/*
Pixel = c0 * (c1/255). c0 Alpha Retain
*/
REALINLINE u32 PixelMul32 ( const u32 c0, const u32 c1)
{
return (c0 & 0xFF000000) |
(( ( (c0 & 0x00FF0000) >> 12 ) * ( (c1 & 0x00FF0000) >> 12 ) ) & 0x00FF0000 ) |
(( ( (c0 & 0x0000FF00) * (c1 & 0x0000FF00) ) >> 16 ) & 0x0000FF00 ) |
(( ( (c0 & 0x000000FF) * (c1 & 0x000000FF) ) >> 8 ) & 0x000000FF);
}
/*
Pixel = c0 * (c1/255).
*/
REALINLINE u32 PixelMul32_2 ( const u32 c0, const u32 c1)
{
return (( ( (c0 & 0xFF000000) >> 16 ) * ( (c1 & 0xFF000000) >> 16 ) ) & 0xFF000000 ) |
(( ( (c0 & 0x00FF0000) >> 12 ) * ( (c1 & 0x00FF0000) >> 12 ) ) & 0x00FF0000 ) |
(( ( (c0 & 0x0000FF00) * (c1 & 0x0000FF00) ) >> 16 ) & 0x0000FF00 ) |
(( ( (c0 & 0x000000FF) * (c1 & 0x000000FF) ) >> 8 ) & 0x000000FF);
}
/*
Pixel = clamp ( c0 + c1, 0, 255 )
*/
REALINLINE u32 PixelAdd32 ( const u32 c2, const u32 c1)
{
u32 sum = ( c2 & 0x00FFFFFF ) + ( c1 & 0x00FFFFFF );
u32 low_bits = ( c2 ^ c1 ) & 0x00010101;
s32 carries = ( sum - low_bits ) & 0x01010100;
u32 modulo = sum - carries;
u32 clamp = carries - ( carries >> 8 );
return modulo | clamp;
}
#if 0
// 1 - Bit Alpha Blending
inline u16 PixelBlend16 ( const u16 destination, const u16 source )
{
if((source & 0x8000) == 0x8000)
return source; // The source is visible, so use it.
else
return destination; // The source is transparent, so use the destination.
}
// 1 - Bit Alpha Blending 16Bit SIMD
inline u32 PixelBlend16_simd ( const u32 destination, const u32 source )
{
switch(source & 0x80008000)
{
case 0x80008000: // Both source pixels are visible
return source;
case 0x80000000: // Only the first source pixel is visible
return (source & 0xFFFF0000) | (destination & 0x0000FFFF);
case 0x00008000: // Only the second source pixel is visible.
return (destination & 0xFFFF0000) | (source & 0x0000FFFF);
default: // Neither source pixel is visible.
return destination;
}
}
#else
// 1 - Bit Alpha Blending
inline u16 PixelBlend16 ( const u16 c2, const u16 c1 )
{
u16 mask = ((c1 & 0x8000) >> 15 ) + 0x7fff;
return (c2 & mask ) | ( c1 & ~mask );
}
// 1 - Bit Alpha Blending 16Bit SIMD
inline u32 PixelBlend16_simd ( const u32 c2, const u32 c1 )
{
u32 mask = ((c1 & 0x80008000) >> 15 ) + 0x7fff7fff;
return (c2 & mask ) | ( c1 & ~mask );
}
#endif
/*!
Pixel = dest * ( 1 - SourceAlpha ) + source * SourceAlpha (OpenGL blending)
*/
inline u32 PixelBlend32 ( const u32 c2, const u32 c1 )
{
// alpha test
u32 alpha = c1 & 0xFF000000;
if ( 0 == alpha )
return c2;
if ( 0xFF000000 == alpha )
{
return c1;
}
alpha >>= 24;
// add highbit alpha, if ( alpha > 127 ) alpha += 1;
alpha += ( alpha >> 7);
u32 srcRB = c1 & 0x00FF00FF;
u32 srcXG = c1 & 0x0000FF00;
u32 dstRB = c2 & 0x00FF00FF;
u32 dstXG = c2 & 0x0000FF00;
u32 rb = srcRB - dstRB;
u32 xg = srcXG - dstXG;
rb *= alpha;
xg *= alpha;
rb >>= 8;
xg >>= 8;
rb += dstRB;
xg += dstXG;
rb &= 0x00FF00FF;
xg &= 0x0000FF00;
return (c1 & 0xFF000000) | rb | xg;
}
// ------------------ Fix Point ----------------------------------
#if defined(ENV64BIT)
typedef s32 tFixPoint;
typedef u32 tFixPointu;
#else
typedef s32 tFixPoint;
typedef u32 tFixPointu;
#endif
// Fix Point 12 (overflow on s32)
#if 0
#define FIX_POINT_PRE 12
#define FIX_POINT_FRACT_MASK 0xFFF
#define FIX_POINT_UNSIGNED_MASK 0x7FFFF000
#define FIX_POINT_ONE 0x1000
#define FIX_POINT_ZERO_DOT_FIVE 0x0800
#define FIX_POINT_F32_MUL 4096.f
#endif
// Fix Point 11 (overflow on s32)
#if 0
#define FIX_POINT_PRE 11
#define FIX_POINT_FRACT_MASK 0x7FF
#define FIX_POINT_UNSIGNED_MASK 0xFFFFF800
#define FIX_POINT_ONE 0x800
#define FIX_POINT_ZERO_DOT_FIVE 0x400
#define FIX_POINT_F32_MUL 2048.f
#endif
// Fix Point 10
#if 1
#define FIX_POINT_PRE 10
#define FIX_POINT_FRACT_MASK 0x000003FF
#define FIX_POINT_UNSIGNED_MASK 0x7FFFFE00
#define FIX_POINT_ONE 0x00000400
#define FIX_POINT_ZERO_DOT_FIVE 0x00000200
#define FIX_POINT_F32_MUL 1024.f
#endif
// Fix Point 9
#if 0
#define FIX_POINT_PRE 9
#define FIX_POINT_FRACT_MASK 0x1FF
#define FIX_POINT_UNSIGNED_MASK 0x7FFFFE00
#define FIX_POINT_ONE 0x200
#define FIX_POINT_ZERO_DOT_FIVE 0x100
#define FIX_POINT_F32_MUL 512.f
#endif
// Fix Point 7
#if 0
#define FIX_POINT_PRE 7
#define FIX_POINT_FRACT_MASK 0x7F
#define FIX_POINT_UNSIGNED_MASK 0x7FFFFF80
#define FIX_POINT_ONE 0x80
#define FIX_POINT_ZERO_DOT_FIVE 0x40
#define FIX_POINT_F32_MUL 128.f
#endif
#define FIXPOINT_COLOR_MAX ( COLOR_MAX << FIX_POINT_PRE )
#if FIX_POINT_PRE == 10 && COLOR_MAX == 255
#define FIX_POINT_HALF_COLOR 0x1FE00
#define FIX_POINT_COLOR_ERROR 4
#elif FIX_POINT_PRE == 12 && COLOR_MAX == 255
#define FIX_POINT_HALF_COLOR 0x7F800
#define FIX_POINT_COLOR_ERROR 16
#elif FIX_POINT_PRE == 10 && COLOR_MAX == 31
#define FIX_POINT_HALF_COLOR 0x3E00
#define FIX_POINT_COLOR_ERROR 32
#else
#define FIX_POINT_HALF_COLOR ( (tFixPoint) ( ((f32) COLOR_MAX / 2.f * FIX_POINT_F32_MUL ) ) )
#define FIX_POINT_COLOR_ERROR (1<<(FIX_POINT_PRE-COLOR_MAX_LOG2))
#endif
/*
convert signed integer to fixpoint
*/
inline tFixPoint s32_to_fixPoint (const s32 x)
{
return x << FIX_POINT_PRE;
}
#if 0
inline tFixPointu u32_to_fixPoint (const u32 x)
{
return x << FIX_POINT_PRE;
}
#endif
inline u32 fixPointu_to_u32 (const tFixPointu x)
{
return (u32)(x >> FIX_POINT_PRE);
}
// 1/x * FIX_POINT
#define fix_inverse32(x) (FIX_POINT_F32_MUL / (x))
#define fix_inverse32_color(x) ((FIX_POINT_F32_MUL*COLOR_MAX) / (x))
/*
convert float to fixpoint
fast convert (fistp on x86) HAS to be used..
hints: compileflag /QIfist for msvc7. msvc 8.0 has smth different
others should use their favourite assembler..
*/
#if 0
static inline int f_round2(f32 f)
{
f += (3<<22);
return IR(f) - 0x4b400000;
}
#endif
/*
convert f32 to Fix Point.
multiply is needed anyway, so scale mulby
*/
/*
REALINLINE tFixPoint tofix0 (const f32 x, const f32 mulby = FIX_POINT_F32_MUL )
{
return (tFixPoint) (x * mulby);
}
*/
#define tofix(x,y) (tFixPoint)(x * y)
/*
Fix Point , Fix Point Multiply
*/
/*
REALINLINE tFixPointu imulFixu(const tFixPointu x, const tFixPointu y)
{
return (x * y) >> (tFixPointu) FIX_POINT_PRE;
}
*/
#define imulFixu(x,y) (((x) * (y)) >> (tFixPointu) FIX_POINT_PRE)
/*
Fix Point , Fix Point Multiply
*/
REALINLINE tFixPoint imulFix(const tFixPoint x, const tFixPoint y)
{
return (x * y) >> FIX_POINT_PRE;
}
#define imulFix_simple(x,y) ((x*y)>>FIX_POINT_PRE)
#if 0
/*
Fix Point , Fix Point Multiply x * y * 2
*/
REALINLINE tFixPoint imulFix2(const tFixPoint x, const tFixPoint y)
{
return ( x * y) >> ( FIX_POINT_PRE -1 );
}
#endif
/*
Multiply x * y * 1 FIXPOINT_COLOR_MAX
*/
REALINLINE tFixPoint imulFix_tex1(const tFixPoint x, const tFixPoint y)
{
#ifdef SOFTWARE_DRIVER_2_32BIT
return (((tFixPointu)x >> 2)*(((tFixPointu)y + FIX_POINT_ONE) >> 2)) >> (tFixPointu) (FIX_POINT_PRE + 4);
#else
return (x * (y+ FIX_POINT_ONE)) >> (FIX_POINT_PRE + 5);
#endif
}
/*
Multiply x * y * 2
*/
REALINLINE tFixPoint imulFix_tex2(const tFixPoint x, const tFixPoint y)
{
return ( ( (tFixPointu) x >> 2 ) * ( (tFixPointu) y >> 2 ) ) >> (tFixPointu) ( FIX_POINT_PRE + 3 );
}
/*
Multiply x * y * 4 clamp
*/
REALINLINE tFixPoint imulFix_tex4(const tFixPoint x, const tFixPoint y)
{
#ifdef SOFTWARE_DRIVER_2_32BIT
tFixPoint a = (((tFixPointu)x >> 2)*(((tFixPointu)y + FIX_POINT_ONE) >> 2)) >> (tFixPointu)(FIX_POINT_PRE + 2);
#else
tFixPoint a = (x * (y + FIX_POINT_ONE)) >> (FIX_POINT_PRE + 3);
#endif
tFixPoint mask = (a - FIXPOINT_COLOR_MAX) >> 31;
return (a & mask) | (FIXPOINT_COLOR_MAX & ~mask);
}
#if 0
#define imulFix_tex1(x,y) ((((tFixPointu)x >> 2) * ((tFixPointu)y >> 2)) >> (tFixPointu)(FIX_POINT_PRE + 4))
#define imulFix_tex2(x,y) ((((tFixPointu)x >> 2) * ((tFixPointu)y >> 2)) >> (tFixPointu)(FIX_POINT_PRE + 3))
#ifdef SOFTWARE_DRIVER_2_32BIT
#define imulFix_tex4(x,y) ( ( (tFixPointu) x >> 2 ) * ( (tFixPointu) y >> 2 ) ) >> (tFixPointu) ( FIX_POINT_PRE + 2 )
#else
#define imulFix_tex4(x,y) ( x * y) >> ( FIX_POINT_PRE + ( VIDEO_SAMPLE_GRANULARITY * 3 ) )
#endif
#endif
/*!
clamp FixPoint to maxcolor in FixPoint, min(a,COLOR_MAX)
*/
REALINLINE tFixPoint clampfix_maxcolor ( const tFixPoint a)
{
tFixPoint c = (a - FIXPOINT_COLOR_MAX) >> 31;
return (a & c) | ( FIXPOINT_COLOR_MAX & ~c);
}
/*!
clamp FixPoint to 0 in FixPoint, max(a,0)
*/
REALINLINE tFixPoint clampfix_mincolor ( const tFixPoint a)
{
return a - ( a & ( a >> 31 ) );
}
REALINLINE tFixPoint saturateFix ( const tFixPoint a)
{
return clampfix_mincolor ( clampfix_maxcolor ( a ) );
}
#if 0
// rount fixpoint to int
inline s32 roundFix ( const tFixPoint x )
{
return (s32)(( x + FIX_POINT_ZERO_DOT_FIVE ) >> FIX_POINT_PRE);
}
#endif
// x in [0;1[
#if 0
inline s32 f32_to_23Bits(const f32 x)
{
f32 y = x + 1.f;
return IR(y) & 0x7FFFFF; // last 23 bits
}
#endif
/*!
fixpoint in [0..Fixpoint_color] to VideoSample xrgb
*/
REALINLINE tVideoSample fix_to_sample ( const tFixPoint r, const tFixPoint g, const tFixPoint b )
{
return ( FIXPOINT_COLOR_MAX & FIXPOINT_COLOR_MAX) << ( SHIFT_A - FIX_POINT_PRE ) |
( r & FIXPOINT_COLOR_MAX) << ( SHIFT_R - FIX_POINT_PRE ) |
( g & FIXPOINT_COLOR_MAX) >> ( FIX_POINT_PRE - SHIFT_G ) |
( b & FIXPOINT_COLOR_MAX) >> ( FIX_POINT_PRE - SHIFT_B );
}
/*!
fixpoint to VideoSample argb
a in [0;1]
rgb in [0;255] colormax
*/
REALINLINE tVideoSample fix4_to_sample ( const tFixPoint a, const tFixPoint r, const tFixPoint g, const tFixPoint b )
{
return ( a & (FIX_POINT_FRACT_MASK - 1 )) << ( SHIFT_A - 1 ) |
( r & FIXPOINT_COLOR_MAX) << ( SHIFT_R - FIX_POINT_PRE ) |
( g & FIXPOINT_COLOR_MAX) >> ( FIX_POINT_PRE - SHIFT_G ) |
( b & FIXPOINT_COLOR_MAX) >> ( FIX_POINT_PRE - SHIFT_B );
}
/*!
return fixpoint from VideoSample granularity FIXPOINT_COLOR_MAX
*/
inline void color_to_fix ( tFixPoint &r, tFixPoint &g, tFixPoint &b, const tVideoSample t00 )
{
(tFixPointu&) r = (t00 & MASK_R) >> ( SHIFT_R - FIX_POINT_PRE );
(tFixPointu&) g = (t00 & MASK_G) << ( FIX_POINT_PRE - SHIFT_G );
(tFixPointu&) b = (t00 & MASK_B) << ( FIX_POINT_PRE - SHIFT_B );
}
/*!
return fixpoint from VideoSample granularity FIXPOINT_COLOR_MAX
*/
inline void color_to_fix ( tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b, const tVideoSample t00 )
{
(tFixPointu&) a = (t00 & MASK_A) >> ( SHIFT_A - FIX_POINT_PRE );
(tFixPointu&) r = (t00 & MASK_R) >> ( SHIFT_R - FIX_POINT_PRE );
(tFixPointu&) g = (t00 & MASK_G) << ( FIX_POINT_PRE - SHIFT_G );
(tFixPointu&) b = (t00 & MASK_B) << ( FIX_POINT_PRE - SHIFT_B );
}
/*!
return fixpoint from VideoSample granularity 0..FIX_POINT_ONE
*/
inline void color_to_fix1 ( tFixPoint &r, tFixPoint &g, tFixPoint &b, const tVideoSample t00 )
{
(tFixPointu&) r = (t00 & MASK_R) >> ( SHIFT_R + COLOR_MAX_LOG2 - FIX_POINT_PRE );
(tFixPointu&) g = (t00 & MASK_G) >> ( SHIFT_G + COLOR_MAX_LOG2 - FIX_POINT_PRE );
(tFixPointu&) b = (t00 & MASK_B) << ( FIX_POINT_PRE - COLOR_MAX_LOG2 );
//0..255 -> 0..256 | c += c >= 0.5 ? 1 : 0
r += (r & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
g += (g & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
b += (b & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
}
/*!
return fixpoint from VideoSample granularity 0..FIX_POINT_ONE
*/
inline void color_to_fix1 ( tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b, const tVideoSample t00 )
{
(tFixPointu&) a = (t00 & MASK_A) >> ( SHIFT_A + COLOR_MAX_LOG2 - FIX_POINT_PRE );
(tFixPointu&) r = (t00 & MASK_R) >> ( SHIFT_R + COLOR_MAX_LOG2 - FIX_POINT_PRE );
(tFixPointu&) g = (t00 & MASK_G) >> ( SHIFT_G + COLOR_MAX_LOG2 - FIX_POINT_PRE );
(tFixPointu&) b = (t00 & MASK_B) << ( FIX_POINT_PRE - COLOR_MAX_LOG2 );
//0..255 -> 0..256 | c += c >= 0.5 ? 1 : 0
a += (a & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
r += (r & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
g += (g & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
b += (b & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
}
/*!
return fixpoint from VideoSample granularity FIXPOINT_COLOR_MAX
*/
inline void color_to_fix(tFixPoint c[4], const tVideoSample t00)
{
c[0] = (t00 & MASK_A) >> (SHIFT_A - FIX_POINT_PRE);
c[1] = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
c[2] = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
c[3] = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
}
/*!
return fixpoint from VideoSample granularity 0..FIX_POINT_ONE
*/
inline void color_to_fix1(tFixPoint c[4], const tVideoSample t00)
{
c[0] = (t00 & MASK_A) >> (SHIFT_A + COLOR_MAX_LOG2 - FIX_POINT_PRE);
c[1] = (t00 & MASK_R) >> (SHIFT_R + COLOR_MAX_LOG2 - FIX_POINT_PRE);
c[2] = (t00 & MASK_G) >> (SHIFT_G + COLOR_MAX_LOG2 - FIX_POINT_PRE);
c[3] = (t00 & MASK_B) << (FIX_POINT_PRE - COLOR_MAX_LOG2);
//0..255 -> 0..256 | c += c >= 0.5 ? 1 : 0
c[0] += (c[0] & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
c[1] += (c[1] & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
c[2] += (c[2] & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
c[3] += (c[3] & FIX_POINT_ZERO_DOT_FIVE) ? FIX_POINT_COLOR_ERROR : 0;
}
//! ----- FP24 1.23 fix point z-buffer
#if 1
typedef f32 fp24;
#else
struct fp24
{
u32 v;
fp24() {}
fp24 ( const f32 f )
{
f32 y = f + 1.f;
v = ((u32&)y) & 0x7FFFFF; // last 23 bits
}
void operator=(const f32 f )
{
f32 y = f + 1.f;
v = ((u32&)y) & 0x7FFFFF; // last 23 bits
}
void operator+=(const fp24 &other )
{
v += other.v;
}
operator f32 () const
{
f32 r = FR ( v );
return r + 1.f;
}
};
#endif
// ------------------------ Internal Texture -----------------------------
struct sInternalTexture
{
//power-of-two
void* data; //tVideoSample* Texture->lock(miplevel)
size_t textureXMask;
size_t textureYMask;
size_t pitchlog2;
video::CSoftwareTexture2 *Texture;
s32 lodFactor; // magnify/minify
};
// get video sample plain
static inline tVideoSample getTexel_plain ( const sInternalTexture* t, const tFixPointu tx, const tFixPointu ty )
{
size_t ofs;
ofs = ( ( ty & t->textureYMask ) >> FIX_POINT_PRE ) << t->pitchlog2;
ofs |= ( tx & t->textureXMask ) >> ( FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY );
// texel
return *((tVideoSample*)( (u8*) t->data + ofs ));
}
// get video sample to fix
inline void getTexel_fix ( tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* t, const tFixPointu tx, const tFixPointu ty
)
{
size_t ofs;
ofs = ( ((ty + FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask ) >> FIX_POINT_PRE ) << t->pitchlog2;
ofs |= ((tx + FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask ) >> ( FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY );
// texel
tVideoSample t00;
t00 = *((tVideoSample*)( (u8*) t->data + ofs ));
r = (t00 & MASK_R) >> ( SHIFT_R - FIX_POINT_PRE);
g = (t00 & MASK_G) << ( FIX_POINT_PRE - SHIFT_G );
b = (t00 & MASK_B) << ( FIX_POINT_PRE - SHIFT_B );
}
// get video sample to fixpoint colormax
inline void getTexel_fix(tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* t, const tFixPointu tx, const tFixPointu ty
)
{
size_t ofs;
ofs = (((ty+ FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
ofs |= ((tx+ FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
// texel
tVideoSample t00;
t00 = *((tVideoSample*)((u8*)t->data + ofs));
a = (t00 & MASK_A) >> (SHIFT_A - FIX_POINT_PRE);
r = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
g = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
b = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
}
#if 0
// get video sample to fixpoint
static REALINLINE void getTexel_fix ( tFixPoint &a,
const sInternalTexture * t, const tFixPointu tx, const tFixPointu ty)
{
size_t ofs;
ofs = ( ((ty + FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask ) >> FIX_POINT_PRE ) << t->pitchlog2;
ofs |= ((tx + FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask ) >> ( FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY );
// texel
tVideoSample t00;
t00 = *((tVideoSample*)( (u8*) t->data + ofs ));
a = (t00 & MASK_A) >> ( SHIFT_A - FIX_POINT_PRE);
}
#endif
/*
load a sample from internal texture at position tx,ty to fixpoint
*/
#if defined(SOFTWARE_DRIVER_2_BILINEAR)
#if 0
// texture2D in fixpoint color range bilinear
static REALINLINE void getSample_texture(tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* burning_restrict t, const tFixPointu tx, const tFixPointu ty
)
{
#if 0
if (t->lodFactor > 0)
{
size_t ofs;
ofs = (((ty + FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
ofs += ((tx + FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
// texel
tVideoSample t00;
t00 = *((tVideoSample*)((u8*)t->data + ofs));
r = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
g = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
b = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
return;
}
#endif
tFixPointu r00, g00, b00;
tFixPointu r01, g01, b01;
tFixPointu r10, g10, b10;
tFixPointu r11, g11, b11;
size_t o0, o1, o2, o3;
tVideoSample t00;
//wraps positive (ignoring negative)
o0 = (((ty)& t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
o1 = (((ty + FIX_POINT_ONE) & t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
o2 = ((tx)& t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
o3 = ((tx + FIX_POINT_ONE) & t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
t00 = *((tVideoSample*)((u8*)t->data + (o0 + o2)));
r00 = (t00 & MASK_R) >> SHIFT_R;
g00 = (t00 & MASK_G) >> SHIFT_G;
b00 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)t->data + (o0 + o3)));
r10 = (t00 & MASK_R) >> SHIFT_R;
g10 = (t00 & MASK_G) >> SHIFT_G;
b10 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)t->data + (o1 + o2)));
r01 = (t00 & MASK_R) >> SHIFT_R;
g01 = (t00 & MASK_G) >> SHIFT_G;
b01 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)t->data + (o1 + o3)));
r11 = (t00 & MASK_R) >> SHIFT_R;
g11 = (t00 & MASK_G) >> SHIFT_G;
b11 = (t00 & MASK_B);
tFixPointu fracx = tx & FIX_POINT_FRACT_MASK;
tFixPointu fracy = ty & FIX_POINT_FRACT_MASK;
//w00 w01 w10 w11
tFixPointu w[4];
w[0] = imulFixu(FIX_POINT_ONE - fracx, FIX_POINT_ONE - fracy);
w[1] = imulFixu(FIX_POINT_ONE - fracx, fracy);
w[2] = imulFixu(fracx, FIX_POINT_ONE - fracy);
w[3] = imulFixu(fracx, fracy);
r = (r00 * w[0]) +
(r01 * w[1]) +
(r10 * w[2]) +
(r11 * w[3]);
g = (g00 * w[0]) +
(g01 * w[1]) +
(g10 * w[2]) +
(g11 * w[3]);
b = (b00 * w[0]) +
(b01 * w[1]) +
(b10 * w[2]) +
(b11 * w[3]);
}
#else
// texture2D in fixpoint color range bilinear
static REALINLINE void getSample_texture(tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* burning_restrict tex, const tFixPointu tx, const tFixPointu ty
)
{
#if 0
if (tex->lodFactor > 1)
{
//nearest neighbor
size_t ofs;
ofs = (((ty + FIX_POINT_ZERO_DOT_FIVE) & tex->textureYMask) >> FIX_POINT_PRE) << tex->pitchlog2;
ofs += ((tx + FIX_POINT_ZERO_DOT_FIVE) & tex->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
tVideoSample t00;
t00 = *((tVideoSample*)((u8*)tex->data + ofs));
r = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
g = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
b = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
return;
}
#endif
//w00 w01 w10 w11
tFixPointu w[4];
{
tFixPointu fracx = tx & FIX_POINT_FRACT_MASK;
tFixPointu fracy = ty & FIX_POINT_FRACT_MASK;
w[0] = imulFixu(FIX_POINT_ONE - fracx, FIX_POINT_ONE - fracy);
w[1] = imulFixu(fracx, FIX_POINT_ONE - fracy);
w[2] = imulFixu(FIX_POINT_ONE - fracx, fracy);
w[3] = imulFixu(fracx, fracy);
}
//wraps positive (ignoring negative)
tVideoSample t[4];
{
size_t o0, o1, o2, o3;
o0 = (((ty) & tex->textureYMask) >> FIX_POINT_PRE) << tex->pitchlog2;
o1 = (((ty + FIX_POINT_ONE) & tex->textureYMask) >> FIX_POINT_PRE) << tex->pitchlog2;
o2 = ((tx)& tex->textureXMask) >> (unsigned)(FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
o3 = ((tx + FIX_POINT_ONE) & tex->textureXMask) >> (unsigned)(FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
t[0] = *((tVideoSample*)((u8*)tex->data + (o0 + o2)));
t[1] = *((tVideoSample*)((u8*)tex->data + (o0 + o3)));
t[2] = *((tVideoSample*)((u8*)tex->data + (o1 + o2)));
t[3] = *((tVideoSample*)((u8*)tex->data + (o1 + o3)));
}
r = (((t[0] & MASK_R) >> SHIFT_R) * w[0]) +
(((t[1] & MASK_R) >> SHIFT_R) * w[1]) +
(((t[2] & MASK_R) >> SHIFT_R) * w[2]) +
(((t[3] & MASK_R) >> SHIFT_R) * w[3]);
g = (((t[0] & MASK_G) >> SHIFT_G) * w[0]) +
(((t[1] & MASK_G) >> SHIFT_G) * w[1]) +
(((t[2] & MASK_G) >> SHIFT_G) * w[2]) +
(((t[3] & MASK_G) >> SHIFT_G) * w[3]);
b = ((t[0] & MASK_B) * w[0]) +
((t[1] & MASK_B) * w[1]) +
((t[2] & MASK_B) * w[2]) +
((t[3] & MASK_B) * w[3]);
}
#endif
// get Sample bilinear
static REALINLINE void getSample_texture(tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* burning_restrict tex, const tFixPointu tx, const tFixPointu ty
)
{
tFixPointu a00, r00, g00, b00;
tFixPointu a01, r01, g01, b01;
tFixPointu a10, r10, g10, b10;
tFixPointu a11, r11, g11, b11;
size_t o0, o1, o2, o3;
tVideoSample t00;
o0 = (((ty)& tex->textureYMask) >> FIX_POINT_PRE) << tex->pitchlog2;
o1 = (((ty + FIX_POINT_ONE) & tex->textureYMask) >> FIX_POINT_PRE) << tex->pitchlog2;
o2 = ((tx)& tex->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
o3 = ((tx + FIX_POINT_ONE) & tex->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
t00 = *((tVideoSample*)((u8*)tex->data + (o0 + o2)));
a00 = (t00 & MASK_A) >> SHIFT_A;
r00 = (t00 & MASK_R) >> SHIFT_R;
g00 = (t00 & MASK_G) >> SHIFT_G;
b00 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)tex->data + (o0 + o3)));
a10 = (t00 & MASK_A) >> SHIFT_A;
r10 = (t00 & MASK_R) >> SHIFT_R;
g10 = (t00 & MASK_G) >> SHIFT_G;
b10 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)tex->data + (o1 + o2)));
a01 = (t00 & MASK_A) >> SHIFT_A;
r01 = (t00 & MASK_R) >> SHIFT_R;
g01 = (t00 & MASK_G) >> SHIFT_G;
b01 = (t00 & MASK_B);
t00 = *((tVideoSample*)((u8*)tex->data + (o1 + o3)));
a11 = (t00 & MASK_A) >> SHIFT_A;
r11 = (t00 & MASK_R) >> SHIFT_R;
g11 = (t00 & MASK_G) >> SHIFT_G;
b11 = (t00 & MASK_B);
const tFixPointu txFract = tx & FIX_POINT_FRACT_MASK;
const tFixPointu txFractInv = FIX_POINT_ONE - txFract;
const tFixPointu tyFract = ty & FIX_POINT_FRACT_MASK;
const tFixPointu tyFractInv = FIX_POINT_ONE - tyFract;
const tFixPointu w00 = imulFixu(txFractInv, tyFractInv);
const tFixPointu w10 = imulFixu(txFract, tyFractInv);
const tFixPointu w01 = imulFixu(txFractInv, tyFract);
const tFixPointu w11 = imulFixu(txFract, tyFract);
a = (a00 * w00) +
(a01 * w01) +
(a10 * w10) +
(a11 * w11);
fix_alpha_color_max(a);
r = (r00 * w00) +
(r01 * w01) +
(r10 * w10) +
(r11 * w11);
g = (g00 * w00) +
(g01 * w01) +
(g10 * w10) +
(g11 * w11);
b = (b00 * w00) +
(b01 * w01) +
(b10 * w10) +
(b11 * w11);
}
#else // SOFTWARE_DRIVER_2_BILINEAR
// get Sample linear == getSample_fixpoint
static REALINLINE void getSample_texture(tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* burning_restrict t, const tFixPointu tx, const tFixPointu ty
)
{
size_t ofs;
ofs = (((ty + FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
ofs += ((tx + FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
// texel
const tVideoSample t00 = *((tVideoSample*)((u8*)t->data + ofs));
(tFixPointu &)r = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
(tFixPointu &)g = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
(tFixPointu &)b = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
}
static REALINLINE void getSample_texture(tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b,
const sInternalTexture* burning_restrict t, const tFixPointu tx, const tFixPointu ty
)
{
size_t ofs;
ofs = (((ty + FIX_POINT_ZERO_DOT_FIVE) & t->textureYMask) >> FIX_POINT_PRE) << t->pitchlog2;
ofs += ((tx + FIX_POINT_ZERO_DOT_FIVE) & t->textureXMask) >> (FIX_POINT_PRE - VIDEO_SAMPLE_GRANULARITY);
// texel
const tVideoSample t00 = *((tVideoSample*)((u8*)t->data + ofs));
(tFixPointu &)a = (t00 & MASK_A) >> (SHIFT_A - FIX_POINT_PRE);
fix_alpha_color_max(a);
(tFixPointu &)r = (t00 & MASK_R) >> (SHIFT_R - FIX_POINT_PRE);
(tFixPointu &)g = (t00 & MASK_G) << (FIX_POINT_PRE - SHIFT_G);
(tFixPointu &)b = (t00 & MASK_B) << (FIX_POINT_PRE - SHIFT_B);
}
#endif // SOFTWARE_DRIVER_2_BILINEAR
// 2D Region closed [x0;x1]
struct AbsRectangle
{
s32 x0;
s32 y0;
s32 x1;
s32 y1;
};
//! 2D Intersection test
inline bool intersect ( AbsRectangle &dest, const AbsRectangle& a, const AbsRectangle& b)
{
dest.x0 = core::s32_max( a.x0, b.x0 );
dest.y0 = core::s32_max( a.y0, b.y0 );
dest.x1 = core::s32_min( a.x1, b.x1 );
dest.y1 = core::s32_min( a.y1, b.y1 );
return dest.x0 < dest.x1 && dest.y0 < dest.y1;
}
#if 0
// some 1D defines
struct sIntervall
{
s32 start;
s32 end;
};
// returning intersection width
inline s32 intervall_intersect_test( const sIntervall& a, const sIntervall& b)
{
return core::s32_min( a.end, b.end ) - core::s32_max( a.start, b.start );
}
#endif
// strings
static inline void tiny_strncpy(char* to, const char* from, const size_t count)
{
for (size_t r = 0; r < count && (*to = *from) != '\0'; ++from, ++to, ++r);
*to = '\0';
}
#define tiny_strcpy(a, b) tiny_strncpy(a,b,sizeof(a)-1)
// tiny_isequal = !strncmp(a,b,sizeof(a)-1)
static inline int tiny_isequal(const char *s1, const char *s2, size_t n)
{
do {
if (*s1 != *s2++) return 0;
if (*s1++ == 0)
break;
} while (--n != 0);
return 1;
}
#define tiny_istoken(a, b) tiny_isequal(a,b,sizeof(a)-1) != 0
//! Size of a static C-style array.
#define array_size(_arr) ((sizeof(_arr)/sizeof(*_arr)))
} // end namespace irr
#endif