mirror of
https://github.com/minetest/irrlicht.git
synced 2024-11-05 01:40:44 +01:00
8310a3fbad
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6000 dfc29bdd-3216-0410-991c-e03cc46cb475
462 lines
15 KiB
C++
462 lines
15 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 2003, Dr Brian Gladman < >, Worcester, UK.
|
|
All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The free distribution and use of this software in both source and binary
|
|
form is allowed (with or without changes) provided that:
|
|
|
|
1. distributions of this source code include the above copyright
|
|
notice, this list of conditions and the following disclaimer;
|
|
|
|
2. distributions in binary form include the above copyright
|
|
notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other associated materials;
|
|
|
|
3. the copyright holder's name is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 26/08/2003
|
|
|
|
This file contains the code for implementing the key schedule for AES
|
|
(Rijndael) for block and key sizes of 16, 24, and 32 bytes. See aesopt.h
|
|
for further details including optimisation.
|
|
*/
|
|
|
|
#include "aesopt.h"
|
|
|
|
/* Initialise the key schedule from the user supplied key. The key
|
|
length can be specified in bytes, with legal values of 16, 24
|
|
and 32, or in bits, with legal values of 128, 192 and 256. These
|
|
values correspond with Nk values of 4, 6 and 8 respectively.
|
|
|
|
The following macros implement a single cycle in the key
|
|
schedule generation process. The number of cycles needed
|
|
for each cx->n_col and nk value is:
|
|
|
|
nk = 4 5 6 7 8
|
|
------------------------------
|
|
cx->n_col = 4 10 9 8 7 7
|
|
cx->n_col = 5 14 11 10 9 9
|
|
cx->n_col = 6 19 15 12 11 11
|
|
cx->n_col = 7 21 19 16 13 14
|
|
cx->n_col = 8 29 23 19 17 14
|
|
*/
|
|
|
|
#define ke4(k,i) \
|
|
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
|
|
k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
|
|
}
|
|
#define kel4(k,i) \
|
|
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \
|
|
k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke6(k,i) \
|
|
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
|
k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \
|
|
}
|
|
#define kel6(k,i) \
|
|
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke8(k,i) \
|
|
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
|
k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
|
|
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \
|
|
k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \
|
|
}
|
|
#define kel8(k,i) \
|
|
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
|
k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#if defined(ENCRYPTION_KEY_SCHEDULE)
|
|
|
|
#if defined(AES_128) || defined(AES_VAR)
|
|
|
|
aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1])
|
|
{ aes_32t ss[4];
|
|
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
|
|
#if ENC_UNROLL == NONE
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < ((11 * N_COLS - 1) / 4); ++i)
|
|
ke4(cx->ks, i);
|
|
}
|
|
#else
|
|
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
|
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
|
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
|
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
|
ke4(cx->ks, 8); kel4(cx->ks, 9);
|
|
#endif
|
|
|
|
/* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
|
|
/* key and must be non-zero for 128 and 192 bits keys */
|
|
cx->ks[53] = cx->ks[45] = 0;
|
|
cx->ks[52] = 10;
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_192) || defined(AES_VAR)
|
|
|
|
aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1])
|
|
{ aes_32t ss[6];
|
|
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
cx->ks[4] = ss[4] = word_in(in_key, 4);
|
|
cx->ks[5] = ss[5] = word_in(in_key, 5);
|
|
|
|
#if ENC_UNROLL == NONE
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
|
|
ke6(cx->ks, i);
|
|
}
|
|
#else
|
|
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
|
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
|
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
|
ke6(cx->ks, 6); kel6(cx->ks, 7);
|
|
#endif
|
|
|
|
/* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
|
|
/* key and must be non-zero for 128 and 192 bits keys */
|
|
cx->ks[53] = cx->ks[45];
|
|
cx->ks[52] = 12;
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_256) || defined(AES_VAR)
|
|
|
|
aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1])
|
|
{ aes_32t ss[8];
|
|
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
cx->ks[4] = ss[4] = word_in(in_key, 4);
|
|
cx->ks[5] = ss[5] = word_in(in_key, 5);
|
|
cx->ks[6] = ss[6] = word_in(in_key, 6);
|
|
cx->ks[7] = ss[7] = word_in(in_key, 7);
|
|
|
|
#if ENC_UNROLL == NONE
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
|
|
ke8(cx->ks, i);
|
|
}
|
|
#else
|
|
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
|
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
|
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
|
kel8(cx->ks, 6);
|
|
#endif
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_VAR)
|
|
|
|
aes_rval aes_encrypt_key(const void *in_key, int key_len, aes_encrypt_ctx cx[1])
|
|
{
|
|
switch(key_len)
|
|
{
|
|
#ifdef AES_ERR_CHK
|
|
case 16: case 128: return aes_encrypt_key128(in_key, cx);
|
|
case 24: case 192: return aes_encrypt_key192(in_key, cx);
|
|
case 32: case 256: return aes_encrypt_key256(in_key, cx);
|
|
default: return aes_error;
|
|
#else
|
|
case 16: case 128: aes_encrypt_key128(in_key, cx); return;
|
|
case 24: case 192: aes_encrypt_key192(in_key, cx); return;
|
|
case 32: case 256: aes_encrypt_key256(in_key, cx); return;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined(DECRYPTION_KEY_SCHEDULE)
|
|
|
|
#if DEC_ROUND == NO_TABLES
|
|
#define ff(x) (x)
|
|
#else
|
|
#define ff(x) inv_mcol(x)
|
|
#ifdef dec_imvars
|
|
#define d_vars dec_imvars
|
|
#endif
|
|
#endif
|
|
|
|
#if 1
|
|
#define kdf4(k,i) \
|
|
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \
|
|
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
|
ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \
|
|
ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \
|
|
}
|
|
#define kd4(k,i) \
|
|
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
|
k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
|
|
k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
|
|
}
|
|
#define kdl4(k,i) \
|
|
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
|
k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \
|
|
k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \
|
|
}
|
|
#else
|
|
#define kdf4(k,i) \
|
|
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \
|
|
}
|
|
#define kd4(k,i) \
|
|
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \
|
|
ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \
|
|
ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \
|
|
ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \
|
|
}
|
|
#define kdl4(k,i) \
|
|
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \
|
|
}
|
|
#endif
|
|
|
|
#define kdf6(k,i) \
|
|
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \
|
|
ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \
|
|
}
|
|
#define kd6(k,i) \
|
|
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
|
|
ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
|
|
ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
|
|
ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
|
|
ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
|
|
ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
|
|
}
|
|
#define kdl6(k,i) \
|
|
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \
|
|
}
|
|
|
|
#define kdf8(k,i) \
|
|
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \
|
|
ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \
|
|
ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \
|
|
}
|
|
#define kd8(k,i) \
|
|
{ aes_32t g = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \
|
|
ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \
|
|
ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \
|
|
ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \
|
|
g = ls_box(ss[3],0); \
|
|
ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \
|
|
ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \
|
|
ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \
|
|
ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \
|
|
}
|
|
#define kdl8(k,i) \
|
|
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \
|
|
}
|
|
|
|
#if defined(AES_128) || defined(AES_VAR)
|
|
|
|
aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1])
|
|
{ aes_32t ss[5];
|
|
#ifdef d_vars
|
|
d_vars;
|
|
#endif
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
|
|
#if DEC_UNROLL == NONE
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < (11 * N_COLS - 1) / 4; ++i)
|
|
ke4(cx->ks, i);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#else
|
|
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
|
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
|
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
|
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
|
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
|
#endif
|
|
|
|
/* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
|
|
/* key and must be non-zero for 128 and 192 bits keys */
|
|
cx->ks[53] = cx->ks[45] = 0;
|
|
cx->ks[52] = 10;
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_192) || defined(AES_VAR)
|
|
|
|
aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1])
|
|
{ aes_32t ss[7];
|
|
#ifdef d_vars
|
|
d_vars;
|
|
#endif
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
|
|
#if DEC_UNROLL == NONE
|
|
cx->ks[4] = ss[4] = word_in(in_key, 4);
|
|
cx->ks[5] = ss[5] = word_in(in_key, 5);
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < (13 * N_COLS - 1) / 6; ++i)
|
|
ke6(cx->ks, i);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#else
|
|
ss[4] = word_in(in_key, 4);
|
|
cx->ks[4] = ff(ss[4]);
|
|
ss[5] = word_in(in_key, 5);
|
|
cx->ks[5] = ff(ss[5]);
|
|
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
|
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
|
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
|
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
|
#endif
|
|
|
|
/* cx->ks[45] ^ cx->ks[52] ^ cx->ks[53] is zero for a 256 bit */
|
|
/* key and must be non-zero for 128 and 192 bits keys */
|
|
cx->ks[53] = cx->ks[45];
|
|
cx->ks[52] = 12;
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_256) || defined(AES_VAR)
|
|
|
|
aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1])
|
|
{ aes_32t ss[8];
|
|
#ifdef d_vars
|
|
d_vars;
|
|
#endif
|
|
cx->ks[0] = ss[0] = word_in(in_key, 0);
|
|
cx->ks[1] = ss[1] = word_in(in_key, 1);
|
|
cx->ks[2] = ss[2] = word_in(in_key, 2);
|
|
cx->ks[3] = ss[3] = word_in(in_key, 3);
|
|
|
|
#if DEC_UNROLL == NONE
|
|
cx->ks[4] = ss[4] = word_in(in_key, 4);
|
|
cx->ks[5] = ss[5] = word_in(in_key, 5);
|
|
cx->ks[6] = ss[6] = word_in(in_key, 6);
|
|
cx->ks[7] = ss[7] = word_in(in_key, 7);
|
|
{ aes_32t i;
|
|
|
|
for(i = 0; i < (15 * N_COLS - 1) / 8; ++i)
|
|
ke8(cx->ks, i);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#else
|
|
ss[4] = word_in(in_key, 4);
|
|
cx->ks[4] = ff(ss[4]);
|
|
ss[5] = word_in(in_key, 5);
|
|
cx->ks[5] = ff(ss[5]);
|
|
ss[6] = word_in(in_key, 6);
|
|
cx->ks[6] = ff(ss[6]);
|
|
ss[7] = word_in(in_key, 7);
|
|
cx->ks[7] = ff(ss[7]);
|
|
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
|
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
|
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
|
kdl8(cx->ks, 6);
|
|
#endif
|
|
#ifdef AES_ERR_CHK
|
|
return aes_good;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_VAR)
|
|
|
|
aes_rval aes_decrypt_key(const void *in_key, int key_len, aes_decrypt_ctx cx[1])
|
|
{
|
|
switch(key_len)
|
|
{
|
|
#ifdef AES_ERR_CHK
|
|
case 16: case 128: return aes_decrypt_key128(in_key, cx);
|
|
case 24: case 192: return aes_decrypt_key192(in_key, cx);
|
|
case 32: case 256: return aes_decrypt_key256(in_key, cx);
|
|
default: return aes_error;
|
|
#else
|
|
case 16: case 128: aes_decrypt_key128(in_key, cx); return;
|
|
case 24: case 192: aes_decrypt_key192(in_key, cx); return;
|
|
case 32: case 256: aes_decrypt_key256(in_key, cx); return;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|