irrlicht/source/Irrlicht/CQ3LevelMesh.h
cutealien 3a9875cc77 Spelling fixes
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6456 dfc29bdd-3216-0410-991c-e03cc46cb475
2023-03-31 13:12:47 +00:00

488 lines
15 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef IRR_C_Q3_LEVEL_MESH_H_INCLUDED
#define IRR_C_Q3_LEVEL_MESH_H_INCLUDED
#include "IQ3LevelMesh.h"
#include "IReadFile.h"
#include "IFileSystem.h"
#include "SMesh.h"
#include "SMeshBufferLightMap.h"
#include "IVideoDriver.h"
#include "irrString.h"
#include "ISceneManager.h"
#include "os.h"
namespace irr
{
namespace scene
{
class CQ3LevelMesh : public IQ3LevelMesh
{
public:
//! constructor
CQ3LevelMesh(io::IFileSystem* fs, scene::ISceneManager* smgr,
const quake3::Q3LevelLoadParameter &loadParam);
//! destructor
virtual ~CQ3LevelMesh();
//! loads a level from a .bsp-File. Also tries to load all
//! needed textures. Returns true if successful.
bool loadFile(io::IReadFile* file);
//! returns the amount of frames in milliseconds. If the amount
//! is 1, it is a static (=non animated) mesh.
virtual u32 getFrameCount() const IRR_OVERRIDE;
//! Gets the default animation speed of the animated mesh.
/** \return Amount of frames per second. If the amount is 0, it is a static, non animated mesh. */
virtual f32 getAnimationSpeed() const IRR_OVERRIDE
{
return FramesPerSecond;
}
//! Gets the frame count of the animated mesh.
/** \param fps Frames per second to play the animation with. If the amount is 0, it is not animated.
The actual speed is set in the scene node the mesh is instantiated in.*/
virtual void setAnimationSpeed(f32 fps) IRR_OVERRIDE
{
FramesPerSecond=fps;
}
//! returns the animated mesh based on a detail level. 0 is the
//! lowest, 255 the highest detail. Note, that some Meshes will
//! ignore the detail level.
virtual IMesh* getMesh(s32 frameInMs, s32 detailLevel=255,
s32 startFrameLoop=-1, s32 endFrameLoop=-1) IRR_OVERRIDE;
//! Returns an axis aligned bounding box of the mesh.
//! \return A bounding box of this mesh is returned.
virtual const core::aabbox3d<f32>& getBoundingBox() const IRR_OVERRIDE;
virtual void setBoundingBox( const core::aabbox3df& box) IRR_OVERRIDE;
//! Returns the type of the animated mesh.
virtual E_ANIMATED_MESH_TYPE getMeshType() const IRR_OVERRIDE;
//! loads the shader definition
void getShader( io::IReadFile* file );
//! loads the shader definition
virtual const quake3::IShader * getShader( const c8 * filename, bool fileNameIsValid=true ) IRR_OVERRIDE;
//! returns a already loaded Shader
virtual const quake3::IShader * getShader( u32 index ) const IRR_OVERRIDE;
//! loads a configuration file
void getConfiguration( io::IReadFile* file );
//! get's an interface to the entities
virtual quake3::tQ3EntityList & getEntityList() IRR_OVERRIDE;
//! returns the requested brush entity
virtual IMesh* getBrushEntityMesh(s32 num) const IRR_OVERRIDE;
//! returns the requested brush entity
virtual IMesh* getBrushEntityMesh(quake3::IEntity &ent) const IRR_OVERRIDE;
//Link to held meshes? ...
//! returns amount of mesh buffers.
virtual u32 getMeshBufferCount() const IRR_OVERRIDE
{
return 0;
}
//! returns pointer to a mesh buffer
virtual IMeshBuffer* getMeshBuffer(u32 nr) const IRR_OVERRIDE
{
return 0;
}
//! Returns pointer to a mesh buffer which fits a material
/** \param material: material to search for
\return Pointer to the mesh buffer or 0 if there is no such mesh buffer. */
virtual IMeshBuffer* getMeshBuffer( const video::SMaterial &material) const IRR_OVERRIDE
{
return 0;
}
virtual void setMaterialFlag(video::E_MATERIAL_FLAG flag, bool newvalue) IRR_OVERRIDE
{
return;
}
//! set the hardware mapping hint, for driver
virtual void setHardwareMappingHint(E_HARDWARE_MAPPING newMappingHint, E_BUFFER_TYPE buffer=EBT_VERTEX_AND_INDEX) IRR_OVERRIDE
{
return;
}
//! flags the meshbuffer as changed, reloads hardware buffers
virtual void setDirty(E_BUFFER_TYPE buffer=EBT_VERTEX_AND_INDEX) IRR_OVERRIDE
{
return;
}
private:
void constructMesh();
void solveTJunction();
void loadTextures();
scene::SMesh** buildMesh(s32 num);
struct STexShader
{
video::ITexture* Texture;
s32 ShaderID;
};
core::array< STexShader > Tex;
core::array<video::ITexture*> Lightmap;
enum eLumps
{
kEntities = 0, // Stores player/object positions, etc...
kShaders = 1, // Stores texture information
kPlanes = 2, // Stores the splitting planes
kNodes = 3, // Stores the BSP nodes
kLeafs = 4, // Stores the leafs of the nodes
kLeafFaces = 5, // Stores the leaf's indices into the faces
kLeafBrushes = 6, // Stores the leaf's indices into the brushes
kModels = 7, // Stores the info of world models
kBrushes = 8, // Stores the brushes info (for collision)
kBrushSides = 9, // Stores the brush surfaces info
kVertices = 10, // Stores the level vertices
kMeshVerts = 11, // Stores the model vertices offsets
kFogs = 12, // Stores the shader files (blending, anims..)
kFaces = 13, // Stores the faces for the level
kLightmaps = 14, // Stores the lightmaps for the level
kLightGrid = 15, // Stores extra world lighting information
kVisData = 16, // Stores PVS and cluster info (visibility)
kLightArray = 17, // RBSP
kMaxLumps // A constant to store the number of lumps
};
enum eBspSurfaceType
{
BSP_MST_BAD,
BSP_MST_PLANAR,
BSP_MST_PATCH,
BSP_MST_TRIANGLE_SOUP,
BSP_MST_FLARE,
BSP_MST_FOLIAGE
};
struct tBSPHeader
{
s32 strID; // This should always be 'IBSP'
s32 version; // This should be 0x2e for Quake 3 files
};
tBSPHeader header;
struct tBSPLump
{
s32 offset;
s32 length;
};
struct tBSPVertex
{
f32 vPosition[3]; // (x, y, z) position.
f32 vTextureCoord[2]; // (u, v) texture coordinate
f32 vLightmapCoord[2]; // (u, v) lightmap coordinate
f32 vNormal[3]; // (x, y, z) normal vector
u8 color[4]; // RGBA color for the vertex
};
struct tBSPFace
{
s32 textureID; // The index into the texture array
s32 fogNum; // The index for the effects (or -1 = n/a)
s32 type; // 1=polygon, 2=patch, 3=mesh, 4=billboard
s32 vertexIndex; // The index into this face's first vertex
s32 numOfVerts; // The number of vertices for this face
s32 meshVertIndex; // The index into the first meshvertex
s32 numMeshVerts; // The number of mesh vertices
s32 lightmapID; // The texture index for the lightmap
s32 lMapCorner[2]; // The face's lightmap corner in the image
s32 lMapSize[2]; // The size of the lightmap section
f32 lMapPos[3]; // The 3D origin of lightmap.
f32 lMapBitsets[2][3]; // The 3D space for s and t unit vectors.
f32 vNormal[3]; // The face normal.
s32 size[2]; // The bezier patch dimensions.
};
struct tBSPTexture
{
c8 strName[64]; // The name of the texture w/o the extension
u32 flags; // The surface flags (unknown)
u32 contents; // The content flags (unknown)
};
struct tBSPLightmap
{
u8 imageBits[128][128][3]; // The RGB data in a 128x128 image
};
struct tBSPNode
{
s32 plane; // The index into the planes array
s32 front; // The child index for the front node
s32 back; // The child index for the back node
s32 mins[3]; // The bounding box min position.
s32 maxs[3]; // The bounding box max position.
};
struct tBSPLeaf
{
s32 cluster; // The visibility cluster
s32 area; // The area portal
s32 mins[3]; // The bounding box min position
s32 maxs[3]; // The bounding box max position
s32 leafface; // The first index into the face array
s32 numOfLeafFaces; // The number of faces for this leaf
s32 leafBrush; // The first index for into the brushes
s32 numOfLeafBrushes; // The number of brushes for this leaf
};
struct tBSPPlane
{
f32 vNormal[3]; // Plane normal.
f32 d; // The plane distance from origin
};
struct tBSPVisData
{
s32 numOfClusters; // The number of clusters
s32 bytesPerCluster; // Bytes (8 bits) in the cluster's bitset
c8 *pBitsets; // Array of bytes holding the cluster vis.
};
struct tBSPBrush
{
s32 brushSide; // The starting brush side for the brush
s32 numOfBrushSides; // Number of brush sides for the brush
s32 textureID; // The texture index for the brush
};
struct tBSPBrushSide
{
s32 plane; // The plane index
s32 textureID; // The texture index
};
struct tBSPModel
{
f32 min[3]; // The min position for the bounding box
f32 max[3]; // The max position for the bounding box.
s32 faceIndex; // The first face index in the model
s32 numOfFaces; // The number of faces in the model
s32 brushIndex; // The first brush index in the model
s32 numOfBrushes; // The number brushes for the model
};
struct tBSPFog
{
c8 shader[64]; // The name of the shader file
s32 brushIndex; // The brush index for this shader
s32 visibleSide; // the brush side that ray tests need to clip against (-1 == none
};
core::array < STexShader > FogMap;
struct tBSPLights
{
u8 ambient[3]; // This is the ambient color in RGB
u8 directional[3]; // This is the directional color in RGB
u8 direction[2]; // The direction of the light: [phi,theta]
};
void loadTextures (tBSPLump* l, io::IReadFile* file); // Load the textures
void loadLightmaps (tBSPLump* l, io::IReadFile* file); // Load the lightmaps
void loadVerts (tBSPLump* l, io::IReadFile* file); // Load the vertices
void loadFaces (tBSPLump* l, io::IReadFile* file); // Load the faces
void loadPlanes (tBSPLump* l, io::IReadFile* file); // Load the Planes of the BSP
void loadNodes (tBSPLump* l, io::IReadFile* file); // load the Nodes of the BSP
void loadLeafs (tBSPLump* l, io::IReadFile* file); // load the Leafs of the BSP
void loadLeafFaces (tBSPLump* l, io::IReadFile* file); // load the Faces of the Leafs of the BSP
void loadVisData (tBSPLump* l, io::IReadFile* file); // load the visibility data of the clusters
void loadEntities (tBSPLump* l, io::IReadFile* file); // load the entities
void loadModels (tBSPLump* l, io::IReadFile* file); // load the models
void loadMeshVerts (tBSPLump* l, io::IReadFile* file); // load the mesh vertices
void loadBrushes (tBSPLump* l, io::IReadFile* file); // load the brushes of the BSP
void loadBrushSides (tBSPLump* l, io::IReadFile* file); // load the brushsides of the BSP
void loadLeafBrushes(tBSPLump* l, io::IReadFile* file); // load the brushes of the leaf
void loadFogs (tBSPLump* l, io::IReadFile* file); // load the shaders
//bi-quadratic bezier patches
void createCurvedSurface_bezier(SMeshBufferLightMap* meshBuffer,
s32 faceIndex, s32 patchTessellation, s32 storevertexcolor);
void createCurvedSurface_nosubdivision(SMeshBufferLightMap* meshBuffer,
s32 faceIndex, s32 patchTessellation, s32 storevertexcolor);
struct S3DVertex2TCoords_64
{
core::vector3d<f64> Pos;
core::vector3d<f64> Normal;
video::SColorf Color;
core::vector2d<f64> TCoords;
core::vector2d<f64> TCoords2;
void copy( video::S3DVertex2TCoords &dest ) const;
S3DVertex2TCoords_64() {}
S3DVertex2TCoords_64(const core::vector3d<f64>& pos, const core::vector3d<f64>& normal, const video::SColorf& color,
const core::vector2d<f64>& tcoords, const core::vector2d<f64>& tcoords2)
: Pos(pos), Normal(normal), Color(color), TCoords(tcoords), TCoords2(tcoords2) {}
S3DVertex2TCoords_64 getInterpolated_quadratic(const S3DVertex2TCoords_64& v2,
const S3DVertex2TCoords_64& v3, const f64 d) const
{
return S3DVertex2TCoords_64 (
Pos.getInterpolated_quadratic ( v2.Pos, v3.Pos, d ),
Normal.getInterpolated_quadratic ( v2.Normal, v3.Normal, d ),
Color.getInterpolated_quadratic ( v2.Color, v3.Color, (f32) d ),
TCoords.getInterpolated_quadratic ( v2.TCoords, v3.TCoords, d ),
TCoords2.getInterpolated_quadratic ( v2.TCoords2, v3.TCoords2, d ));
}
};
inline void copy( video::S3DVertex2TCoords * dest, const tBSPVertex * source,
s32 vertexcolor ) const;
void copy( S3DVertex2TCoords_64 * dest, const tBSPVertex * source, s32 vertexcolor ) const;
struct SBezier
{
SMeshBufferLightMap *Patch;
S3DVertex2TCoords_64 control[9];
void tesselate(s32 level);
private:
core::array<S3DVertex2TCoords_64> column[3];
};
SBezier Bezier;
quake3::Q3LevelLoadParameter LoadParam;
tBSPLump Lumps[kMaxLumps];
tBSPTexture* Textures;
s32 NumTextures;
tBSPLightmap* LightMaps;
s32 NumLightMaps;
tBSPVertex* Vertices;
s32 NumVertices;
tBSPFace* Faces;
s32 NumFaces;
tBSPModel* Models;
s32 NumModels;
tBSPPlane* Planes;
s32 NumPlanes;
tBSPNode* Nodes;
s32 NumNodes;
tBSPLeaf* Leafs;
s32 NumLeafs;
s32 *LeafFaces;
s32 NumLeafFaces;
s32 *MeshVerts; // The vertex offsets for a mesh
s32 NumMeshVerts;
tBSPBrush* Brushes;
s32 NumBrushes;
scene::SMesh** BrushEntities;
scene::SMesh* Mesh[quake3::E_Q3_MESH_SIZE];
video::IVideoDriver* Driver;
core::stringc LevelName;
io::IFileSystem* FileSystem; // needs because there are no file extenstions stored in .bsp files.
// Additional content
scene::ISceneManager* SceneManager;
enum eToken
{
Q3_TOKEN_UNRESOLVED = 0,
Q3_TOKEN_EOF = 1,
Q3_TOKEN_START_LIST,
Q3_TOKEN_END_LIST,
Q3_TOKEN_ENTITY,
Q3_TOKEN_TOKEN,
Q3_TOKEN_EOL,
Q3_TOKEN_COMMENT,
Q3_TOKEN_MATH_DIVIDE,
Q3_TOKEN_MATH_ADD,
Q3_TOKEN_MATH_MULTIPY
};
struct SQ3Parser
{
const c8 *source;
u32 sourcesize;
u32 index;
core::stringc token;
eToken tokenresult;
};
SQ3Parser Parser;
typedef void( CQ3LevelMesh::*tParserCallback ) ( quake3::SVarGroupList *& groupList, eToken token );
void parser_parse( const void * data, u32 size, tParserCallback callback );
void parser_nextToken();
void dumpVarGroup( const quake3::SVarGroup * group, s32 stack ) const;
void scriptcallback_entity( quake3::SVarGroupList *& grouplist, eToken token );
void scriptcallback_shader( quake3::SVarGroupList *& grouplist, eToken token );
void scriptcallback_config( quake3::SVarGroupList *& grouplist, eToken token );
core::array < quake3::IShader > Shader;
core::array < quake3::IShader > Entity; //quake3::tQ3EntityList Entity;
quake3::tStringList ShaderFile;
void InitShader();
void ReleaseShader();
void ReleaseEntity();
s32 setShaderMaterial( video::SMaterial & material, const tBSPFace * face ) const;
s32 setShaderFogMaterial( video::SMaterial &material, const tBSPFace * face ) const;
struct SToBuffer
{
s32 takeVertexColor;
u32 index;
};
void cleanMeshes();
void cleanMesh(SMesh *m, const bool texture0important = false);
void cleanLoader ();
void calcBoundingBoxes();
c8 buf[128];
f32 FramesPerSecond;
};
} // end namespace scene
} // end namespace irr
#endif