irrlicht/source/Irrlicht/CTRTextureLightMap2_M1.cpp
cutealien 3280b3319e Add floor32, ceil32, round32 compatibility functions for burnings renderer.
To avoid changing burnings now those functions have no IRRLICHT_FAST_MATH anymore, 
there's a new header irrMathFastCompat.h which has ..._fast functions doing the old behavior.
With the troubles they have documented.
I changed burnings to use those functions throughout.
Or as much as possible... Burnings probably also uses classes like SColor which also have functions 
using those, but I don't plan  to adapt them.
Maybe IRRLICHT_FAST_MATH should be a flag exlusive to burnings in the future, I don't think it makes 
much sense otherwise anymore (it often expects 32-bit asm).

git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6012 dfc29bdd-3216-0410-991c-e03cc46cb475
2019-12-16 16:15:04 +00:00

642 lines
13 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_T0
#undef IPOL_T1
// define render case
#define SUBTEXEL
#define INVERSE_W
#define USE_ZBUFFER
#define IPOL_W
#define CMP_W
#define WRITE_W
//#define IPOL_C0
#define IPOL_T0
#define IPOL_T1
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#ifndef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
#undef IPOL_C0
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
namespace irr
{
namespace video
{
class CTRTextureLightMap2_M1 : public IBurningShader
{
public:
//! constructor
CTRTextureLightMap2_M1(CBurningVideoDriver* driver);
//! draws an indexed triangle list
virtual void drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c ) _IRR_OVERRIDE_;
private:
void scanline_bilinear2 ();
sScanLineData line;
};
//! constructor
CTRTextureLightMap2_M1::CTRTextureLightMap2_M1(CBurningVideoDriver* driver)
: IBurningShader(driver)
{
#ifdef _DEBUG
setDebugName("CTRTextureLightMap2_M1");
#endif
}
/*!
*/
REALINLINE void CTRTextureLightMap2_M1::scanline_bilinear2 ()
{
tVideoSample *dst;
fp24 *z;
s32 xStart;
s32 xEnd;
s32 dx;
s32 i;
// apply top-left fill-convention, left
xStart = core::ceil32_fast( line.x[0] );
xEnd = core::ceil32_fast( line.x[1] ) - 1;
dx = xEnd - xStart;
if ( dx < 0 )
return;
// slopes
const f32 invDeltaX = core::reciprocal_approxim ( line.x[1] - line.x[0] );
// search z-buffer for first not occulled pixel
z = (fp24*) DepthBuffer->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
// subTexel
const f32 subPixel = ( (f32) xStart ) - line.x[0];
#ifdef IPOL_W
const f32 b = (line.w[1] - line.w[0]) * invDeltaX;
f32 a = line.w[0] + ( b * subPixel );
i = 0;
while ( a <= z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.w[0] = a;
line.w[1] = b;
#else
const f32 b = (line.z[1] - line.z[0]) * invDeltaX;
f32 a = line.z[0] + ( b * subPixel );
i = 0;
while ( a > z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.z[0] = a;
line.z[1] = b;
#endif
dst = (tVideoSample*)RenderTarget->getData() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
a = (f32) i + subPixel;
line.t[0][1] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
line.t[1][1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
line.t[0][0] += line.t[0][1] * a;
line.t[1][0] += line.t[1][1] * a;
#ifdef BURNINGVIDEO_RENDERER_FAST
u32 dIndex = ( line.y & 3 ) << 2;
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#else
//
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#endif
for ( ;i <= dx; i++ )
{
#ifdef IPOL_W
if ( line.w[0] >= z[i] )
{
z[i] = line.w[0];
#else
if ( line.z[0] < z[i] )
{
z[i] = line.z[0];
#endif
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
f32 inversew = fix_inverse32 ( line.w[0] );
#else
f32 inversew = FIX_POINT_F32_MUL;
#endif
#ifdef BURNINGVIDEO_RENDERER_FAST
const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ];
getSample_texture ( r0, g0, b0, &IT[0], d + tofix ( line.t[0][0].x,inversew), d + tofix ( line.t[0][0].y,inversew) );
getSample_texture ( r1, g1, b1, &IT[1], d + tofix ( line.t[1][0].x,inversew), d + tofix ( line.t[1][0].y,inversew) );
#else
getSample_texture ( r0, g0, b0, &IT[0], tofix ( line.t[0][0].x,inversew), tofix ( line.t[0][0].y,inversew) );
getSample_texture ( r1, g1, b1, &IT[1], tofix ( line.t[1][0].x,inversew), tofix ( line.t[1][0].y,inversew) );
#endif
dst[i] = fix_to_color ( imulFix_tex1 ( r0, r1 ),
imulFix_tex1 ( g0, g1 ),
imulFix_tex1 ( b0, b1 )
);
}
#ifdef IPOL_W
line.w[0] += line.w[1];
#else
line.z[0] += line.z[1];
#endif
line.t[0][0] += line.t[0][1];
line.t[1][0] += line.t[1][1];
}
}
void CTRTextureLightMap2_M1::drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c )
{
sScanConvertData scan;
// sort on height, y
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
// calculate delta y of the edges
scan.invDeltaY[0] = core::reciprocal( ca );
scan.invDeltaY[1] = core::reciprocal( ba );
scan.invDeltaY[2] = core::reciprocal( cb );
if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[1] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = core::ceil32_fast( a->Pos.y );
yEnd = core::ceil32_fast( b->Pos.y ) - 1;
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; ++line.y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
scanline_bilinear2 ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
// rasterize lower sub-triangle
//if ( (f32) 0.0 != scan.invDeltaY[2] )
if ( F32_GREATER_0 ( scan.invDeltaY[2] ) )
{
// advance to middle point
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[1] = b->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = core::ceil32_fast( b->Pos.y );
yEnd = core::ceil32_fast( c->Pos.y ) - 1;
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; ++line.y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
scanline_bilinear2 ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a flat triangle renderer
IBurningShader* createTriangleRendererTextureLightMap2_M1(CBurningVideoDriver* driver)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CTRTextureLightMap2_M1(driver);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr