irrlicht/source/Irrlicht/COGLESDriver.cpp

3297 lines
98 KiB
C++

// Copyright (C) 2002-2008 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "COGLESDriver.h"
#include "CNullDriver.h"
#include "IContextManager.h"
#ifdef _IRR_COMPILE_WITH_OGLES1_
#include "COpenGLCoreTexture.h"
#include "COpenGLCoreRenderTarget.h"
#include "COpenGLCoreCacheHandler.h"
#include "COGLESMaterialRenderer.h"
#include "EVertexAttributes.h"
#include "CImage.h"
#include "os.h"
#include "EProfileIDs.h"
#include "IProfiler.h"
#ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_
#include "android_native_app_glue.h"
#endif
namespace irr
{
namespace video
{
COGLES1Driver::COGLES1Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager) :
CNullDriver(io, params.WindowSize), COGLES1ExtensionHandler(), CacheHandler(0), CurrentRenderMode(ERM_NONE),
ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias),
ColorFormat(ECF_R8G8B8), Params(params), ContextManager(contextManager)
{
#ifdef _DEBUG
setDebugName("COGLESDriver");
#endif
core::dimension2d<u32> windowSize(0, 0);
if (!ContextManager)
return;
ContextManager->grab();
ContextManager->generateSurface();
ContextManager->generateContext();
ExposedData = ContextManager->getContext();
ContextManager->activateContext(ExposedData, false);
windowSize = params.WindowSize;
genericDriverInit(windowSize, params.Stencilbuffer);
}
COGLES1Driver::~COGLES1Driver()
{
RequestedLights.clear();
deleteMaterialRenders();
CacheHandler->getTextureCache().clear();
removeAllRenderTargets();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
delete CacheHandler;
if (ContextManager)
{
ContextManager->destroyContext();
ContextManager->destroySurface();
ContextManager->terminate();
ContextManager->drop();
}
}
// -----------------------------------------------------------------------
// METHODS
// -----------------------------------------------------------------------
bool COGLES1Driver::genericDriverInit(const core::dimension2d<u32>& screenSize, bool stencilBuffer)
{
Name=glGetString(GL_VERSION);
printVersion();
// print renderer information
VendorName = glGetString(GL_VENDOR);
os::Printer::log(VendorName.c_str(), ELL_INFORMATION);
// load extensions
initExtensions();
// reset cache handler
delete CacheHandler;
CacheHandler = new COGLES1CacheHandler(this);
StencilBuffer = stencilBuffer;
DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy);
DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices);
DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize);
DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias);
DriverAttributes->setAttribute("Version", Version);
DriverAttributes->setAttribute("AntiAlias", AntiAlias);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
UserClipPlane.reallocate(MaxUserClipPlanes);
UserClipPlaneEnabled.reallocate(MaxUserClipPlanes);
for (s32 i = 0; i < MaxUserClipPlanes; ++i)
{
UserClipPlane.push_back(core::plane3df());
UserClipPlaneEnabled.push_back(false);
}
for (s32 i = 0; i < ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f));
glClearDepthf(1.0f);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
glHint(GL_GENERATE_MIPMAP_HINT, GL_FASTEST);
glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);
glHint(GL_POINT_SMOOTH_HINT, GL_FASTEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
glAlphaFunc(GL_GREATER, 0.f);
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
testGLError(__LINE__);
return true;
}
void COGLES1Driver::createMaterialRenderers()
{
// create OGLES1 material renderers
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_SOLID(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_SOLID_2_LAYER(this));
// add the same renderer for all lightmap types
COGLES1MaterialRenderer_LIGHTMAP* lmr = new COGLES1MaterialRenderer_LIGHTMAP(this);
addMaterialRenderer(lmr); // for EMT_LIGHTMAP:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4:
lmr->drop();
// add remaining material renderer
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_DETAIL_MAP(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_SPHERE_MAP(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_REFLECTION_2_LAYER(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ADD_COLOR(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(this));
// add basic 1 texture blending
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_ONETEXTURE_BLEND(this));
}
bool COGLES1Driver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
IRR_PROFILE(CProfileScope p1(EPID_ES2_BEGIN_SCENE);)
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
if (ContextManager)
ContextManager->activateContext(videoData, true);
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
bool COGLES1Driver::endScene()
{
IRR_PROFILE(CProfileScope p1(EPID_ES2_END_SCENE);)
CNullDriver::endScene();
glFlush();
if (ContextManager)
return ContextManager->swapBuffers();
return false;
}
//! Returns the transformation set by setTransform
const core::matrix4& COGLES1Driver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COGLES1Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
switch(state)
{
case ETS_VIEW:
case ETS_WORLD:
{
// OGLES1 only has a model matrix, view and world is not existent. so lets fake these two.
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
// we have to update the clip planes to the latest view matrix
for (u32 i=0; i<MaxUserClipPlanes; ++i)
if (UserClipPlaneEnabled[i])
uploadClipPlane(i);
}
break;
case ETS_PROJECTION:
{
GLfloat glmat[16];
getGLMatrix(glmat, mat);
// flip z to compensate OGLES1s right-hand coordinate system
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
}
break;
default:
break;
}
}
bool COGLES1Driver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* vertices=mb->getVertices();
const u32 vertexCount=mb->getVertexCount();
const E_VERTEX_TYPE vType=mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
//buffer vertex data, and convert colours...
core::array<c8> buffer(vertexSize * vertexCount);
memcpy(buffer.pointer(), vertices, vertexSize * vertexCount);
// in order to convert the colors into opengl format (RGBA)
switch (vType)
{
case EVT_STANDARD:
{
S3DVertex* pb = reinterpret_cast<S3DVertex*>(buffer.pointer());
const S3DVertex* po = static_cast<const S3DVertex*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
case EVT_2TCOORDS:
{
S3DVertex2TCoords* pb = reinterpret_cast<S3DVertex2TCoords*>(buffer.pointer());
const S3DVertex2TCoords* po = static_cast<const S3DVertex2TCoords*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
case EVT_TANGENTS:
{
S3DVertexTangents* pb = reinterpret_cast<S3DVertexTangents*>(buffer.pointer());
const S3DVertexTangents* po = static_cast<const S3DVertexTangents*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color.color));
}
}
break;
default:
{
return false;
}
}
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_verticesID)
{
glGenBuffers(1, &HWBuffer->vbo_verticesID);
if (!HWBuffer->vbo_verticesID) return false;
newBuffer=true;
}
else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize)
{
newBuffer=true;
}
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID );
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer());
else
{
HWBuffer->vbo_verticesSize = vertexCount*vertexSize;
if (HWBuffer->Mapped_Vertex==scene::EHM_STATIC)
glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW);
else
glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
bool COGLES1Driver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* indices=mb->getIndices();
u32 indexCount= mb->getIndexCount();
GLenum indexSize;
switch (mb->getIndexType())
{
case (EIT_16BIT):
{
indexSize=sizeof(u16);
break;
}
case (EIT_32BIT):
{
indexSize=sizeof(u32);
break;
}
default:
{
return false;
}
}
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_indicesID)
{
glGenBuffers(1, &HWBuffer->vbo_indicesID);
if (!HWBuffer->vbo_indicesID) return false;
newBuffer=true;
}
else if (HWBuffer->vbo_indicesSize < indexCount*indexSize)
{
newBuffer=true;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
else
{
HWBuffer->vbo_indicesSize = indexCount*indexSize;
if (HWBuffer->Mapped_Index==scene::EHM_STATIC)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW);
else
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
//! updates hardware buffer if needed
bool COGLES1Driver::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex()
|| !static_cast<SHWBufferLink_opengl*>(HWBuffer)->vbo_verticesID)
{
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer(static_cast<SHWBufferLink_opengl*>(HWBuffer)))
return false;
}
}
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index()
|| !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID)
{
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer(static_cast<SHWBufferLink_opengl*>(HWBuffer)))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
COGLES1Driver::SHWBufferLink *COGLES1Driver::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer=new SHWBufferLink_opengl(mb);
//add to map
HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer);
HWBuffer->ChangedID_Vertex=HWBuffer->MeshBuffer->getChangedID_Vertex();
HWBuffer->ChangedID_Index=HWBuffer->MeshBuffer->getChangedID_Index();
HWBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex();
HWBuffer->Mapped_Index=mb->getHardwareMappingHint_Index();
HWBuffer->LastUsed=0;
HWBuffer->vbo_verticesID=0;
HWBuffer->vbo_indicesID=0;
HWBuffer->vbo_verticesSize=0;
HWBuffer->vbo_indicesSize=0;
if (!updateHardwareBuffer(HWBuffer))
{
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
void COGLES1Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer=static_cast<SHWBufferLink_opengl*>(_HWBuffer);
if (HWBuffer->vbo_verticesID)
{
glDeleteBuffers(1, &HWBuffer->vbo_verticesID);
HWBuffer->vbo_verticesID=0;
}
if (HWBuffer->vbo_indicesID)
{
glDeleteBuffers(1, &HWBuffer->vbo_indicesID);
HWBuffer->vbo_indicesID=0;
}
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COGLES1Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer=static_cast<SHWBufferLink_opengl*>(_HWBuffer);
updateHardwareBuffer(HWBuffer); //check if update is needed
HWBuffer->LastUsed=0;//reset count
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void *vertices=mb->getVertices();
const void *indexList=mb->getIndices();
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
{
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
vertices=0;
}
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
{
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
indexList=0;
}
drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList,
mb->getPrimitiveCount(), mb->getVertexType(),
mb->getPrimitiveType(), mb->getIndexType());
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
IRenderTarget* COGLES1Driver::addRenderTarget()
{
COGLES1RenderTarget* renderTarget = new COGLES1RenderTarget(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
// small helper function to create vertex buffer object adress offsets
static inline u8* buffer_offset(const long offset)
{
return ((u8*)0 + offset);
}
//! draws a vertex primitive list
void COGLES1Driver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
setRenderStates3DMode();
drawVertexPrimitiveList2d3d(vertices, vertexCount, (const u16*)indexList, primitiveCount, vType, pType, iType);
}
void COGLES1Driver::drawVertexPrimitiveList2d3d(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType, bool threed)
{
if (!primitiveCount || !vertexCount)
return;
if (!threed && !checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (vertices)
{
// convert colors to gl color format.
vertexCount *= 4; //reused as color component count
ColorBuffer.set_used(vertexCount);
u32 i;
switch (vType)
{
case EVT_STANDARD:
{
const S3DVertex* p = static_cast<const S3DVertex*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_2TCOORDS:
{
const S3DVertex2TCoords* p = static_cast<const S3DVertex2TCoords*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_TANGENTS:
{
const S3DVertexTangents* p = static_cast<const S3DVertexTangents*>(vertices);
for ( i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
}
}
// draw everything
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
#ifdef GL_OES_point_size_array
else if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness==0.0f))
glEnableClientState(GL_POINT_SIZE_ARRAY_OES);
#endif
if (threed && (pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_NORMAL_ARRAY);
if (vertices)
glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]);
switch (vType)
{
case EVT_STANDARD:
if (vertices)
{
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0);
}
if (Feature.MaxTextureUnits > 0 && CacheHandler->getTextureCache().get(1))
{
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
if (vertices)
{
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0));
}
if (Feature.MaxTextureUnits > 0)
{
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
if (vertices)
{
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0));
}
if (Feature.MaxTextureUnits > 0)
{
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Tangent);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36));
glClientActiveTexture(GL_TEXTURE0 + 2);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Binormal);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48));
}
break;
}
GLenum indexSize=0;
switch (iType)
{
case (EIT_16BIT):
{
indexSize=GL_UNSIGNED_SHORT;
break;
}
case (EIT_32BIT):
{
#ifdef GL_OES_element_index_uint
#ifndef GL_UNSIGNED_INT
#define GL_UNSIGNED_INT 0x1405
#endif
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint])
indexSize=GL_UNSIGNED_INT;
else
#endif
indexSize=GL_UNSIGNED_SHORT;
break;
}
}
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
{
#ifdef GL_OES_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite])
glEnable(GL_POINT_SPRITE_OES);
#endif
// if ==0 we use the point size array
if (Material.Thickness!=0.f)
{
float quadratic[] = {0.0f, 0.0f, 10.01f};
glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, quadratic);
float maxParticleSize=1.0f;
glGetFloatv(GL_POINT_SIZE_MAX, &maxParticleSize);
// maxParticleSize=maxParticleSize<Material.Thickness?maxParticleSize:Material.Thickness;
// extGlPointParameterf(GL_POINT_SIZE_MAX,maxParticleSize);
// extGlPointParameterf(GL_POINT_SIZE_MIN,Material.Thickness);
glPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, 60.0f);
glPointSize(Material.Thickness);
}
#ifdef GL_OES_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite])
glTexEnvf(GL_POINT_SPRITE_OES,GL_COORD_REPLACE_OES, GL_TRUE);
#endif
glDrawArrays(GL_POINTS, 0, primitiveCount);
#ifdef GL_OES_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite])
{
glDisable(GL_POINT_SPRITE_OES);
glTexEnvf(GL_POINT_SPRITE_OES,GL_COORD_REPLACE_OES, GL_FALSE);
}
#endif
}
break;
case scene::EPT_LINE_STRIP:
glDrawElements(GL_LINE_STRIP, primitiveCount+1, indexSize, indexList);
break;
case scene::EPT_LINE_LOOP:
glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
break;
case scene::EPT_LINES:
glDrawElements(GL_LINES, primitiveCount*2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
glDrawElements(GL_TRIANGLE_STRIP, primitiveCount+2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
glDrawElements(GL_TRIANGLE_FAN, primitiveCount+2, indexSize, indexList);
break;
case scene::EPT_TRIANGLES:
glDrawElements((LastMaterial.Wireframe)?GL_LINES:(LastMaterial.PointCloud)?GL_POINTS:GL_TRIANGLES, primitiveCount*3, indexSize, indexList);
break;
case scene::EPT_QUAD_STRIP:
case scene::EPT_QUADS:
case scene::EPT_POLYGON:
break;
}
if (Feature.MaxTextureUnits > 0)
{
if (vType == EVT_TANGENTS)
{
glClientActiveTexture(GL_TEXTURE0 + 2);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if ((vType != EVT_STANDARD) || CacheHandler->getTextureCache().get(1))
{
glClientActiveTexture(GL_TEXTURE0 + 1);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
glClientActiveTexture(GL_TEXTURE0);
}
#ifdef GL_OES_point_size_array
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness==0.0f))
glDisableClientState(GL_POINT_SIZE_ARRAY_OES);
#endif
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
//! draws a 2d image, using a color and the alpha channel of the texture
void COGLES1Driver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos(pos);
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner);
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2d<u32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
(isRTT?(sourcePos.Y + sourceSize.Height):sourcePos.Y) * invH,
(sourcePos.X + sourceSize.Width) * invW,
(isRTT?sourcePos.Y:(sourcePos.Y + sourceSize.Height)) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
u16 indices[] = {0,1,2,3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! The same, but with a four element array of colors, one for each vertex
void COGLES1Driver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2du& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT?sourceRect.LowerRightCorner.Y:sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT?sourceRect.UpperLeftCorner.Y:sourceRect.LowerRightCorner.Y) *invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 ||
useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255,
true, useAlphaChannelOfTexture);
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
u16 indices[] = {0,1,2,3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0,0,1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0,0,1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0,0,1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0,0,1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
void COGLES1Driver::draw2DImage(const video::ITexture* texture, u32 layer, bool flip)
{
if (!texture || !CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(false, true, true);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Transformation3DChanged = true;
u16 indices[] = { 0,1,2,3 };
S3DVertex vertices[4];
vertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f);
vertices[1].Pos = core::vector3df(1.f, 1.f, 0.f);
vertices[2].Pos = core::vector3df(1.f, -1.f, 0.f);
vertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f);
f32 modificator = (flip) ? 1.f : 0.f;
vertices[0].TCoords = core::vector2df(0.f, 0.f + modificator);
vertices[1].TCoords = core::vector2df(1.f, 0.f + modificator);
vertices[2].TCoords = core::vector2df(1.f, 1.f - modificator);
vertices[3].TCoords = core::vector2df(0.f, 1.f - modificator);
vertices[0].Color = 0xFFFFFFFF;
vertices[1].Color = 0xFFFFFFFF;
vertices[2].Color = 0xFFFFFFFF;
vertices[3].Color = 0xFFFFFFFF;
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! draws a set of 2d images, using a color and the alpha channel
void COGLES1Driver::draw2DImageBatch(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::array<core::rect<s32> >& sourceRects,
const core::array<s32>& indices, s32 kerningWidth,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(),clipRect->getHeight());
}
const core::dimension2du& ss = texture->getOriginalSize();
core::position2d<s32> targetPos(pos);
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
core::array<S3DVertex> vertices;
core::array<u16> quadIndices;
vertices.reallocate(indices.size()*4);
quadIndices.reallocate(indices.size()*6);
for (u32 i=0; i<indices.size(); ++i)
{
const s32 currentIndex = indices[i];
if (!sourceRects[currentIndex].isValid())
break;
const core::rect<f32> tcoords(
sourceRects[currentIndex].UpperLeftCorner.X * invW,
(isRTT?sourceRects[currentIndex].LowerRightCorner.Y:sourceRects[currentIndex].UpperLeftCorner.Y) * invH,
sourceRects[currentIndex].LowerRightCorner.X * invW,
(isRTT?sourceRects[currentIndex].UpperLeftCorner.Y:sourceRects[currentIndex].LowerRightCorner.Y) * invH);
const core::rect<s32> poss(targetPos, sourceRects[currentIndex].getSize());
const u32 vstart = vertices.size();
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+1);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart+3);
targetPos.X += sourceRects[currentIndex].getWidth();
}
if (vertices.size())
drawVertexPrimitiveList2d3d(vertices.pointer(), vertices.size(),
quadIndices.pointer(), vertices.size()/2,
video::EVT_STANDARD, scene::EPT_TRIANGLES,
EIT_16BIT, false);
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
//! draws a set of 2d images, using a color and the alpha channel of the texture if desired.
void COGLES1Driver::draw2DImageBatch(const video::ITexture* texture,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect,
SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
const u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
if (!drawCount)
return;
const core::dimension2d<u32>& ss = texture->getOriginalSize();
if (!ss.Width || !ss.Height)
return;
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
core::array<S3DVertex> vertices;
core::array<u16> quadIndices;
vertices.reallocate(drawCount*4);
quadIndices.reallocate(drawCount*6);
for (u32 i=0; i<drawCount; ++i)
{
if (!sourceRects[i].isValid())
continue;
core::position2d<s32> targetPos(positions[i]);
core::position2d<s32> sourcePos(sourceRects[i].UpperLeftCorner);
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
continue;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
continue;
}
// ok, we've clipped everything.
const core::rect<f32> tcoords(
sourcePos.X * invW,
sourcePos.Y * invH,
(sourcePos.X + sourceSize.Width) * invW,
(sourcePos.Y + sourceSize.Height) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
const u32 vstart = vertices.size();
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0,0,1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+1);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart);
quadIndices.push_back(vstart+2);
quadIndices.push_back(vstart+3);
}
if (vertices.size())
drawVertexPrimitiveList2d3d(vertices.pointer(), vertices.size(),
quadIndices.pointer(), vertices.size()/2,
video::EVT_STANDARD, scene::EPT_TRIANGLES,
EIT_16BIT, false);
}
//! draw a 2d rectangle
void COGLES1Driver::draw2DRectangle(SColor color, const core::rect<s32>& position,
const core::rect<s32>* clip)
{
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
u16 indices[] = {0,1,2,3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0,0,1, color, 0,0);
vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0,0,1, color, 0,0);
vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0,0,1, color, 0,0);
vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0,0,1, color, 0,0);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! draw an 2d rectangle
void COGLES1Driver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
u16 indices[] = {0,1,2,3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0,0,1, colorLeftUp, 0,0);
vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0,0,1, colorRightUp, 0,0);
vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0,0,1, colorRightDown, 0,0);
vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0,0,1, colorLeftDown, 0,0);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! Draws a 2d line.
void COGLES1Driver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
setRenderStates2DMode(color.getAlpha() < 255, false, false);
u16 indices[] = {0,1};
S3DVertex vertices[2];
vertices[0] = S3DVertex((f32)start.X, (f32)start.Y, 0, 0,0,1, color, 0,0);
vertices[1] = S3DVertex((f32)end.X, (f32)end.Y, 0, 0,0,1, color, 1,1);
drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES, EIT_16BIT, false);
}
//! Draws a pixel
void COGLES1Driver::drawPixel(u32 x, u32 y, const SColor &color)
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height)
return;
setRenderStates2DMode(color.getAlpha() < 255, false, false);
u16 indices[] = {0};
S3DVertex vertices[1];
vertices[0] = S3DVertex((f32)x, (f32)y, 0, 0, 0, 1, color, 0, 0);
drawVertexPrimitiveList2d3d(vertices, 1, indices, 1, video::EVT_STANDARD, scene::EPT_POINTS, EIT_16BIT, false);
}
//! creates a matrix in supplied GLfloat array to pass to OGLES1
inline void COGLES1Driver::getGLMatrix(GLfloat gl_matrix[16], const core::matrix4& m)
{
memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32));
}
//! creates a opengltexturematrix from a D3D style texture matrix
inline void COGLES1Driver::getGLTextureMatrix(GLfloat *o, const core::matrix4& m)
{
o[0] = m[0];
o[1] = m[1];
o[2] = 0.f;
o[3] = 0.f;
o[4] = m[4];
o[5] = m[5];
o[6] = 0.f;
o[7] = 0.f;
o[8] = 0.f;
o[9] = 0.f;
o[10] = 1.f;
o[11] = 0.f;
o[12] = m[8];
o[13] = m[9];
o[14] = 0.f;
o[15] = 1.f;
}
ITexture* COGLES1Driver::createDeviceDependentTexture(const io::path& name, IImage* image)
{
core::array<IImage*> imageArray(1);
imageArray.push_back(image);
COGLES1Texture* texture = new COGLES1Texture(name, imageArray, ETT_2D, this);
return texture;
}
ITexture* COGLES1Driver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image)
{
COGLES1Texture* texture = new COGLES1Texture(name, image, ETT_CUBEMAP, this);
return texture;
}
//! Sets a material. All 3d drawing functions draw geometry now using this material.
void COGLES1Driver::setMaterial(const SMaterial& material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i = 0; i < Feature.MaxTextureUnits; ++i)
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i));
}
//! prints error if an error happened.
bool COGLES1Driver::testGLError(int code)
{
#ifdef _DEBUG
GLenum g = glGetError();
switch(g)
{
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR); break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR); break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR); break;
case GL_STACK_OVERFLOW:
os::Printer::log("GL_STACK_OVERFLOW", core::stringc(code).c_str(), ELL_ERROR); break;
case GL_STACK_UNDERFLOW:
os::Printer::log("GL_STACK_UNDERFLOW", core::stringc(code).c_str(), ELL_ERROR); break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR); break;
};
// _IRR_DEBUG_BREAK_IF(true);
return true;
#else
return false;
#endif
}
//! sets the needed renderstates
void COGLES1Driver::setRenderStates3DMode()
{
if (CurrentRenderMode != ERM_3D)
{
// Reset Texture Stages
CacheHandler->setBlend(false);
glDisable(GL_ALPHA_TEST);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// switch back the matrices
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
GLfloat glmat[16];
getGLMatrix(glmat, Matrices[ETS_PROJECTION]);
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
ResetRenderStates = true;
}
if ( ResetRenderStates || LastMaterial != Material)
{
// unset old material
if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
GLint COGLES1Driver::getTextureWrapMode(u8 clamp) const
{
switch (clamp)
{
case ETC_CLAMP:
// return GL_CLAMP; not supported in ogl-es
return GL_CLAMP_TO_EDGE;
break;
case ETC_CLAMP_TO_EDGE:
return GL_CLAMP_TO_EDGE;
break;
case ETC_CLAMP_TO_BORDER:
// return GL_CLAMP_TO_BORDER; not supported in ogl-es
return GL_CLAMP_TO_EDGE;
break;
case ETC_MIRROR:
#ifdef GL_OES_texture_mirrored_repeat
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat])
return GL_MIRRORED_REPEAT_OES;
else
#endif
return GL_REPEAT;
break;
// the next three are not yet supported at all
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
#ifdef GL_OES_texture_mirrored_repeat
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat])
return GL_MIRRORED_REPEAT_OES;
else
#endif
return GL_CLAMP_TO_EDGE;
break;
case ETC_REPEAT:
default:
return GL_REPEAT;
break;
}
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COGLES1Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial,
bool resetAllRenderStates)
{
if (resetAllRenderStates ||
lastmaterial.ColorMaterial != material.ColorMaterial)
{
// we only have diffuse_and_ambient in ogl-es
if (material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT)
glEnable(GL_COLOR_MATERIAL);
else
glDisable(GL_COLOR_MATERIAL);
}
if (resetAllRenderStates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.ColorMaterial != material.ColorMaterial)
{
GLfloat color[4];
const f32 inv = 1.0f / 255.0f;
if ((material.ColorMaterial != video::ECM_AMBIENT) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT))
{
color[0] = material.AmbientColor.getRed() * inv;
color[1] = material.AmbientColor.getGreen() * inv;
color[2] = material.AmbientColor.getBlue() * inv;
color[3] = material.AmbientColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color);
}
if ((material.ColorMaterial != video::ECM_DIFFUSE) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT))
{
color[0] = material.DiffuseColor.getRed() * inv;
color[1] = material.DiffuseColor.getGreen() * inv;
color[2] = material.DiffuseColor.getBlue() * inv;
color[3] = material.DiffuseColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);
}
if (material.ColorMaterial != video::ECM_EMISSIVE)
{
color[0] = material.EmissiveColor.getRed() * inv;
color[1] = material.EmissiveColor.getGreen() * inv;
color[2] = material.EmissiveColor.getBlue() * inv;
color[3] = material.EmissiveColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color);
}
}
if (resetAllRenderStates ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.Shininess != material.Shininess)
{
GLfloat color[]={0.f,0.f,0.f,1.f};
const f32 inv = 1.0f / 255.0f;
// disable Specular colors if no shininess is set
if ((material.Shininess != 0.0f) &&
(material.ColorMaterial != video::ECM_SPECULAR))
{
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess);
color[0] = material.SpecularColor.getRed() * inv;
color[1] = material.SpecularColor.getGreen() * inv;
color[2] = material.SpecularColor.getBlue() * inv;
color[3] = material.SpecularColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color);
}
#ifdef GL_EXT_separate_specular_color
else
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
#endif
}
// TODO ogl-es
// fillmode
// if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud))
// glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL);
// shademode
if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading))
{
if (material.GouraudShading)
glShadeModel(GL_SMOOTH);
else
glShadeModel(GL_FLAT);
}
// lighting
if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting))
{
if (material.Lighting)
glEnable(GL_LIGHTING);
else
glDisable(GL_LIGHTING);
}
// zbuffer
if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer)
{
switch (material.ZBuffer)
{
case ECFN_DISABLED:
glDisable(GL_DEPTH_TEST);
break;
case ECFN_LESSEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
break;
case ECFN_NEVER:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_NEVER);
break;
}
}
// zwrite
if (getWriteZBuffer(material))
{
glDepthMask(GL_TRUE);
}
else
{
glDepthMask(GL_FALSE);
}
// back face culling
if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling))
{
if ((material.FrontfaceCulling) && (material.BackfaceCulling))
{
glCullFace(GL_FRONT_AND_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.BackfaceCulling)
{
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.FrontfaceCulling)
{
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
}
else
glDisable(GL_CULL_FACE);
}
// fog
if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable)
{
if (material.FogEnable)
glEnable(GL_FOG);
else
glDisable(GL_FOG);
}
// normalization
if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals)
{
if (material.NormalizeNormals)
glEnable(GL_NORMALIZE);
else
glDisable(GL_NORMALIZE);
}
// Color Mask
if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask)
{
glColorMask(
(material.ColorMask & ECP_RED)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE);
}
// Blend Equation
if (material.BlendOperation == EBO_NONE)
CacheHandler->setBlend(false);
else
{
CacheHandler->setBlend(true);
if (queryFeature(EVDF_BLEND_OPERATIONS))
{
switch (material.BlendOperation)
{
case EBO_ADD:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_ADD_OES);
#endif
break;
case EBO_SUBTRACT:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT_OES);
#endif
break;
case EBO_REVSUBTRACT:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT_OES);
#endif
break;
default:
break;
}
}
}
// Blend Factor
if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF?
&& material.MaterialType != EMT_ONETEXTURE_BLEND
)
{
E_BLEND_FACTOR srcRGBFact = EBF_ZERO;
E_BLEND_FACTOR dstRGBFact = EBF_ZERO;
E_BLEND_FACTOR srcAlphaFact = EBF_ZERO;
E_BLEND_FACTOR dstAlphaFact = EBF_ZERO;
E_MODULATE_FUNC modulo = EMFN_MODULATE_1X;
u32 alphaSource = 0;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor);
if (queryFeature(EVDF_BLEND_SEPARATE))
{
CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact),
getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact));
}
else
{
CacheHandler->setBlendFunc(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact));
}
}
// TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver.
// thickness
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
{
if (AntiAlias)
{
// glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1]));
// we don't use point smoothing
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
}
else
{
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
}
}
// Anti aliasing
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing)
{
// if (FeatureAvailable[IRR_ARB_multisample])
{
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE);
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE);
if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY)))
glEnable(GL_MULTISAMPLE);
else
glDisable(GL_MULTISAMPLE);
}
if ((material.AntiAliasing & EAAM_LINE_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH))
{
if (material.AntiAliasing & EAAM_LINE_SMOOTH)
glEnable(GL_LINE_SMOOTH);
else if (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH)
glDisable(GL_LINE_SMOOTH);
}
if ((material.AntiAliasing & EAAM_POINT_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH))
{
if (material.AntiAliasing & EAAM_POINT_SMOOTH)
// often in software, and thus very slow
glEnable(GL_POINT_SMOOTH);
else if (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH)
glDisable(GL_POINT_SMOOTH);
}
}
// Texture parameters
setTextureRenderStates(material, resetAllRenderStates);
}
//! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call.
void COGLES1Driver::setTextureRenderStates(const SMaterial& material, bool resetAllRenderstates)
{
// Set textures to TU/TIU and apply filters to them
for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i)
{
CacheHandler->getTextureCache().set(i, material.TextureLayer[i].Texture);
const COGLES1Texture* tmpTexture = CacheHandler->getTextureCache().get(i);
if (!tmpTexture)
continue;
GLenum tmpTextureType = tmpTexture->getOpenGLTextureType();
CacheHandler->setActiveTexture(GL_TEXTURE0 + i);
{
const bool isRTT = tmpTexture->isRenderTarget();
glMatrixMode(GL_TEXTURE);
if (!isRTT && Matrices[ETS_TEXTURE_0 + i].isIdentity())
glLoadIdentity();
else
{
GLfloat glmat[16];
if (isRTT)
getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i] * TextureFlipMatrix);
else
getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i]);
glLoadMatrixf(glmat);
}
}
COGLES1Texture::SStatesCache& statesCache = tmpTexture->getStatesCache();
if (resetAllRenderstates)
statesCache.IsCached = false;
#ifdef GL_VERSION_2_1
if (Version >= 210)
{
if (!statesCache.IsCached || material.TextureLayer[i].LODBias != statesCache.LODBias)
{
if (material.TextureLayer[i].LODBias)
{
const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
glTexParameterf(tmpTextureType, GL_TEXTURE_LOD_BIAS, tmp);
}
else
glTexParameterf(tmpTextureType, GL_TEXTURE_LOD_BIAS, 0.f);
statesCache.LODBias = material.TextureLayer[i].LODBias;
}
}
else if (FeatureAvailable[IRR_EXT_texture_lod_bias])
{
if (material.TextureLayer[i].LODBias)
{
const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp);
}
else
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f);
}
#elif defined(GL_EXT_texture_lod_bias)
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_lod_bias])
{
if (material.TextureLayer[i].LODBias)
{
const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp);
}
else
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f);
}
#endif
if (!statesCache.IsCached || material.TextureLayer[i].BilinearFilter != statesCache.BilinearFilter ||
material.TextureLayer[i].TrilinearFilter != statesCache.TrilinearFilter)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
statesCache.BilinearFilter = material.TextureLayer[i].BilinearFilter;
statesCache.TrilinearFilter = material.TextureLayer[i].TrilinearFilter;
}
if (material.UseMipMaps && tmpTexture->hasMipMaps())
{
if (!statesCache.IsCached || material.TextureLayer[i].BilinearFilter != statesCache.BilinearFilter ||
material.TextureLayer[i].TrilinearFilter != statesCache.TrilinearFilter || !statesCache.MipMapStatus)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR :
material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST :
GL_NEAREST_MIPMAP_NEAREST);
statesCache.BilinearFilter = material.TextureLayer[i].BilinearFilter;
statesCache.TrilinearFilter = material.TextureLayer[i].TrilinearFilter;
statesCache.MipMapStatus = true;
}
}
else
{
if (!statesCache.IsCached || material.TextureLayer[i].BilinearFilter != statesCache.BilinearFilter ||
material.TextureLayer[i].TrilinearFilter != statesCache.TrilinearFilter || statesCache.MipMapStatus)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
statesCache.BilinearFilter = material.TextureLayer[i].BilinearFilter;
statesCache.TrilinearFilter = material.TextureLayer[i].TrilinearFilter;
statesCache.MipMapStatus = false;
}
}
#ifdef GL_EXT_texture_filter_anisotropic
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_filter_anisotropic] &&
(!statesCache.IsCached || material.TextureLayer[i].AnisotropicFilter != statesCache.AnisotropicFilter))
{
glTexParameteri(tmpTextureType, GL_TEXTURE_MAX_ANISOTROPY_EXT,
material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1);
statesCache.AnisotropicFilter = material.TextureLayer[i].AnisotropicFilter;
}
#endif
if (!statesCache.IsCached || material.TextureLayer[i].TextureWrapU != statesCache.WrapU)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[i].TextureWrapU));
statesCache.WrapU = material.TextureLayer[i].TextureWrapU;
}
if (!statesCache.IsCached || material.TextureLayer[i].TextureWrapV != statesCache.WrapV)
{
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[i].TextureWrapV));
statesCache.WrapV = material.TextureLayer[i].TextureWrapV;
}
statesCache.IsCached = true;
}
// be sure to leave in texture stage 0
CacheHandler->setActiveTexture(GL_TEXTURE0);
}
//! sets the needed renderstates
void COGLES1Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (CurrentRenderMode != ERM_2D || Transformation3DChanged)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
if (Transformation3DChanged)
{
glMatrixMode(GL_PROJECTION);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m(core::matrix4::EM4CONST_NOTHING);
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f);
m.setTranslation(core::vector3df(-1, 1, 0));
glLoadMatrixf(m.pointer());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Transformation3DChanged = false;
}
}
Material = (OverrideMaterial2DEnabled) ? OverrideMaterial2D : InitMaterial2D;
Material.Lighting = false;
Material.TextureLayer[0].Texture = (texture) ? const_cast<COGLES1Texture*>(CacheHandler->getTextureCache().get(0)) : 0;
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
setBasicRenderStates(Material, LastMaterial, false);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
// no alphaChannel without texture
alphaChannel &= texture;
if (alphaChannel || alpha)
{
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.f);
}
else
{
CacheHandler->setBlend(false);
glDisable(GL_ALPHA_TEST);
}
if (texture)
{
// Due to the transformation change, the previous line would call a reset each frame
// but we can safely reset the variable as it was false before
Transformation3DChanged = false;
if (alphaChannel)
{
// if alpha and alpha texture just modulate, otherwise use only the alpha channel
if (alpha)
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
else
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_TEXTURE);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR);
}
}
else
{
if (alpha)
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_PRIMARY_COLOR);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR);
}
else
{
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
}
}
CurrentRenderMode = ERM_2D;
}
//! \return Returns the name of the video driver.
const wchar_t* COGLES1Driver::getName() const
{
return Name.c_str();
}
//! deletes all dynamic lights there are
void COGLES1Driver::deleteAllDynamicLights()
{
for (s32 i=0; i<MaxLights; ++i)
glDisable(GL_LIGHT0 + i);
RequestedLights.clear();
CNullDriver::deleteAllDynamicLights();
}
//! adds a dynamic light
s32 COGLES1Driver::addDynamicLight(const SLight& light)
{
CNullDriver::addDynamicLight(light);
RequestedLights.push_back(RequestedLight(light));
u32 newLightIndex = RequestedLights.size() - 1;
// Try and assign a hardware light just now, but don't worry if I can't
assignHardwareLight(newLightIndex);
return (s32)newLightIndex;
}
void COGLES1Driver::assignHardwareLight(u32 lightIndex)
{
setTransform(ETS_WORLD, core::matrix4());
s32 lidx;
for (lidx=GL_LIGHT0; lidx < GL_LIGHT0 + MaxLights; ++lidx)
{
if(!glIsEnabled(lidx))
{
RequestedLights[lightIndex].HardwareLightIndex = lidx;
break;
}
}
if(lidx == GL_LIGHT0 + MaxLights) // There's no room for it just now
return;
GLfloat data[4];
const SLight & light = RequestedLights[lightIndex].LightData;
switch (light.Type)
{
case video::ELT_SPOT:
data[0] = light.Direction.X;
data[1] = light.Direction.Y;
data[2] = light.Direction.Z;
data[3] = 0.0f;
glLightfv(lidx, GL_SPOT_DIRECTION, data);
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, light.Falloff);
glLightf(lidx, GL_SPOT_CUTOFF, light.OuterCone);
break;
case video::ELT_POINT:
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
case video::ELT_DIRECTIONAL:
// set direction
data[0] = -light.Direction.X;
data[1] = -light.Direction.Y;
data[2] = -light.Direction.Z;
data[3] = 0.0f; // 0.0f for directional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
case video::ELT_COUNT:
return;
}
// set diffuse color
data[0] = light.DiffuseColor.r;
data[1] = light.DiffuseColor.g;
data[2] = light.DiffuseColor.b;
data[3] = light.DiffuseColor.a;
glLightfv(lidx, GL_DIFFUSE, data);
// set specular color
data[0] = light.SpecularColor.r;
data[1] = light.SpecularColor.g;
data[2] = light.SpecularColor.b;
data[3] = light.SpecularColor.a;
glLightfv(lidx, GL_SPECULAR, data);
// set ambient color
data[0] = light.AmbientColor.r;
data[1] = light.AmbientColor.g;
data[2] = light.AmbientColor.b;
data[3] = light.AmbientColor.a;
glLightfv(lidx, GL_AMBIENT, data);
// 1.0f / (constant + linear * d + quadratic*(d*d);
// set attenuation
glLightf(lidx, GL_CONSTANT_ATTENUATION, light.Attenuation.X);
glLightf(lidx, GL_LINEAR_ATTENUATION, light.Attenuation.Y);
glLightf(lidx, GL_QUADRATIC_ATTENUATION, light.Attenuation.Z);
glEnable(lidx);
}
//! Turns a dynamic light on or off
//! \param lightIndex: the index returned by addDynamicLight
//! \param turnOn: true to turn the light on, false to turn it off
void COGLES1Driver::turnLightOn(s32 lightIndex, bool turnOn)
{
if(lightIndex < 0 || lightIndex >= (s32)RequestedLights.size())
return;
RequestedLight & requestedLight = RequestedLights[lightIndex];
requestedLight.DesireToBeOn = turnOn;
if(turnOn)
{
if(-1 == requestedLight.HardwareLightIndex)
assignHardwareLight(lightIndex);
}
else
{
if(-1 != requestedLight.HardwareLightIndex)
{
// It's currently assigned, so free up the hardware light
glDisable(requestedLight.HardwareLightIndex);
requestedLight.HardwareLightIndex = -1;
// Now let the first light that's waiting on a free hardware light grab it
for(u32 requested = 0; requested < RequestedLights.size(); ++requested)
if(RequestedLights[requested].DesireToBeOn
&&
-1 == RequestedLights[requested].HardwareLightIndex)
{
assignHardwareLight(requested);
break;
}
}
}
}
//! returns the maximal amount of dynamic lights the device can handle
u32 COGLES1Driver::getMaximalDynamicLightAmount() const
{
return MaxLights;
}
//! Sets the dynamic ambient light color.
void COGLES1Driver::setAmbientLight(const SColorf& color)
{
CNullDriver::setAmbientLight(color);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data);
}
// this code was sent in by Oliver Klems, thank you
void COGLES1Driver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
void COGLES1Driver::setViewPortRaw(u32 width, u32 height)
{
CacheHandler->setViewport(0, 0, width, height);
ViewPort = core::recti(0, 0, width, height);
}
//! Draws a shadow volume into the stencil buffer.
void COGLES1Driver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
const u32 count=triangles.size();
if (!StencilBuffer || !count)
return;
u8 colorMask = LastMaterial.ColorMask;
const GLboolean lightingEnabled = glIsEnabled(GL_LIGHTING);
const GLboolean fogEnabled = glIsEnabled(GL_FOG);
const GLboolean cullFaceEnabled = glIsEnabled(GL_CULL_FACE);
GLint cullFaceMode = 0;
glGetIntegerv(GL_CULL_FACE_MODE, &cullFaceMode);
GLint depthFunc = 0;
glGetIntegerv(GL_DEPTH_FUNC, &depthFunc);
GLboolean depthMask = 0;
glGetBooleanv(GL_DEPTH_WRITEMASK, &depthMask);
glDisable(GL_LIGHTING);
glDisable(GL_FOG);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_FALSE);
if (!(debugDataVisible & (scene::EDS_SKELETON|scene::EDS_MESH_WIRE_OVERLAY)))
{
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable(GL_STENCIL_TEST);
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(core::vector3df), triangles.const_pointer());
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
GLenum decr = GL_DECR;
GLenum incr = GL_INCR;
#if defined(GL_OES_stencil_wrap)
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_stencil_wrap])
{
decr = GL_DECR_WRAP_OES;
incr = GL_INCR_WRAP_OES;
}
#endif
glEnable(GL_CULL_FACE);
if (zfail)
{
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, incr, GL_KEEP);
glDrawArrays(GL_TRIANGLES, 0, count);
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, decr, GL_KEEP);
glDrawArrays(GL_TRIANGLES, 0, count);
}
else // zpass
{
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, incr);
glDrawArrays(GL_TRIANGLES, 0, count);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, decr);
glDrawArrays(GL_TRIANGLES, 0, count);
}
glDisableClientState(GL_VERTEX_ARRAY);
glColorMask((colorMask & ECP_RED)?GL_TRUE:GL_FALSE,
(colorMask & ECP_GREEN)?GL_TRUE:GL_FALSE,
(colorMask & ECP_BLUE)?GL_TRUE:GL_FALSE,
(colorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE);
glDisable(GL_STENCIL_TEST);
if (lightingEnabled)
glEnable(GL_LIGHTING);
if (fogEnabled)
glEnable(GL_FOG);
if (cullFaceEnabled)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
glCullFace(cullFaceMode);
glDepthFunc(depthFunc);
glDepthMask(depthMask);
}
void COGLES1Driver::drawStencilShadow(bool clearStencilBuffer,
video::SColor leftUpEdge, video::SColor rightUpEdge,
video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
setTextureRenderStates(SMaterial(), false);
u8 colorMask = LastMaterial.ColorMask;
const GLboolean lightingEnabled = glIsEnabled(GL_LIGHTING);
const GLboolean fogEnabled = glIsEnabled(GL_FOG);
const GLboolean blendEnabled = glIsEnabled(GL_BLEND);
GLboolean depthMask = 0;
glGetBooleanv(GL_DEPTH_WRITEMASK, &depthMask);
GLint shadeModel = 0;
glGetIntegerv(GL_SHADE_MODEL, &shadeModel);
GLint blendSrc = 0, blendDst = 0;
glGetIntegerv(GL_BLEND_SRC, &blendSrc);
glGetIntegerv(GL_BLEND_DST, &blendDst);
glDisable(GL_LIGHTING);
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
glShadeModel(GL_FLAT);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex(-1.f, 1.f, 0.9f, 0, 0, 1, leftDownEdge, 0, 0);
vertices[1] = S3DVertex(1.f, 1.f, 0.9f, 0, 0, 1, leftUpEdge, 0, 0);
vertices[2] = S3DVertex(1.f, -1.f, 0.9f, 0, 0, 1, rightUpEdge, 0, 0);
vertices[3] = S3DVertex(-1.f, -1.f, 0.9f, 0, 0, 1, rightDownEdge, 0, 0);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
if (clearStencilBuffer)
glClear(GL_STENCIL_BUFFER_BIT);
glColorMask((colorMask & ECP_RED)?GL_TRUE:GL_FALSE,
(colorMask & ECP_GREEN)?GL_TRUE:GL_FALSE,
(colorMask & ECP_BLUE)?GL_TRUE:GL_FALSE,
(colorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE);
glDisable(GL_STENCIL_TEST);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
if (lightingEnabled)
glEnable(GL_LIGHTING);
if (fogEnabled)
glEnable(GL_FOG);
if (!blendEnabled)
glDisable(GL_BLEND);
glDepthMask(depthMask);
glShadeModel(shadeModel);
glBlendFunc(blendSrc, blendDst);
}
//! Sets the fog mode.
void COGLES1Driver::setFog(SColor c, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog);
glFogf(GL_FOG_MODE, GLfloat((fogType==EFT_FOG_LINEAR)? GL_LINEAR : (fogType==EFT_FOG_EXP)?GL_EXP:GL_EXP2));
#ifdef GL_EXT_fog_coord
if (FeatureAvailable[IRR_EXT_fog_coord])
glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH);
#endif
if (fogType==EFT_FOG_LINEAR)
{
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, end);
}
else
glFogf(GL_FOG_DENSITY, density);
if (pixelFog)
glHint(GL_FOG_HINT, GL_NICEST);
else
glHint(GL_FOG_HINT, GL_FASTEST);
SColorf color(c);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glFogfv(GL_FOG_COLOR, data);
}
//! Draws a 3d line.
void COGLES1Driver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setRenderStates3DMode();
u16 indices[] = {0,1};
S3DVertex vertices[2];
vertices[0] = S3DVertex(start.X,start.Y,start.Z, 0,0,1, color, 0,0);
vertices[1] = S3DVertex(end.X,end.Y,end.Z, 0,0,1, color, 0,0);
drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COGLES1Driver::OnResize(const core::dimension2d<u32>& size)
{
CNullDriver::OnResize(size);
CacheHandler->setViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COGLES1Driver::getDriverType() const
{
return EDT_OGLES1;
}
//! returns color format
ECOLOR_FORMAT COGLES1Driver::getColorFormat() const
{
return ColorFormat;
}
//! Get a vertex shader constant index.
s32 COGLES1Driver::getVertexShaderConstantID(const c8* name)
{
return getPixelShaderConstantID(name);
}
//! Get a pixel shader constant index.
s32 COGLES1Driver::getPixelShaderConstantID(const c8* name)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->getPixelShaderConstantID().");
return -1;
}
//! Sets a constant for the vertex shader based on an index.
bool COGLES1Driver::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
//pass this along, as in GLSL the same routine is used for both vertex and fragment shaders
return setPixelShaderConstant(index, floats, count);
}
//! Int interface for the above.
bool COGLES1Driver::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
bool COGLES1Driver::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
//! Sets a constant for the pixel shader based on an index.
bool COGLES1Driver::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Int interface for the above.
bool COGLES1Driver::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
bool COGLES1Driver::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Sets a vertex shader constant.
void COGLES1Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_vertex_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_VERTEX_PROGRAM, startRegister+i, &data[i*4]);
#endif
}
//! Sets a pixel shader constant.
void COGLES1Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_fragment_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_FRAGMENT_PROGRAM, startRegister+i, &data[i*4]);
#endif
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 COGLES1Driver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
os::Printer::log("No shader support.");
return -1;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COGLES1Driver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
os::Printer::log("No shader support.");
return -1;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* COGLES1Driver::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices* COGLES1Driver::getGPUProgrammingServices()
{
return this;
}
ITexture* COGLES1Driver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
core::dimension2du destSize(size);
if (!supportForFBO)
{
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COGLES1Texture* renderTargetTexture = new COGLES1Texture(name, destSize, ETT_2D, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
ITexture* COGLES1Driver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
const core::dimension2d<u32> size(sideLen, sideLen);
core::dimension2du destSize(size);
if (!supportForFBO)
{
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COGLES1Texture* renderTargetTexture = new COGLES1Texture(name, destSize, ETT_CUBEMAP, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
//! Returns the maximum amount of primitives
u32 COGLES1Driver::getMaximalPrimitiveCount() const
{
return 65535;
}
bool COGLES1Driver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != EDT_OGLES1)
{
os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL driver.", ELL_ERROR);
return false;
}
bool supportForFBO = (Feature.ColorAttachment > 0);
core::dimension2d<u32> destRenderTargetSize(0, 0);
if (target)
{
COGLES1RenderTarget* renderTarget = static_cast<COGLES1RenderTarget*>(target);
if (supportForFBO)
{
CacheHandler->setFBO(renderTarget->getBufferID());
renderTarget->update();
}
destRenderTargetSize = renderTarget->getSize();
setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height);
}
else
{
if (supportForFBO)
CacheHandler->setFBO(0);
else
{
COGLES1RenderTarget* prevRenderTarget = static_cast<COGLES1RenderTarget*>(CurrentRenderTarget);
COGLES1Texture* renderTargetTexture = static_cast<COGLES1Texture*>(prevRenderTarget->getTexture());
if (renderTargetTexture)
{
const COGLES1Texture* prevTexture = CacheHandler->getTextureCache().get(0);
CacheHandler->getTextureCache().set(0, renderTargetTexture);
const core::dimension2d<u32> size = renderTargetTexture->getSize();
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, size.Width, size.Height);
CacheHandler->getTextureCache().set(0, prevTexture);
}
}
destRenderTargetSize = core::dimension2d<u32>(0, 0);
setViewPortRaw(ScreenSize.Width, ScreenSize.Height);
}
if (CurrentRenderTargetSize != destRenderTargetSize)
{
CurrentRenderTargetSize = destRenderTargetSize;
Transformation3DChanged = true;
}
CurrentRenderTarget = target;
if (!supportForFBO)
{
clearFlag |= ECBF_COLOR;
clearFlag |= ECBF_DEPTH;
}
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
void COGLES1Driver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
GLbitfield mask = 0;
if (flag & ECBF_COLOR)
{
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (flag & ECBF_DEPTH)
{
glDepthMask(GL_TRUE);
glClearDepthf(depth);
mask |= GL_DEPTH_BUFFER_BIT;
}
if (flag & ECBF_STENCIL)
{
glClearStencil(stencil);
mask |= GL_STENCIL_BUFFER_BIT;
}
if (mask)
glClear(mask);
}
//! Returns an image created from the last rendered frame.
// We want to read the front buffer to get the latest render finished.
// This is not possible under ogl-es, though, so one has to call this method
// outside of the render loop only.
IImage* COGLES1Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target==video::ERT_MULTI_RENDER_TEXTURES || target==video::ERT_RENDER_TEXTURE || target==video::ERT_STEREO_BOTH_BUFFERS)
return 0;
GLint internalformat=GL_RGBA;
GLint type=GL_UNSIGNED_BYTE;
if (false
&& (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_IMG_read_format]
|| FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_read_format]
|| FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_read_format_bgra]))
{
#ifdef GL_IMPLEMENTATION_COLOR_READ_TYPE_OES
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES, &internalformat);
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE_OES, &type);
#endif
// there are formats we don't support ATM
if (GL_UNSIGNED_SHORT_4_4_4_4==type)
type=GL_UNSIGNED_SHORT_5_5_5_1;
#ifdef GL_EXT_read_format_bgra
else if (GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT==type)
type=GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT;
#endif
}
IImage* newImage = 0;
if ((GL_RGBA==internalformat)
#ifdef GL_EXT_read_format_bgra
|| (GL_BGRA_EXT==internalformat)
#endif
)
{
if (GL_UNSIGNED_BYTE==type)
newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_A1R5G5B5, ScreenSize);
}
else
{
if (GL_UNSIGNED_BYTE==type)
newImage = new CImage(ECF_R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_R5G6B5, ScreenSize);
}
u8* pixels = static_cast<u8*>(newImage->getData());
if (!pixels)
{
newImage->drop();
return 0;
}
glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels);
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch=newImage->getPitch();
u8* p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8* tmpBuffer = new u8[pitch];
for (u32 i=0; i < ScreenSize.Height; i += 2)
{
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete [] tmpBuffer;
if (testGLError(__LINE__))
{
newImage->drop();
return 0;
}
return newImage;
}
void COGLES1Driver::removeTexture(ITexture* texture)
{
CacheHandler->getTextureCache().remove(texture);
CNullDriver::removeTexture(texture);
}
//! Set/unset a clipping plane.
bool COGLES1Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
UserClipPlane[index]=plane;
enableClipPlane(index, enable);
return true;
}
void COGLES1Driver::uploadClipPlane(u32 index)
{
// opengl needs an array of doubles for the plane equation
float clip_plane[4];
clip_plane[0] = UserClipPlane[index].Normal.X;
clip_plane[1] = UserClipPlane[index].Normal.Y;
clip_plane[2] = UserClipPlane[index].Normal.Z;
clip_plane[3] = UserClipPlane[index].D;
glClipPlanef(GL_CLIP_PLANE0 + index, clip_plane);
}
//! Enable/disable a clipping plane.
void COGLES1Driver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
if (enable)
{
if (!UserClipPlaneEnabled[index])
{
uploadClipPlane(index);
glEnable(GL_CLIP_PLANE0 + index);
}
}
else
glDisable(GL_CLIP_PLANE0 + index);
UserClipPlaneEnabled[index]=enable;
}
core::dimension2du COGLES1Driver::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
GLenum COGLES1Driver::getGLBlend(E_BLEND_FACTOR factor) const
{
static GLenum const blendTable[] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE
};
return blendTable[factor];
}
GLenum COGLES1Driver::getZBufferBits() const
{
GLenum bits = 0;
switch (Params.ZBufferBits)
{
case 24:
#if defined(GL_OES_depth24)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth24))
bits = GL_DEPTH_COMPONENT24_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
case 32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32))
bits = GL_DEPTH_COMPONENT32_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
default:
bits = GL_DEPTH_COMPONENT16;
break;
}
return bits;
}
bool COGLES1Driver::getColorFormatParameters(ECOLOR_FORMAT format, GLint& internalFormat, GLenum& pixelFormat,
GLenum& pixelType, void(**converter)(const void*, s32, void*)) const
{
bool supported = false;
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_BYTE;
*converter = 0;
switch (format)
{
case ECF_A1R5G5B5:
supported = true;
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_SHORT_5_5_5_1;
*converter = CColorConverter::convert_A1R5G5B5toR5G5B5A1;
break;
case ECF_R5G6B5:
supported = true;
internalFormat = GL_RGB;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_SHORT_5_6_5;
break;
case ECF_R8G8B8:
supported = true;
internalFormat = GL_RGB;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_BYTE;
break;
case ECF_A8R8G8B8:
supported = true;
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_IMG_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_APPLE_texture_format_BGRA8888))
{
internalFormat = GL_BGRA;
pixelFormat = GL_BGRA;
}
else
{
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
*converter = CColorConverter::convert_A8R8G8B8toA8B8G8R8;
}
pixelType = GL_UNSIGNED_BYTE;
break;
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT1:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
break;
#endif
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT2:
case ECF_DXT3:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
break;
#endif
#ifdef GL_EXT_texture_compression_s3tc
case ECF_DXT4:
case ECF_DXT5:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_RGB2:
supported = true;
internalFormat = GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_ARGB2:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_RGB4:
supported = true;
internalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc
case ECF_PVRTC_ARGB4:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc2
case ECF_PVRTC2_ARGB2:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG;
break;
#endif
#ifdef GL_IMG_texture_compression_pvrtc2
case ECF_PVRTC2_ARGB4:
supported = true;
internalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG;
break;
#endif
#ifdef GL_OES_compressed_ETC1_RGB8_texture
case ECF_ETC1:
supported = true;
internalFormat = GL_ETC1_RGB8_OES;
pixelFormat = GL_RGB;
pixelType = GL_ETC1_RGB8_OES;
break;
#endif
#ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available
case ECF_ETC2_RGB:
supported = true;
internalFormat = GL_COMPRESSED_RGB8_ETC2;
pixelFormat = GL_RGB;
pixelType = GL_COMPRESSED_RGB8_ETC2;
break;
#endif
#ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available
case ECF_ETC2_ARGB:
supported = true;
internalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC;
pixelFormat = GL_RGBA;
pixelType = GL_COMPRESSED_RGBA8_ETC2_EAC;
break;
#endif
case ECF_D16:
supported = true;
internalFormat = GL_DEPTH_COMPONENT16;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_SHORT;
break;
case ECF_D32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32))
{
supported = true;
internalFormat = GL_DEPTH_COMPONENT32_OES;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_INT;
}
#endif
break;
case ECF_D24S8:
#ifdef GL_OES_packed_depth_stencil
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_packed_depth_stencil))
{
supported = true;
internalFormat = GL_DEPTH24_STENCIL8_OES;
pixelFormat = GL_DEPTH_STENCIL_OES;
pixelType = GL_UNSIGNED_INT_24_8_OES;
}
#endif
break;
case ECF_R8:
break;
case ECF_R8G8:
break;
case ECF_R16:
break;
case ECF_R16G16:
break;
case ECF_R16F:
break;
case ECF_G16R16F:
break;
case ECF_A16B16G16R16F:
break;
case ECF_R32F:
break;
case ECF_G32R32F:
break;
case ECF_A32B32G32R32F:
break;
default:
break;
}
#ifdef _IRR_IOS_PLATFORM_
if (internalFormat == GL_BGRA)
internalFormat = GL_RGBA;
#endif
return supported;
}
bool COGLES1Driver::queryTextureFormat(ECOLOR_FORMAT format) const
{
GLint dummyInternalFormat;
GLenum dummyPixelFormat;
GLenum dummyPixelType;
void (*dummyConverter)(const void*, s32, void*);
return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter);
}
bool COGLES1Driver::needsTransparentRenderPass(const irr::video::SMaterial& material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation();
}
COGLES1CacheHandler* COGLES1Driver::getCacheHandler() const
{
return CacheHandler;
}
} // end namespace
} // end namespace
#endif // _IRR_COMPILE_WITH_OGLES1_
namespace irr
{
namespace video
{
#ifndef _IRR_COMPILE_WITH_OGLES1_
class IVideoDriver;
class IContextManager;
#endif
IVideoDriver* createOGLES1Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager)
{
#ifdef _IRR_COMPILE_WITH_OGLES1_
return new COGLES1Driver(params, io, contextManager);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OGLES1_
}
} // end namespace
} // end namespace