irrlicht/source/Irrlicht/CImageLoaderPSD.cpp
cutealien 2ae2a551a6 Merging r5975 through r6036 from trunk to ogl-es branch.
GLES drivers adapted, but only did make compile-tests.


git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6038 dfc29bdd-3216-0410-991c-e03cc46cb475
2020-01-03 19:05:16 +00:00

376 lines
8.7 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CImageLoaderPSD.h"
#ifdef _IRR_COMPILE_WITH_PSD_LOADER_
#include "IReadFile.h"
#include "os.h"
#include "CImage.h"
#include "irrString.h"
namespace irr
{
namespace video
{
//! constructor
CImageLoaderPSD::CImageLoaderPSD()
{
#ifdef _DEBUG
setDebugName("CImageLoaderPSD");
#endif
}
//! returns true if the file maybe is able to be loaded by this class
//! based on the file extension (e.g. ".tga")
bool CImageLoaderPSD::isALoadableFileExtension(const io::path& filename) const
{
return core::hasFileExtension ( filename, "psd" );
}
//! returns true if the file maybe is able to be loaded by this class
bool CImageLoaderPSD::isALoadableFileFormat(io::IReadFile* file) const
{
if (!file)
return false;
u8 type[3];
file->read(&type, sizeof(u8)*3);
return (type[2]==2); // we currently only handle tgas of type 2.
}
//! creates a surface from the file
IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
{
u32* imageData = 0;
PsdHeader header;
file->read(&header, sizeof(PsdHeader));
#ifndef __BIG_ENDIAN__
header.version = os::Byteswap::byteswap(header.version);
header.channels = os::Byteswap::byteswap(header.channels);
header.height = os::Byteswap::byteswap(header.height);
header.width = os::Byteswap::byteswap(header.width);
header.depth = os::Byteswap::byteswap(header.depth);
header.mode = os::Byteswap::byteswap(header.mode);
#endif
if (header.signature[0] != '8' ||
header.signature[1] != 'B' ||
header.signature[2] != 'P' ||
header.signature[3] != 'S')
return 0;
if (header.version != 1)
{
os::Printer::log("Unsupported PSD file version", file->getFileName(), ELL_ERROR);
return 0;
}
if (header.mode != 3 || header.depth != 8)
{
os::Printer::log("Unsupported PSD color mode or depth.\n", file->getFileName(), ELL_ERROR);
return 0;
}
// skip color mode data
u32 l;
file->read(&l, sizeof(u32));
#ifndef __BIG_ENDIAN__
l = os::Byteswap::byteswap(l);
#endif
if (!file->seek(l, true))
{
os::Printer::log("Error seeking file pos to image resources.\n", file->getFileName(), ELL_ERROR);
return 0;
}
// skip image resources
file->read(&l, sizeof(u32));
#ifndef __BIG_ENDIAN__
l = os::Byteswap::byteswap(l);
#endif
if (!file->seek(l, true))
{
os::Printer::log("Error seeking file pos to layer and mask.\n", file->getFileName(), ELL_ERROR);
return 0;
}
// skip layer & mask
file->read(&l, sizeof(u32));
#ifndef __BIG_ENDIAN__
l = os::Byteswap::byteswap(l);
#endif
if (!file->seek(l, true))
{
os::Printer::log("Error seeking file pos to image data section.\n", file->getFileName(), ELL_ERROR);
return 0;
}
// read image data
u16 compressionType;
file->read(&compressionType, sizeof(u16));
#ifndef __BIG_ENDIAN__
compressionType = os::Byteswap::byteswap(compressionType);
#endif
if (compressionType != 1 && compressionType != 0)
{
os::Printer::log("Unsupported psd compression mode.\n", file->getFileName(), ELL_ERROR);
return 0;
}
// create image data block
imageData = new u32[header.width * header.height];
bool res = false;
if (compressionType == 0)
res = readRawImageData(file, header, imageData); // RAW image data
else
res = readRLEImageData(file, header, imageData); // RLE compressed data
video::IImage* image = 0;
if (res)
{
// create surface
image = new CImage(ECF_A8R8G8B8,
core::dimension2d<u32>(header.width, header.height), imageData);
}
if (!image)
delete [] imageData;
imageData = 0;
return image;
}
bool CImageLoaderPSD::readRawImageData(io::IReadFile* file, const PsdHeader& header, u32* imageData) const
{
u8* tmpData = new u8[header.width * header.height];
for (s32 channel=0; channel<header.channels && channel < 3; ++channel)
{
if (!file->read(tmpData, sizeof(c8) * header.width * header.height))
{
os::Printer::log("Error reading color channel\n", file->getFileName(), ELL_ERROR);
break;
}
s16 shift = getShiftFromChannel((c8)channel, header);
if (shift != -1)
{
u32 mask = 0xff << shift;
for (u32 x=0; x<header.width; ++x)
{
for (u32 y=0; y<header.height; ++y)
{
s32 index = x + y*header.width;
imageData[index] = ~(~imageData[index] | mask);
imageData[index] |= tmpData[index] << shift;
}
}
}
}
delete [] tmpData;
return true;
}
bool CImageLoaderPSD::readRLEImageData(io::IReadFile* file, const PsdHeader& header, u32* imageData) const
{
/* If the compression code is 1, the image data
starts with the byte counts for all the scan lines in the channel
(LayerBottom LayerTop), with each count stored as a two
byte value. The RLE compressed data follows, with each scan line
compressed separately. The RLE compression is the same compres-sion
algorithm used by the Macintosh ROM routine PackBits, and
the TIFF standard.
If the Layer's Size, and therefore the data, is odd, a pad byte will
be inserted at the end of the row.
*/
/*
A pseudo code fragment to unpack might look like this:
Loop until you get the number of unpacked bytes you are expecting:
Read the next source byte into n.
If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
Else if n is between -127 and -1 inclusive, copy the next byte -n+1
times.
Else if n is -128, noop.
Endloop
In the inverse routine, it is best to encode a 2-byte repeat run as a replicate run
except when preceded and followed by a literal run. In that case, it is best to merge
the three runs into one literal run. Always encode 3-byte repeats as replicate runs.
That is the essence of the algorithm. Here are some additional rules:
- Pack each row separately. Do not compress across row boundaries.
- The number of uncompressed bytes per row is defined to be (ImageWidth + 7)
/ 8. If the uncompressed bitmap is required to have an even number of bytes per
row, decompress into word-aligned buffers.
- If a run is larger than 128 bytes, encode the remainder of the run as one or more
additional replicate runs.
When PackBits data is decompressed, the result should be interpreted as per com-pression
type 1 (no compression).
*/
u8* tmpData = new u8[header.width * header.height];
u16 *rleCount= new u16 [header.height * header.channels];
s32 size=0;
for (u32 y=0; y<header.height * header.channels; ++y)
{
if (!file->read(&rleCount[y], sizeof(u16)))
{
delete [] tmpData;
delete [] rleCount;
os::Printer::log("Error reading rle rows\n", file->getFileName(), ELL_ERROR);
return false;
}
#ifndef __BIG_ENDIAN__
rleCount[y] = os::Byteswap::byteswap(rleCount[y]);
#endif
size += rleCount[y];
}
s8 *buf = new s8[size];
if (!file->read(buf, size))
{
delete [] rleCount;
delete [] buf;
delete [] tmpData;
os::Printer::log("Error reading rle rows\n", file->getFileName(), ELL_ERROR);
return false;
}
u16 *rcount=rleCount;
s8 rh;
u16 bytesRead;
u8 *dest;
s8 *pBuf = buf;
// decompress packbit rle
for (s32 channel=0; channel<header.channels; channel++)
{
for (u32 y=0; y<header.height; ++y, ++rcount)
{
bytesRead=0;
dest = &tmpData[y*header.width];
while (bytesRead < *rcount)
{
rh = *pBuf++;
++bytesRead;
if (rh >= 0)
{
++rh;
while (rh--)
{
*dest = *pBuf++;
++bytesRead;
++dest;
}
}
else
if (rh > -128)
{
rh = -rh +1;
while (rh--)
{
*dest = *pBuf;
++dest;
}
++pBuf;
++bytesRead;
}
}
}
s16 shift = getShiftFromChannel((c8)channel, header);
if (shift != -1)
{
u32 mask = 0xff << shift;
for (u32 x=0; x<header.width; ++x)
for (u32 y=0; y<header.height; ++y)
{
s32 index = x + y*header.width;
imageData[index] = ~(~imageData[index] | mask);
imageData[index] |= tmpData[index] << shift;
}
}
}
delete [] rleCount;
delete [] buf;
delete [] tmpData;
return true;
}
s16 CImageLoaderPSD::getShiftFromChannel(c8 channelNr, const PsdHeader& header) const
{
switch(channelNr)
{
case 0:
return 16; // red
case 1:
return 8; // green
case 2:
return 0; // blue
case 3:
return header.channels == 4 ? 24 : -1; // ?
case 4:
return 24; // alpha
default:
return -1;
}
}
//! creates a loader which is able to load tgas
IImageLoader* createImageLoaderPSD()
{
return new CImageLoaderPSD();
}
} // end namespace video
} // end namespace irr
#endif