mirror of
https://github.com/minetest/irrlicht.git
synced 2024-11-16 15:30:25 +01:00
f5c6d3e945
find -type f | # list all regular files grep -E '\.(h|cpp|mm)$' | # filter for source files grep -v '/mt_' | # filter out generated files grep -v '/vendor/' | # and vendored GL grep -v '/test/image_loader_test.cpp' | # and this file (has giant literals arrays) xargs -n 1 -P $(nproc) clang-format -i # reformat everything Co-authored-by: numzero <numzer0@yandex.ru>
381 lines
13 KiB
C++
381 lines
13 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#pragma once
|
|
|
|
#include "irrTypes.h"
|
|
#include "vector2d.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! 2D line between two points with intersection methods.
|
|
template <class T>
|
|
class line2d
|
|
{
|
|
public:
|
|
//! Default constructor for line going from (0,0) to (1,1).
|
|
constexpr line2d() :
|
|
start(0, 0), end(1, 1) {}
|
|
//! Constructor for line between the two points.
|
|
constexpr line2d(T xa, T ya, T xb, T yb) :
|
|
start(xa, ya), end(xb, yb) {}
|
|
//! Constructor for line between the two points given as vectors.
|
|
constexpr line2d(const vector2d<T> &start, const vector2d<T> &end) :
|
|
start(start), end(end) {}
|
|
|
|
// operators
|
|
|
|
line2d<T> operator+(const vector2d<T> &point) const { return line2d<T>(start + point, end + point); }
|
|
line2d<T> &operator+=(const vector2d<T> &point)
|
|
{
|
|
start += point;
|
|
end += point;
|
|
return *this;
|
|
}
|
|
|
|
line2d<T> operator-(const vector2d<T> &point) const { return line2d<T>(start - point, end - point); }
|
|
line2d<T> &operator-=(const vector2d<T> &point)
|
|
{
|
|
start -= point;
|
|
end -= point;
|
|
return *this;
|
|
}
|
|
|
|
constexpr bool operator==(const line2d<T> &other) const
|
|
{
|
|
return (start == other.start && end == other.end) || (end == other.start && start == other.end);
|
|
}
|
|
constexpr bool operator!=(const line2d<T> &other) const
|
|
{
|
|
return !(start == other.start && end == other.end) || (end == other.start && start == other.end);
|
|
}
|
|
|
|
// functions
|
|
//! Set this line to new line going through the two points.
|
|
void setLine(const T &xa, const T &ya, const T &xb, const T &yb)
|
|
{
|
|
start.set(xa, ya);
|
|
end.set(xb, yb);
|
|
}
|
|
//! Set this line to new line going through the two points.
|
|
void setLine(const vector2d<T> &nstart, const vector2d<T> &nend)
|
|
{
|
|
start.set(nstart);
|
|
end.set(nend);
|
|
}
|
|
//! Set this line to new line given as parameter.
|
|
void setLine(const line2d<T> &line)
|
|
{
|
|
start.set(line.start);
|
|
end.set(line.end);
|
|
}
|
|
|
|
//! Get length of line
|
|
/** \return Length of the line. */
|
|
T getLength() const { return start.getDistanceFrom(end); }
|
|
|
|
//! Get squared length of the line
|
|
/** \return Squared length of line. */
|
|
T getLengthSQ() const { return start.getDistanceFromSQ(end); }
|
|
|
|
//! Get middle of the line
|
|
/** \return center of the line. */
|
|
vector2d<T> getMiddle() const
|
|
{
|
|
return (start + end) / (T)2;
|
|
}
|
|
|
|
//! Get the vector of the line.
|
|
/** \return The vector of the line. */
|
|
vector2d<T> getVector() const { return vector2d<T>(end.X - start.X, end.Y - start.Y); }
|
|
|
|
/*! Check if this segment intersects another segment,
|
|
or if segments are coincident (colinear). */
|
|
bool intersectAsSegments(const line2d<T> &other) const
|
|
{
|
|
// Taken from:
|
|
// http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
|
|
|
|
// Find the four orientations needed for general and
|
|
// special cases
|
|
s32 o1 = start.checkOrientation(end, other.start);
|
|
s32 o2 = start.checkOrientation(end, other.end);
|
|
s32 o3 = other.start.checkOrientation(other.end, start);
|
|
s32 o4 = other.start.checkOrientation(other.end, end);
|
|
|
|
// General case
|
|
if (o1 != o2 && o3 != o4)
|
|
return true;
|
|
|
|
// Special Cases to check if segments are colinear
|
|
if (o1 == 0 && other.start.isBetweenPoints(start, end))
|
|
return true;
|
|
if (o2 == 0 && other.end.isBetweenPoints(start, end))
|
|
return true;
|
|
if (o3 == 0 && start.isBetweenPoints(other.start, other.end))
|
|
return true;
|
|
if (o4 == 0 && end.isBetweenPoints(other.start, other.end))
|
|
return true;
|
|
|
|
return false; // Doesn't fall in any of the above cases
|
|
}
|
|
|
|
/*! Check if 2 segments are incident (intersects in exactly 1 point).*/
|
|
bool incidentSegments(const line2d<T> &other) const
|
|
{
|
|
return start.checkOrientation(end, other.start) != start.checkOrientation(end, other.end) && other.start.checkOrientation(other.end, start) != other.start.checkOrientation(other.end, end);
|
|
}
|
|
|
|
/*! Check if 2 lines/segments are parallel or nearly parallel.*/
|
|
bool nearlyParallel(const line2d<T> &line, const T factor = relativeErrorFactor<T>()) const
|
|
{
|
|
const vector2d<T> a = getVector();
|
|
const vector2d<T> b = line.getVector();
|
|
|
|
return a.nearlyParallel(b, factor);
|
|
}
|
|
|
|
/*! returns a intersection point of 2 lines (if lines are not parallel). Behaviour
|
|
undefined if lines are parallel or coincident.
|
|
It's on optimized intersectWith with checkOnlySegments=false and ignoreCoincidentLines=true
|
|
*/
|
|
vector2d<T> fastLinesIntersection(const line2d<T> &l) const
|
|
{
|
|
const f32 commonDenominator = (f32)((l.end.Y - l.start.Y) * (end.X - start.X) -
|
|
(l.end.X - l.start.X) * (end.Y - start.Y));
|
|
|
|
if (commonDenominator != 0.f) {
|
|
const f32 numeratorA = (f32)((l.end.X - l.start.X) * (start.Y - l.start.Y) -
|
|
(l.end.Y - l.start.Y) * (start.X - l.start.X));
|
|
|
|
const f32 uA = numeratorA / commonDenominator;
|
|
|
|
// Calculate the intersection point.
|
|
return vector2d<T>(
|
|
(T)(start.X + uA * (end.X - start.X)),
|
|
(T)(start.Y + uA * (end.Y - start.Y)));
|
|
} else
|
|
return l.start;
|
|
}
|
|
|
|
/*! Check if this line intersect a segment. The eventual intersection point is returned in "out".*/
|
|
bool lineIntersectSegment(const line2d<T> &segment, vector2d<T> &out) const
|
|
{
|
|
if (nearlyParallel(segment))
|
|
return false;
|
|
|
|
out = fastLinesIntersection(segment);
|
|
|
|
return out.isBetweenPoints(segment.start, segment.end);
|
|
}
|
|
|
|
//! Tests if this line intersects with another line.
|
|
/** \param l: Other line to test intersection with.
|
|
\param checkOnlySegments: Default is to check intersection between the begin and endpoints.
|
|
When set to false the function will check for the first intersection point when extending the lines.
|
|
\param out: If there is an intersection, the location of the
|
|
intersection will be stored in this vector.
|
|
\param ignoreCoincidentLines: When true coincident lines (lines above each other) are never considered as intersecting.
|
|
When false the center of the overlapping part is returned.
|
|
\return True if there is an intersection, false if not. */
|
|
bool intersectWith(const line2d<T> &l, vector2d<T> &out, bool checkOnlySegments = true, bool ignoreCoincidentLines = false) const
|
|
{
|
|
// Uses the method given at:
|
|
// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
|
|
const f32 commonDenominator = (f32)((l.end.Y - l.start.Y) * (end.X - start.X) -
|
|
(l.end.X - l.start.X) * (end.Y - start.Y));
|
|
|
|
const f32 numeratorA = (f32)((l.end.X - l.start.X) * (start.Y - l.start.Y) -
|
|
(l.end.Y - l.start.Y) * (start.X - l.start.X));
|
|
|
|
const f32 numeratorB = (f32)((end.X - start.X) * (start.Y - l.start.Y) -
|
|
(end.Y - start.Y) * (start.X - l.start.X));
|
|
|
|
if (equals(commonDenominator, 0.f)) {
|
|
// The lines are either coincident or parallel
|
|
// if both numerators are 0, the lines are coincident
|
|
if (!ignoreCoincidentLines && equals(numeratorA, 0.f) && equals(numeratorB, 0.f)) {
|
|
// Try and find a common endpoint
|
|
if (l.start == start || l.end == start)
|
|
out = start;
|
|
else if (l.end == end || l.start == end)
|
|
out = end;
|
|
// now check if the two segments are disjunct
|
|
else if (l.start.X > start.X && l.end.X > start.X && l.start.X > end.X && l.end.X > end.X)
|
|
return false;
|
|
else if (l.start.Y > start.Y && l.end.Y > start.Y && l.start.Y > end.Y && l.end.Y > end.Y)
|
|
return false;
|
|
else if (l.start.X < start.X && l.end.X < start.X && l.start.X < end.X && l.end.X < end.X)
|
|
return false;
|
|
else if (l.start.Y < start.Y && l.end.Y < start.Y && l.start.Y < end.Y && l.end.Y < end.Y)
|
|
return false;
|
|
// else the lines are overlapping to some extent
|
|
else {
|
|
// find the points which are not contributing to the
|
|
// common part
|
|
vector2d<T> maxp;
|
|
vector2d<T> minp;
|
|
if ((start.X > l.start.X && start.X > l.end.X && start.X > end.X) || (start.Y > l.start.Y && start.Y > l.end.Y && start.Y > end.Y))
|
|
maxp = start;
|
|
else if ((end.X > l.start.X && end.X > l.end.X && end.X > start.X) || (end.Y > l.start.Y && end.Y > l.end.Y && end.Y > start.Y))
|
|
maxp = end;
|
|
else if ((l.start.X > start.X && l.start.X > l.end.X && l.start.X > end.X) || (l.start.Y > start.Y && l.start.Y > l.end.Y && l.start.Y > end.Y))
|
|
maxp = l.start;
|
|
else
|
|
maxp = l.end;
|
|
if (maxp != start && ((start.X < l.start.X && start.X < l.end.X && start.X < end.X) || (start.Y < l.start.Y && start.Y < l.end.Y && start.Y < end.Y)))
|
|
minp = start;
|
|
else if (maxp != end && ((end.X < l.start.X && end.X < l.end.X && end.X < start.X) || (end.Y < l.start.Y && end.Y < l.end.Y && end.Y < start.Y)))
|
|
minp = end;
|
|
else if (maxp != l.start && ((l.start.X < start.X && l.start.X < l.end.X && l.start.X < end.X) || (l.start.Y < start.Y && l.start.Y < l.end.Y && l.start.Y < end.Y)))
|
|
minp = l.start;
|
|
else
|
|
minp = l.end;
|
|
|
|
// one line is contained in the other. Pick the center
|
|
// of the remaining points, which overlap for sure
|
|
out = core::vector2d<T>();
|
|
if (start != maxp && start != minp)
|
|
out += start;
|
|
if (end != maxp && end != minp)
|
|
out += end;
|
|
if (l.start != maxp && l.start != minp)
|
|
out += l.start;
|
|
if (l.end != maxp && l.end != minp)
|
|
out += l.end;
|
|
out.X = (T)(out.X / 2);
|
|
out.Y = (T)(out.Y / 2);
|
|
}
|
|
|
|
return true; // coincident
|
|
}
|
|
|
|
return false; // parallel
|
|
}
|
|
|
|
// Get the point of intersection on this line, checking that
|
|
// it is within the line segment.
|
|
const f32 uA = numeratorA / commonDenominator;
|
|
if (checkOnlySegments) {
|
|
if (uA < 0.f || uA > 1.f)
|
|
return false; // Outside the line segment
|
|
|
|
const f32 uB = numeratorB / commonDenominator;
|
|
if (uB < 0.f || uB > 1.f)
|
|
return false; // Outside the line segment
|
|
}
|
|
|
|
// Calculate the intersection point.
|
|
out.X = (T)(start.X + uA * (end.X - start.X));
|
|
out.Y = (T)(start.Y + uA * (end.Y - start.Y));
|
|
return true;
|
|
}
|
|
|
|
//! Get unit vector of the line.
|
|
/** \return Unit vector of this line. */
|
|
vector2d<T> getUnitVector() const
|
|
{
|
|
T len = (T)(1.0 / getLength());
|
|
return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
|
|
}
|
|
|
|
//! Get angle between this line and given line.
|
|
/** \param l Other line for test.
|
|
\return Angle in degrees. */
|
|
f64 getAngleWith(const line2d<T> &l) const
|
|
{
|
|
vector2d<T> vect = getVector();
|
|
vector2d<T> vect2 = l.getVector();
|
|
return vect.getAngleWith(vect2);
|
|
}
|
|
|
|
//! Tells us if the given point lies to the left, right, or on the line.
|
|
/** \return 0 if the point is on the line
|
|
<0 if to the left, or >0 if to the right. */
|
|
T getPointOrientation(const vector2d<T> &point) const
|
|
{
|
|
return ((end.X - start.X) * (point.Y - start.Y) -
|
|
(point.X - start.X) * (end.Y - start.Y));
|
|
}
|
|
|
|
//! Check if the given point is a member of the line
|
|
/** \return True if point is between start and end, else false. */
|
|
bool isPointOnLine(const vector2d<T> &point) const
|
|
{
|
|
T d = getPointOrientation(point);
|
|
return (d == 0 && point.isBetweenPoints(start, end));
|
|
}
|
|
|
|
//! Check if the given point is between start and end of the line.
|
|
/** Assumes that the point is already somewhere on the line. */
|
|
bool isPointBetweenStartAndEnd(const vector2d<T> &point) const
|
|
{
|
|
return point.isBetweenPoints(start, end);
|
|
}
|
|
|
|
//! Get the closest point on this line to a point
|
|
/** \param point: Starting search at this point
|
|
\param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
|
|
When set to false the function will check for the first the closest point on the the line even when outside the segment. */
|
|
vector2d<T> getClosestPoint(const vector2d<T> &point, bool checkOnlySegments = true) const
|
|
{
|
|
vector2d<f64> c((f64)(point.X - start.X), (f64)(point.Y - start.Y));
|
|
vector2d<f64> v((f64)(end.X - start.X), (f64)(end.Y - start.Y));
|
|
f64 d = v.getLength();
|
|
if (d == 0) // can't tell much when the line is just a single point
|
|
return start;
|
|
v /= d;
|
|
f64 t = v.dotProduct(c);
|
|
|
|
if (checkOnlySegments) {
|
|
if (t < 0)
|
|
return vector2d<T>((T)start.X, (T)start.Y);
|
|
if (t > d)
|
|
return vector2d<T>((T)end.X, (T)end.Y);
|
|
}
|
|
|
|
v *= t;
|
|
return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
|
|
}
|
|
|
|
//! Start point of the line.
|
|
vector2d<T> start;
|
|
//! End point of the line.
|
|
vector2d<T> end;
|
|
};
|
|
|
|
// partial specialization to optimize <f32> lines (avoiding casts)
|
|
template <>
|
|
inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df &point, bool checkOnlySegments) const
|
|
{
|
|
const vector2df c = point - start;
|
|
vector2df v = end - start;
|
|
const f32 d = (f32)v.getLength();
|
|
if (d == 0) // can't tell much when the line is just a single point
|
|
return start;
|
|
v /= d;
|
|
const f32 t = v.dotProduct(c);
|
|
|
|
if (checkOnlySegments) {
|
|
if (t < 0)
|
|
return start;
|
|
if (t > d)
|
|
return end;
|
|
}
|
|
|
|
v *= t;
|
|
return start + v;
|
|
}
|
|
|
|
//! Typedef for an f32 line.
|
|
typedef line2d<f32> line2df;
|
|
//! Typedef for an integer line.
|
|
typedef line2d<s32> line2di;
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|