irrlicht/source/Irrlicht/CTRTextureLightMap2_M4.cpp

1155 lines
25 KiB
C++

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "IBurningShader.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
// compile flag for this file
#undef USE_ZBUFFER
#undef IPOL_Z
#undef CMP_Z
#undef WRITE_Z
#undef IPOL_W
#undef CMP_W
#undef WRITE_W
#undef SUBTEXEL
#undef INVERSE_W
#undef IPOL_C0
#undef IPOL_T0
#undef IPOL_T1
// define render case
#define SUBTEXEL
#define INVERSE_W
#define USE_ZBUFFER
#define IPOL_W
#define CMP_W
#define WRITE_W
//#define IPOL_C0
#define IPOL_T0
#define IPOL_T1
// apply global override
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef INVERSE_W
#endif
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
#undef SUBTEXEL
#endif
#if BURNING_MATERIAL_MAX_COLORS < 1
#undef IPOL_C0
#endif
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#undef IPOL_W
#endif
#define IPOL_Z
#ifdef CMP_W
#undef CMP_W
#define CMP_Z
#endif
#ifdef WRITE_W
#undef WRITE_W
#define WRITE_Z
#endif
#endif
namespace irr
{
namespace video
{
class CTRTextureLightMap2_M4 : public IBurningShader
{
public:
//! constructor
CTRTextureLightMap2_M4(CBurningVideoDriver* driver);
//! draws an indexed triangle list
virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) _IRR_OVERRIDE_;
private:
#if defined(SOFTWARE_DRIVER_2_SCANLINE_MAG_MIN)
void drawTriangle_Min ( const s4DVertex* burning_restrict a,const s4DVertex* burning_restrict b,const s4DVertex* burning_restrict c );
void drawTriangle_Mag ( const s4DVertex* burning_restrict a,const s4DVertex* burning_restrict b,const s4DVertex* burning_restrict c );
void scanline_bilinear2_mag ();
void scanline_bilinear2_min ();
#else
#define scanline_bilinear2_mag fragmentShader
#endif
void fragmentShader();
};
//! constructor
CTRTextureLightMap2_M4::CTRTextureLightMap2_M4(CBurningVideoDriver* driver)
: IBurningShader(driver)
{
#ifdef _DEBUG
setDebugName("CTRTextureLightMap2_M4");
#endif
}
/*!
*/
void CTRTextureLightMap2_M4::scanline_bilinear2_mag ()
{
tVideoSample *dst;
fp24 *z;
// apply top-left fill-convention, left
const s32 xStart = fill_convention_left(line.x[0]);
const s32 xEnd = fill_convention_right(line.x[1]);
s32 dx;
s32 i;
dx = xEnd - xStart;
if ( dx < 0 )
return;
SOFTWARE_DRIVER_2_CLIPCHECK;
// slopes
const f32 invDeltaX = fill_step_x( line.x[1] - line.x[0] );
// search z-buffer for first not occulled pixel
i = ( line.y * RenderTarget->getDimension().Width ) + xStart;
z = (fp24*) DepthBuffer->lock() + i;
dst = (tVideoSample*)RenderTarget->getData() + i;
// subTexel
const f32 subPixel = ( (f32) xStart ) - line.x[0];
#ifdef IPOL_W
const fp24 b = (line.w[1] - line.w[0]) * invDeltaX;
fp24 a = line.w[0] + ( b * subPixel );
i = 0;
while ( a < z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.w[0] = a;
line.w[1] = b;
#else
const f32 b = (line.z[1] - line.z[0]) * invDeltaX;
f32 a = line.z[0] + ( b * subPixel );
i = 0;
while ( a > z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.z[0] = a;
line.z[1] = b;
#endif
a = (f32) i + subPixel;
line.t[0][1] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
line.t[1][1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
line.t[0][0] += line.t[0][1] * a;
line.t[1][0] += line.t[1][1] * a;
#ifdef BURNINGVIDEO_RENDERER_FAST
u32 dIndex = ( line.y & 3 ) << 2;
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#else
//
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
#endif
for ( ;i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
#ifdef IPOL_W
if ( line.w[0] >= z[i] )
{
z[i] = line.w[0];
#else
if ( line.z[0] < z[i] )
{
z[i] = line.z[0];
#endif
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
f32 inversew = fix_inverse32 ( line.w[0] );
#else
f32 inversew = FIX_POINT_F32_MUL;
#endif
#ifdef BURNINGVIDEO_RENDERER_FAST
const tFixPointu d = dithermask [ dIndex | ( i ) & 3 ];
getSample_texture ( r0, g0, b0, &IT[0], d + tofix ( line.t[0][0].x,inversew), d + tofix ( line.t[0][0].y,inversew) );
getSample_texture ( r1, g1, b1, &IT[1], d + tofix ( line.t[1][0].x,inversew), d + tofix ( line.t[1][0].y,inversew) );
#else
getSample_texture ( r0, g0, b0, &IT[0], tofix ( line.t[0][0].x,inversew), tofix ( line.t[0][0].y,inversew) );
getSample_texture ( r1, g1, b1, &IT[1], tofix ( line.t[1][0].x,inversew), tofix ( line.t[1][0].y,inversew) );
#endif
dst[i] = fix_to_sample(imulFix_tex4(r0, r1), imulFix_tex4(g0, g1), imulFix_tex4(b0, b1));
}
#ifdef IPOL_W
line.w[0] += line.w[1];
#else
line.z[0] += line.z[1];
#endif
line.t[0][0] += line.t[0][1];
line.t[1][0] += line.t[1][1];
}
}
#if defined (SOFTWARE_DRIVER_2_SCANLINE_MAG_MIN)
void CTRTextureLightMap2_M4::scanline_bilinear2_min ()
{
tVideoSample *dst;
fp24 *z;
s32 xStart;
s32 xEnd;
s32 dx;
s32 i;
// apply top-left fill-convention, left
xStart = fill_convention_left(line.x[0]);
xEnd = fill_convention_right(line.x[1]);
dx = xEnd - xStart;
if ( dx < 0 )
return;
SOFTWARE_DRIVER_2_CLIPCHECK;
// slopes
const f32 invDeltaX = fill_step_x( line.x[1] - line.x[0] );
// search z-buffer for first not occulled pixel
z = (fp24*) DepthBuffer->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
// subTexel
const f32 subPixel = ( (f32) xStart ) - line.x[0];
#ifdef IPOL_W
const f32 b = (line.w[1] - line.w[0]) * invDeltaX;
f32 a = line.w[0] + ( b * subPixel );
i = 0;
while ( a <= z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.w[0] = a;
line.w[1] = b;
#else
const f32 b = (line.z[1] - line.z[0]) * invDeltaX;
f32 a = line.z[0] + ( b * subPixel );
i = 0;
while ( a > z[i] )
{
a += b;
i += 1;
if ( i > dx )
return;
}
// lazy setup rest of scanline
line.z[0] = a;
line.z[1] = b;
#endif
dst = (tVideoSample*)RenderTarget->getData() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
a = (f32) i + subPixel;
line.t[0][1] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
line.t[1][1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
line.t[0][0] += line.t[0][1] * a;
line.t[1][0] += line.t[1][1] * a;
tFixPoint r0, g0, b0;
tFixPoint r1, g1, b1;
for ( ;i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
{
#ifdef IPOL_W
if ( line.w[0] >= z[i] )
{
z[i] = line.w[0];
#else
if ( line.z[0] < z[i] )
{
z[i] = line.z[0];
#endif
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
f32 inversew = fix_inverse32 ( line.w[0] );
#else
f32 inversew = FIX_POINT_F32_MUL;
#endif
getTexel_fix ( r0, g0, b0, &IT[0], tofix ( line.t[0][0].x,inversew), tofix ( line.t[0][0].y,inversew) );
getTexel_fix ( r1, g1, b1, &IT[1], tofix ( line.t[1][0].x,inversew), tofix ( line.t[1][0].y,inversew) );
dst[i] = fix_to_sample(imulFix_tex4(r0, r1), imulFix_tex4(g0, g1), imulFix_tex4(b0, b1));
}
#ifdef IPOL_W
line.w[0] += line.w[1];
#else
line.z[0] += line.z[1];
#endif
line.t[0][0] += line.t[0][1];
line.t[1][0] += line.t[1][1];
}
}
void CTRTextureLightMap2_M4::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
{
if (IT[0].lodFactor < 4)
{
drawTriangle_Mag(a, b, c);
}
else
{
drawTriangle_Min(a, b, c);
}
}
void CTRTextureLightMap2_M4::drawTriangle_Min ( const s4DVertex* burning_restrict a,const s4DVertex* burning_restrict b,const s4DVertex* burning_restrict c )
{
// sort on height, y
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
// calculate delta y of the edges
scan.invDeltaY[0] = fill_step_y( ca );
scan.invDeltaY[1] = fill_step_y( ba );
scan.invDeltaY[2] = fill_step_y( cb );
if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[1] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( a->Pos.y );
yEnd = fill_convention_right( b->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
interlace_scanline scanline_bilinear2_min ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
// rasterize lower sub-triangle
//if ( (f32) 0.0 != scan.invDeltaY[2] )
if ( F32_GREATER_0 ( scan.invDeltaY[2] ) )
{
// advance to middle point
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[1] = b->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( b->Pos.y );
yEnd = fill_convention_right( c->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
interlace_scanline scanline_bilinear2_min ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
}
void CTRTextureLightMap2_M4::drawTriangle_Mag ( const s4DVertex* burning_restrict a,const s4DVertex* burning_restrict b,const s4DVertex* burning_restrict c )
#else //#if defined (SOFTWARE_DRIVER_2_SCANLINE_MAG_MIN)
void CTRTextureLightMap2_M4::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
#endif
{
// sort on height, y
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
const f32 ca = c->Pos.y - a->Pos.y;
const f32 ba = b->Pos.y - a->Pos.y;
const f32 cb = c->Pos.y - b->Pos.y;
if ( F32_LOWER_EQUAL_0 ( ca ) )
return;
// calculate delta y of the edges
scan.invDeltaY[0] = fill_step_y( ca );
scan.invDeltaY[1] = fill_step_y( ba );
scan.invDeltaY[2] = fill_step_y( cb );
//if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
// return;
// find if the major edge is left or right aligned
f32 temp[4];
temp[0] = a->Pos.x - c->Pos.x;
temp[1] = -ca;
temp[2] = b->Pos.x - a->Pos.x;
temp[3] = ba;
scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1;
scan.right = 1 - scan.left;
// calculate slopes for the major edge
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
scan.x[0] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
scan.z[0] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
scan.w[0] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
scan.c[0] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
scan.t[0][0] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
scan.t[1][0] = a->Tex[1];
#endif
// top left fill convention y run
s32 yStart;
s32 yEnd;
#ifdef SUBTEXEL
f32 subPixel;
#endif
// rasterize upper sub-triangle
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
// calculate slopes for top edge
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
scan.x[1] = a->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
scan.z[1] = a->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
scan.w[1] = a->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
scan.c[1] = a->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
scan.t[0][1] = a->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
scan.t[1][1] = a->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( a->Pos.y );
yEnd = fill_convention_right( b->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - a->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
interlace_scanline scanline_bilinear2_mag ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
// rasterize lower sub-triangle
//if ( (f32) 0.0 != scan.invDeltaY[2] )
if ( F32_GREATER_0 ( scan.invDeltaY[2] ) )
{
// advance to middle point
if ( F32_GREATER_0 ( scan.invDeltaY[1] ) )
{
temp[0] = b->Pos.y - a->Pos.y; // dy
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
#ifdef IPOL_Z
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
#endif
#ifdef IPOL_W
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
#endif
#ifdef IPOL_C0
scan.c[0] = a->Color[0] + scan.slopeC[0] * temp[0];
#endif
#ifdef IPOL_T0
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
#endif
#ifdef IPOL_T1
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
#endif
}
// calculate slopes for bottom edge
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
scan.x[1] = b->Pos.x;
#ifdef IPOL_Z
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
scan.z[1] = b->Pos.z;
#endif
#ifdef IPOL_W
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
scan.w[1] = b->Pos.w;
#endif
#ifdef IPOL_C0
scan.slopeC[1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
scan.c[1] = b->Color[0];
#endif
#ifdef IPOL_T0
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
scan.t[0][1] = b->Tex[0];
#endif
#ifdef IPOL_T1
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
scan.t[1][1] = b->Tex[1];
#endif
// apply top-left fill convention, top part
yStart = fill_convention_left( b->Pos.y );
yEnd = fill_convention_right( c->Pos.y );
#ifdef SUBTEXEL
subPixel = ( (f32) yStart ) - b->Pos.y;
// correct to pixel center
scan.x[0] += scan.slopeX[0] * subPixel;
scan.x[1] += scan.slopeX[1] * subPixel;
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0] * subPixel;
scan.z[1] += scan.slopeZ[1] * subPixel;
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0] * subPixel;
scan.w[1] += scan.slopeW[1] * subPixel;
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0] * subPixel;
scan.c[1] += scan.slopeC[1] * subPixel;
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
#endif
#endif
// rasterize the edge scanlines
for( line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
{
line.x[scan.left] = scan.x[0];
line.x[scan.right] = scan.x[1];
#ifdef IPOL_Z
line.z[scan.left] = scan.z[0];
line.z[scan.right] = scan.z[1];
#endif
#ifdef IPOL_W
line.w[scan.left] = scan.w[0];
line.w[scan.right] = scan.w[1];
#endif
#ifdef IPOL_C0
line.c[scan.left] = scan.c[0];
line.c[scan.right] = scan.c[1];
#endif
#ifdef IPOL_T0
line.t[0][scan.left] = scan.t[0][0];
line.t[0][scan.right] = scan.t[0][1];
#endif
#ifdef IPOL_T1
line.t[1][scan.left] = scan.t[1][0];
line.t[1][scan.right] = scan.t[1][1];
#endif
// render a scanline
interlace_scanline scanline_bilinear2_mag ();
scan.x[0] += scan.slopeX[0];
scan.x[1] += scan.slopeX[1];
#ifdef IPOL_Z
scan.z[0] += scan.slopeZ[0];
scan.z[1] += scan.slopeZ[1];
#endif
#ifdef IPOL_W
scan.w[0] += scan.slopeW[0];
scan.w[1] += scan.slopeW[1];
#endif
#ifdef IPOL_C0
scan.c[0] += scan.slopeC[0];
scan.c[1] += scan.slopeC[1];
#endif
#ifdef IPOL_T0
scan.t[0][0] += scan.slopeT[0][0];
scan.t[0][1] += scan.slopeT[0][1];
#endif
#ifdef IPOL_T1
scan.t[1][0] += scan.slopeT[1][0];
scan.t[1][1] += scan.slopeT[1][1];
#endif
}
}
}
#undef scanline_bilinear2_mag
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a flat triangle renderer
IBurningShader* createTriangleRendererTextureLightMap2_M4(CBurningVideoDriver* driver)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CTRTextureLightMap2_M4(driver);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr