irrlicht/examples/11.PerPixelLighting/main.cpp
engineer_apple fe7778d8d8 Demo - billboard zbuffer
11.PerPixelLighting - darker light, enable specular again for diffuse
- replace wrong irrlichtlogo2.png (was a test around 2005)

git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6088 dfc29bdd-3216-0410-991c-e03cc46cb475
2020-02-22 21:28:25 +00:00

484 lines
16 KiB
C++

/** Example 011 Per-Pixel Lighting
This tutorial shows how to use one of the built in more complex materials in
irrlicht: Per pixel lighted surfaces using normal maps and parallax mapping. It
will also show how to use fog and moving particle systems. And don't panic: You
do not need any experience with shaders to use these materials in Irrlicht.
At first, we need to include all headers and do the stuff we always do, like in
nearly all other tutorials.
*/
#include <irrlicht.h>
#include "driverChoice.h"
#include "exampleHelper.h"
using namespace irr;
#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
#endif
/*
For this example, we need an event receiver, to make it possible for the user
to switch between the three available material types. In addition, the event
receiver will create some small GUI window which displays what material is
currently being used. There is nothing special done in this class, so maybe you
want to skip reading it.
*/
class MyEventReceiver : public IEventReceiver
{
public:
MyEventReceiver(scene::ISceneNode* room,scene::ISceneNode* earth,
gui::IGUIEnvironment* env, video::IVideoDriver* driver)
{
// store pointer to room so we can change its drawing mode
Room = room;
Earth = earth;
Driver = driver;
// set a nicer font
gui::IGUISkin* skin = env->getSkin();
gui::IGUIFont* font = env->getFont(getExampleMediaPath() + "fonthaettenschweiler.bmp");
if (font)
skin->setFont(font);
// add window and listbox
gui::IGUIWindow* window = env->addWindow(
core::rect<s32>(460,375,630,470), false, L"Use 'E' + 'R' to change");
ListBox = env->addListBox(
core::rect<s32>(2,22,165,88), window);
ListBox->addItem(L"Diffuse");
ListBox->addItem(L"Bump mapping");
ListBox->addItem(L"Parallax mapping");
ListBox->setSelected(1);
// create problem text
ProblemText = env->addStaticText(
L"Your hardware or this renderer is not able to use the "\
L"needed shaders for this material. Using fall back materials.",
core::rect<s32>(150,20,470,80));
ProblemText->setOverrideColor(video::SColor(100,255,255,255));
// set start material (prefer parallax mapping if available)
video::IMaterialRenderer* renderer =
Driver->getMaterialRenderer(video::EMT_PARALLAX_MAP_SOLID);
if (renderer && renderer->getRenderCapability() == 0)
ListBox->setSelected(2);
// set the material which is selected in the listbox
setMaterial();
}
bool OnEvent(const SEvent& event)
{
// check if user presses the key 'E' or 'R'
if (event.EventType == irr::EET_KEY_INPUT_EVENT &&
!event.KeyInput.PressedDown && Room && ListBox)
{
// change selected item in listbox
int sel = ListBox->getSelected();
if (event.KeyInput.Key == irr::KEY_KEY_R)
++sel;
else
if (event.KeyInput.Key == irr::KEY_KEY_E)
--sel;
else
return false;
if (sel > 2) sel = 0;
if (sel < 0) sel = 2;
ListBox->setSelected(sel);
// set the material which is selected in the listbox
setMaterial();
}
return false;
}
private:
// sets the material of the room mesh the the one set in the
// list box.
void setMaterial()
{
video::E_MATERIAL_TYPE type = video::EMT_SOLID;
// change material setting
switch(ListBox->getSelected())
{
case 0: type = video::EMT_SOLID;
break;
case 1: type = video::EMT_NORMAL_MAP_SOLID;
break;
case 2: type = video::EMT_PARALLAX_MAP_SOLID;
break;
}
Room->setMaterialType(type);
// change material setting
switch(ListBox->getSelected())
{
case 0: type = video::EMT_TRANSPARENT_VERTEX_ALPHA;
break;
case 1: type = video::EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA;
break;
case 2: type = video::EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA;
break;
}
Earth->setMaterialType(type);
/*
We need to add a warning if the materials will not be able to
be displayed 100% correctly. This is no problem, they will be
rendered using fall back materials, but at least the user
should know that it would look better on better hardware. We
simply check if the material renderer is able to draw at full
quality on the current hardware. The
IMaterialRenderer::getRenderCapability() returns 0 if this is
the case.
*/
video::IMaterialRenderer* renderer = Driver->getMaterialRenderer(type);
// display some problem text when problem
if (!renderer || renderer->getRenderCapability() != 0)
ProblemText->setVisible(true);
else
ProblemText->setVisible(false);
}
private:
gui::IGUIStaticText* ProblemText;
gui::IGUIListBox* ListBox;
scene::ISceneNode* Room;
scene::ISceneNode* Earth;
video::IVideoDriver* Driver;
};
/*
Now for the real fun. We create an Irrlicht Device and start to setup the scene.
*/
int main()
{
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// create device
IrrlichtDevice* device = createDevice(driverType,
core::dimension2d<u32>(640, 480));
if (device == 0)
return 1; // could not create selected driver.
/*
Before we start with the interesting stuff, we do some simple things:
Store pointers to the most important parts of the engine (video driver,
scene manager, gui environment) to safe us from typing too much, add an
irrlicht engine logo to the window and a user controlled first person
shooter style camera. Also, we let the engine know that it should store
all textures in 32 bit. This necessary because for parallax mapping, we
need 32 bit textures.
*/
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
gui::IGUIEnvironment* env = device->getGUIEnvironment();
driver->setTextureCreationFlag(video::ETCF_ALWAYS_32_BIT, true);
const io::path mediaPath = getExampleMediaPath();
// add irrlicht logo
env->addImage(driver->getTexture(mediaPath + "irrlichtlogo3.png"),
core::position2d<s32>(10,10));
// add camera
scene::ICameraSceneNode* camera = smgr->addCameraSceneNodeFPS();
camera->setPosition(core::vector3df(-200,200,-200));
// disable mouse cursor
device->getCursorControl()->setVisible(false);
/*
Because we want the whole scene to look a little bit scarier, we add
some fog to it. This is done by a call to IVideoDriver::setFog(). There
you can set various fog settings. In this example, we use pixel fog,
because it will work well with the materials we'll use in this example.
Please note that you will have to set the material flag EMF_FOG_ENABLE
to 'true' in every scene node which should be affected by this fog.
*/
driver->setFog(video::SColor(0,138,125,81), video::EFT_FOG_LINEAR, 250, 1000, .003f, true, false);
/*
To be able to display something interesting, we load a mesh from a .3ds
file which is a room I modeled with anim8or. It is the same room as
from the specialFX example. Maybe you remember from that tutorial, I am
no good modeler at all and so I totally messed up the texture mapping
in this model, but we can simply repair it with the
IMeshManipulator::makePlanarTextureMapping() method.
*/
scene::IAnimatedMesh* roomMesh = smgr->getMesh(mediaPath + "room.3ds");
scene::ISceneNode* room = 0;
scene::ISceneNode* earth = 0;
if (roomMesh)
{
// The room mesh doesn't have proper texture mapping on the
// floor, so we can recreate the mapping on runtime.
smgr->getMeshManipulator()->makePlanarTextureMapping(
roomMesh->getMesh(0), 0.003f);
/*
Now for the first exciting thing: If we successfully loaded the
mesh we need to apply textures to it. Because we want this room
to be displayed with a very cool material, we have to do a
little bit more than just set the textures. Instead of only
loading a color map as usual, we also load a height map which
is simply a grayscale texture. From this height map, we create
a normal map which we will set as second texture of the room.
If you already have a normal map, you could directly set it,
but I simply didn't find a nice normal map for this texture.
The normal map texture is being generated by the
makeNormalMapTexture method of the VideoDriver. The second
parameter specifies the height of the heightmap. If you set it
to a bigger value, the map will look more rocky.
*/
video::ITexture* normalMap =
driver->getTexture(mediaPath + "rockwall_height.bmp");
if (normalMap)
driver->makeNormalMapTexture(normalMap, 9.0f);
/*
But just setting color and normal map is not everything. The
material we want to use needs some additional information per
vertex like tangents and binormals. Because we are too lazy to
calculate that information now, we let Irrlicht do this for us.
That's why we call IMeshManipulator::createMeshWithTangents().
It creates a mesh copy with tangents and binormals from another
mesh. After we've done that, we simply create a standard
mesh scene node with this mesh copy, set color and normal map
and adjust some other material settings. Note that we set
EMF_FOG_ENABLE to true to enable fog in the room.
*/
scene::IMesh* tangentMesh = smgr->getMeshManipulator()->
createMeshWithTangents(roomMesh->getMesh(0));
room = smgr->addMeshSceneNode(tangentMesh);
room->setMaterialTexture(0,
driver->getTexture(mediaPath + "rockwall.jpg"));
room->setMaterialTexture(1, normalMap);
// Stones don't glitter.. (but specular highlight for EMT_SOLID)
//room->getMaterial(0).SpecularColor.set(0,0,0,0);
//room->getMaterial(0).Shininess = 0.f;
room->setMaterialFlag(video::EMF_FOG_ENABLE, true);
room->setMaterialType(video::EMT_PARALLAX_MAP_SOLID);
// adjust height for parallax effect
room->getMaterial(0).MaterialTypeParam = 1.f / 64.f;
// drop mesh because we created it with a create.. call.
tangentMesh->drop();
}
/*
After we've created a room shaded by per pixel lighting, we add a
sphere into it with the same material, but we'll make it transparent.
In addition, because the sphere looks somehow like a familiar planet,
we make it rotate. The procedure is similar as before. The difference
is that we are loading the mesh from an .x file which already contains
a color map so we do not need to load it manually. But the sphere is a
little bit too small for our needs, so we scale it by the factor 50.
*/
// add earth sphere
scene::IAnimatedMesh* earthMesh = smgr->getMesh(mediaPath + "earth.x");
if (earthMesh)
{
//perform various tasks with the mesh manipulator
scene::IMeshManipulator *manipulator = smgr->getMeshManipulator();
// create mesh copy with tangent information from original earth.x mesh
scene::IMesh* tangentSphereMesh =
manipulator->createMeshWithTangents(earthMesh->getMesh(0));
// set the alpha value of all vertices to 200
manipulator->setVertexColorAlpha(tangentSphereMesh, 200);
// scale the mesh by factor 50
core::matrix4 m;
m.setScale ( core::vector3df(50,50,50) );
manipulator->transform( tangentSphereMesh, m );
earth = smgr->addMeshSceneNode(tangentSphereMesh);
earth->setPosition(core::vector3df(-70,130,45));
// load heightmap, create normal map from it and set it
video::ITexture* earthNormalMap = driver->getTexture(mediaPath + "earthbump.jpg");
if (earthNormalMap)
{
driver->makeNormalMapTexture(earthNormalMap, 20.0f);
earth->setMaterialTexture(1, earthNormalMap);
earth->setMaterialType(video::EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA);
}
// adjust material settings
earth->setMaterialFlag(video::EMF_FOG_ENABLE, true);
// add rotation animator
scene::ISceneNodeAnimator* anim =
smgr->createRotationAnimator(core::vector3df(0,0.1f,0));
earth->addAnimator(anim);
anim->drop();
// drop mesh because we created it with a create.. call.
tangentSphereMesh->drop();
}
/*
Per pixel lighted materials only look cool when there are moving
lights. So we add some. And because moving lights alone are so boring,
we add billboards to them, and a whole particle system to one of them.
We start with the first light which is red and has only the billboard
attached.
*/
// add light 1 (more green)
scene::ILightSceneNode* light1 =
smgr->addLightSceneNode(0, core::vector3df(0,0,0),
video::SColorf(0.5f, 1.0f, 0.5f, 0.0f), 400.0f);
// add fly circle animator to light 1
scene::ISceneNodeAnimator* anim =
smgr->createFlyCircleAnimator (core::vector3df(50,300,0),190.0f, -0.003f);
light1->addAnimator(anim);
anim->drop();
// attach billboard to the light
scene::IBillboardSceneNode* bill =
smgr->addBillboardSceneNode(light1, core::dimension2d<f32>(60, 60));
bill->setMaterialFlag(video::EMF_LIGHTING, false);
bill->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
bill->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);
bill->setMaterialTexture(0, driver->getTexture(mediaPath + "particlegreen.jpg"));
/*
Now the same again, with the second light. The difference is that we
add a particle system to it too. And because the light moves, the
particles of the particle system will follow. If you want to know more
about how particle systems are created in Irrlicht, take a look at the
SpecialFX example. Maybe you will have noticed that we only add 2
lights, this has a simple reason: The low end version of this material
was written in ps1.1 and vs1.1, which doesn't allow more lights. You
could add a third light to the scene, but it won't be used to shade the
walls. But of course, this will change in future versions of Irrlicht
where higher versions of pixel/vertex shaders will be implemented too.
*/
// add light 2 (red)
scene::ISceneNode* light2 =
smgr->addLightSceneNode(0, core::vector3df(0,0,0),
video::SColorf(1.0f, 0.2f, 0.2f, 0.0f), 400.0f);
// add fly circle animator to light 2
anim = smgr->createFlyCircleAnimator(core::vector3df(0,150,0), 200.0f,
0.001f, core::vector3df(0.2f, 0.9f, 0.f));
light2->addAnimator(anim);
anim->drop();
// attach billboard to light
bill = smgr->addBillboardSceneNode(light2, core::dimension2d<f32>(120, 120));
bill->setMaterialFlag(video::EMF_LIGHTING, false);
bill->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
bill->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);
bill->setMaterialTexture(0, driver->getTexture(mediaPath + "particlered.bmp"));
// add particle system
scene::IParticleSystemSceneNode* ps =
smgr->addParticleSystemSceneNode(false, light2);
// create and set emitter
scene::IParticleEmitter* em = ps->createBoxEmitter(
core::aabbox3d<f32>(-3,0,-3,3,1,3),
core::vector3df(0.0f,0.03f,0.0f),
80,100,
video::SColor(10,255,255,255), video::SColor(10,255,255,255),
400,1100);
em->setMinStartSize(core::dimension2d<f32>(30.0f, 40.0f));
em->setMaxStartSize(core::dimension2d<f32>(30.0f, 40.0f));
ps->setEmitter(em);
em->drop();
// create and set affector
scene::IParticleAffector* paf = ps->createFadeOutParticleAffector();
ps->addAffector(paf);
paf->drop();
// adjust some material settings
ps->setMaterialFlag(video::EMF_LIGHTING, false);
ps->setMaterialFlag(video::EMF_ZWRITE_ENABLE, false);
ps->setMaterialTexture(0, driver->getTexture(mediaPath + "fireball.bmp"));
ps->setMaterialType(video::EMT_TRANSPARENT_ADD_COLOR);
MyEventReceiver receiver(room, earth, env, driver);
device->setEventReceiver(&receiver);
/*
Finally, draw everything. That's it.
*/
int lastFPS = -1;
while(device->run())
if (device->isWindowActive())
{
driver->beginScene(video::ECBF_COLOR | video::ECBF_DEPTH, video::SColor(0));
smgr->drawAll();
env->drawAll();
driver->endScene();
int fps = driver->getFPS();
if (lastFPS != fps)
{
core::stringw str = L"Per pixel lighting example - Irrlicht Engine [";
str += driver->getName();
str += "] FPS:";
str += fps;
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
device->drop();
return 0;
}
/*
**/