minetest/irr/src/CGLTFMeshFileLoader.cpp

611 lines
18 KiB
C++
Raw Normal View History

2024-04-18 19:00:03 +02:00
#include "CGLTFMeshFileLoader.h"
#include "coreutil.h"
#include "CSkinnedMesh.h"
#include "ISkinnedMesh.h"
#include "irrTypes.h"
#include "IReadFile.h"
#include "matrix4.h"
#include "path.h"
#include "S3DVertex.h"
#include "quaternion.h"
#include "vector3d.h"
#include "tiniergltf.hpp"
#include <array>
#include <cstddef>
#include <cstring>
#include <limits>
#include <memory>
#include <optional>
#include <stdexcept>
#include <utility>
#include <variant>
#include <vector>
/* Notes on the coordinate system.
*
* glTF uses a right-handed coordinate system where +Z is the
* front-facing axis, and Irrlicht uses a left-handed coordinate
* system where -Z is the front-facing axis.
* We convert between them by reflecting the mesh across the X axis.
* Doing this correctly requires negating the Z coordinate on
* vertex positions and normals, and reversing the winding order
* of the vertex indices.
*/
namespace irr {
namespace scene {
CGLTFMeshFileLoader::BufferOffset::BufferOffset(
const std::vector<unsigned char>& buf,
const std::size_t offset)
: m_buf(buf)
, m_offset(offset)
{
}
CGLTFMeshFileLoader::BufferOffset::BufferOffset(
const CGLTFMeshFileLoader::BufferOffset& other,
const std::size_t fromOffset)
: m_buf(other.m_buf)
, m_offset(other.m_offset + fromOffset)
{
}
/**
* Get a raw unsigned char (ubyte) from a buffer offset.
*/
unsigned char CGLTFMeshFileLoader::BufferOffset::at(
const std::size_t fromOffset) const
{
return m_buf.at(m_offset + fromOffset);
}
CGLTFMeshFileLoader::CGLTFMeshFileLoader() noexcept
{
}
/**
* The most basic portion of the code base. This tells irllicht if this file has a .gltf extension.
*/
bool CGLTFMeshFileLoader::isALoadableFileExtension(
const io::path& filename) const
{
return core::hasFileExtension(filename, "gltf");
}
/**
* Entry point into loading a GLTF model.
*/
IAnimatedMesh* CGLTFMeshFileLoader::createMesh(io::IReadFile* file)
{
if (file->getSize() <= 0) {
return nullptr;
}
std::optional<tiniergltf::GlTF> model = tryParseGLTF(file);
if (!model.has_value()) {
return nullptr;
}
if (!(model->buffers.has_value()
&& model->bufferViews.has_value()
&& model->accessors.has_value()
&& model->meshes.has_value()
&& model->nodes.has_value())) {
return nullptr;
}
ISkinnedMesh *mesh = new CSkinnedMesh();
MeshExtractor parser(std::move(model.value()), mesh);
try {
parser.loadNodes();
} catch (std::runtime_error &e) {
mesh->drop();
return nullptr;
}
return mesh;
}
static void transformVertices(std::vector<video::S3DVertex> &vertices, const core::matrix4 &transform)
{
for (auto &vertex : vertices) {
// Apply scaling, rotation and rotation (in that order) to the position.
transform.transformVect(vertex.Pos);
// For the normal, we do not want to apply the translation.
// TODO note that this also applies scaling; the Irrlicht method is misnamed.
transform.rotateVect(vertex.Normal);
// Renormalize (length might have been affected by scaling).
vertex.Normal.normalize();
}
}
static void checkIndices(const std::vector<u16> &indices, const std::size_t nVerts)
{
for (u16 index : indices) {
if (index >= nVerts)
throw std::runtime_error("index out of bounds");
}
}
static std::vector<u16> generateIndices(const std::size_t nVerts)
{
std::vector<u16> indices(nVerts);
for (std::size_t i = 0; i < nVerts; i += 3) {
// Reverse winding order per triangle
indices[i] = i + 2;
indices[i + 1] = i + 1;
indices[i + 2] = i;
}
return indices;
}
/**
* Load up the rawest form of the model. The vertex positions and indices.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes
* If material is undefined, then a default material MUST be used.
*/
void CGLTFMeshFileLoader::MeshExtractor::loadMesh(
const std::size_t meshIdx,
ISkinnedMesh::SJoint *parent) const
{
for (std::size_t j = 0; j < getPrimitiveCount(meshIdx); ++j) {
auto vertices = getVertices(meshIdx, j);
if (!vertices.has_value())
continue; // "When positions are not specified, client implementations SHOULD skip primitives rendering"
// Excludes the max value for consistency.
if (vertices->size() >= std::numeric_limits<u16>::max())
throw std::runtime_error("too many vertices");
// Apply the global transform along the parent chain.
transformVertices(*vertices, parent->GlobalMatrix);
auto maybeIndices = getIndices(meshIdx, j);
std::vector<u16> indices;
if (maybeIndices.has_value()) {
indices = std::move(*maybeIndices);
checkIndices(indices, vertices->size());
} else {
// Non-indexed geometry
indices = generateIndices(vertices->size());
}
auto *meshbuf = m_irr_model->addMeshBuffer();
meshbuf->append(vertices->data(), vertices->size(),
indices.data(), indices.size());
}
}
// Base transformation between left & right handed coordinate systems.
// This just inverts the Z axis.
static core::matrix4 leftToRight = core::matrix4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, -1, 0,
0, 0, 0, 1
);
static core::matrix4 rightToLeft = leftToRight;
static core::matrix4 loadTransform(const tiniergltf::Node::Matrix &m)
{
// Note: Under the hood, this casts these doubles to floats.
return core::matrix4(
m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15]);
}
static core::matrix4 loadTransform(const tiniergltf::Node::TRS &trs)
{
const auto &trans = trs.translation;
const auto &rot = trs.rotation;
const auto &scale = trs.scale;
core::matrix4 transMat;
transMat.setTranslation(core::vector3df(trans[0], trans[1], trans[2]));
core::matrix4 rotMat = core::quaternion(rot[0], rot[1], rot[2], rot[3]).getMatrix();
core::matrix4 scaleMat;
scaleMat.setScale(core::vector3df(scale[0], scale[1], scale[2]));
return transMat * rotMat * scaleMat;
}
static core::matrix4 loadTransform(std::optional<std::variant<tiniergltf::Node::Matrix, tiniergltf::Node::TRS>> transform) {
if (!transform.has_value()) {
return core::matrix4();
}
core::matrix4 mat = std::visit([](const auto &t) { return loadTransform(t); }, *transform);
return rightToLeft * mat * leftToRight;
}
void CGLTFMeshFileLoader::MeshExtractor::loadNode(
const std::size_t nodeIdx,
ISkinnedMesh::SJoint *parent) const
{
const auto &node = m_gltf_model.nodes->at(nodeIdx);
auto *joint = m_irr_model->addJoint(parent);
const core::matrix4 transform = loadTransform(node.transform);
joint->LocalMatrix = transform;
joint->GlobalMatrix = parent ? parent->GlobalMatrix * joint->LocalMatrix : joint->LocalMatrix;
if (node.name.has_value()) {
joint->Name = node.name->c_str();
}
if (node.mesh.has_value()) {
loadMesh(*node.mesh, joint);
}
if (node.children.has_value()) {
for (const auto &child : *node.children) {
loadNode(child, joint);
}
}
}
void CGLTFMeshFileLoader::MeshExtractor::loadNodes() const
{
std::vector<bool> isChild(m_gltf_model.nodes->size());
for (const auto &node : *m_gltf_model.nodes) {
if (!node.children.has_value())
continue;
for (const auto &child : *node.children) {
isChild[child] = true;
}
}
// Load all nodes that aren't children.
// Children will be loaded by their parent nodes.
for (std::size_t i = 0; i < m_gltf_model.nodes->size(); ++i) {
if (!isChild[i]) {
loadNode(i, nullptr);
}
}
}
/**
* Extracts GLTF mesh indices into the irrlicht model.
*/
std::optional<std::vector<u16>> CGLTFMeshFileLoader::MeshExtractor::getIndices(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
const auto accessorIdx = getIndicesAccessorIdx(meshIdx, primitiveIdx);
if (!accessorIdx.has_value())
return std::nullopt; // non-indexed geometry
const auto &accessor = m_gltf_model.accessors->at(accessorIdx.value());
const auto& buf = getBuffer(accessorIdx.value());
std::vector<u16> indices{};
const auto count = getElemCount(accessorIdx.value());
for (std::size_t i = 0; i < count; ++i) {
std::size_t elemIdx = count - i - 1; // reverse index order
u16 index;
// Note: glTF forbids the max value for each component type.
switch (accessor.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE: {
index = readPrimitive<u8>(BufferOffset(buf, elemIdx * sizeof(u8)));
if (index == std::numeric_limits<u8>::max())
throw std::runtime_error("invalid index");
break;
}
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT: {
index = readPrimitive<u16>(BufferOffset(buf, elemIdx * sizeof(u16)));
if (index == std::numeric_limits<u16>::max())
throw std::runtime_error("invalid index");
break;
}
case tiniergltf::Accessor::ComponentType::UNSIGNED_INT: {
u32 indexWide = readPrimitive<u32>(BufferOffset(buf, elemIdx * sizeof(u32)));
// Use >= here for consistency.
if (indexWide >= std::numeric_limits<u16>::max())
throw std::runtime_error("index too large (>= 65536)");
index = static_cast<u16>(indexWide);
break;
}
default:
throw std::runtime_error("invalid index component type");
}
indices.push_back(index);
}
return indices;
}
/**
* Create a vector of video::S3DVertex (model data) from a mesh & primitive index.
*/
std::optional<std::vector<video::S3DVertex>> CGLTFMeshFileLoader::MeshExtractor::getVertices(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
const auto positionAccessorIdx = getPositionAccessorIdx(
meshIdx, primitiveIdx);
if (!positionAccessorIdx.has_value()) {
// "When positions are not specified, client implementations SHOULD skip primitive's rendering"
return std::nullopt;
}
std::vector<vertex_t> vertices{};
vertices.resize(getElemCount(*positionAccessorIdx));
copyPositions(*positionAccessorIdx, vertices);
const auto normalAccessorIdx = getNormalAccessorIdx(
meshIdx, primitiveIdx);
if (normalAccessorIdx.has_value()) {
copyNormals(normalAccessorIdx.value(), vertices);
}
const auto tCoordAccessorIdx = getTCoordAccessorIdx(
meshIdx, primitiveIdx);
if (tCoordAccessorIdx.has_value()) {
copyTCoords(tCoordAccessorIdx.value(), vertices);
}
return vertices;
}
/**
* Get the amount of meshes that a model contains.
*/
std::size_t CGLTFMeshFileLoader::MeshExtractor::getMeshCount() const
{
return m_gltf_model.meshes->size();
}
/**
* Get the amount of primitives that a mesh in a model contains.
*/
std::size_t CGLTFMeshFileLoader::MeshExtractor::getPrimitiveCount(
const std::size_t meshIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives.size();
}
/**
* Templated buffer reader. Based on type width.
* This is specifically used to build upon to read more complex data types.
* It is also used raw to read arrays directly.
* Basically we're using the width of the type to infer
* how big of a gap we have from the beginning of the buffer.
*/
template <typename T>
T CGLTFMeshFileLoader::MeshExtractor::readPrimitive(
const BufferOffset& readFrom)
{
unsigned char d[sizeof(T)]{};
for (std::size_t i = 0; i < sizeof(T); ++i) {
d[i] = readFrom.at(i);
}
T dest;
std::memcpy(&dest, d, sizeof(dest));
return dest;
}
/**
* Read a vector2df from a buffer at an offset.
* @return vec2 core::Vector2df
*/
core::vector2df CGLTFMeshFileLoader::MeshExtractor::readVec2DF(
const CGLTFMeshFileLoader::BufferOffset& readFrom)
{
return core::vector2df(readPrimitive<float>(readFrom),
readPrimitive<float>(BufferOffset(readFrom, sizeof(float))));
}
/**
* Read a vector3df from a buffer at an offset.
* Also does right-to-left-handed coordinate system conversion (inverts Z axis).
* @return vec3 core::Vector3df
*/
core::vector3df CGLTFMeshFileLoader::MeshExtractor::readVec3DF(
const BufferOffset& readFrom,
const core::vector3df scale = {1.0f,1.0f,1.0f})
{
return core::vector3df(
readPrimitive<float>(readFrom),
readPrimitive<float>(BufferOffset(readFrom, sizeof(float))),
-readPrimitive<float>(BufferOffset(readFrom, 2 *
sizeof(float))));
}
/**
* Streams vertex positions raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void CGLTFMeshFileLoader::MeshExtractor::copyPositions(
const std::size_t accessorIdx,
std::vector<vertex_t>& vertices) const
{
const auto& buffer = getBuffer(accessorIdx);
const auto count = getElemCount(accessorIdx);
const auto byteStride = getByteStride(accessorIdx);
for (std::size_t i = 0; i < count; i++) {
const auto v = readVec3DF(BufferOffset(buffer, byteStride * i));
vertices[i].Pos = v;
}
}
/**
* Streams normals raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void CGLTFMeshFileLoader::MeshExtractor::copyNormals(
const std::size_t accessorIdx,
std::vector<vertex_t>& vertices) const
{
const auto& buffer = getBuffer(accessorIdx);
const auto count = getElemCount(accessorIdx);
for (std::size_t i = 0; i < count; i++) {
const auto n = readVec3DF(BufferOffset(buffer,
3 * sizeof(float) * i));
vertices[i].Normal = n;
}
}
/**
* Streams texture coordinate raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void CGLTFMeshFileLoader::MeshExtractor::copyTCoords(
const std::size_t accessorIdx,
std::vector<vertex_t>& vertices) const
{
const auto& buffer = getBuffer(accessorIdx);
const auto count = getElemCount(accessorIdx);
for (std::size_t i = 0; i < count; ++i) {
const auto t = readVec2DF(BufferOffset(buffer,
2 * sizeof(float) * i));
vertices[i].TCoords = t;
}
}
/**
* The number of elements referenced by this accessor, not to be confused with the number of bytes or number of components.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#_accessor_count
* Type: Integer
* Required: YES
*/
std::size_t CGLTFMeshFileLoader::MeshExtractor::getElemCount(
const std::size_t accessorIdx) const
{
return m_gltf_model.accessors->at(accessorIdx).count;
}
/**
* The stride, in bytes, between vertex attributes.
* When this is not defined, data is tightly packed.
* When two or more accessors use the same buffer view, this field MUST be defined.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#_bufferview_bytestride
* Required: NO
*/
std::size_t CGLTFMeshFileLoader::MeshExtractor::getByteStride(
const std::size_t accessorIdx) const
{
const auto& accessor = m_gltf_model.accessors->at(accessorIdx);
// FIXME this does not work with sparse / zero-initialized accessors
const auto& view = m_gltf_model.bufferViews->at(accessor.bufferView.value());
return view.byteStride.value_or(accessor.elementSize());
}
/**
* Specifies whether integer data values are normalized (true) to [0, 1] (for unsigned types)
* or to [-1, 1] (for signed types) when they are accessed. This property MUST NOT be set to
* true for accessors with FLOAT or UNSIGNED_INT component type.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#_accessor_normalized
* Required: NO
*/
bool CGLTFMeshFileLoader::MeshExtractor::isAccessorNormalized(
const std::size_t accessorIdx) const
{
const auto& accessor = m_gltf_model.accessors->at(accessorIdx);
return accessor.normalized;
}
/**
* Walk through the complex chain of the model to extract the required buffer.
* Accessor -> BufferView -> Buffer
*/
CGLTFMeshFileLoader::BufferOffset CGLTFMeshFileLoader::MeshExtractor::getBuffer(
const std::size_t accessorIdx) const
{
const auto& accessor = m_gltf_model.accessors->at(accessorIdx);
// FIXME this does not work with sparse / zero-initialized accessors
const auto& view = m_gltf_model.bufferViews->at(accessor.bufferView.value());
const auto& buffer = m_gltf_model.buffers->at(view.buffer);
return BufferOffset(buffer.data, view.byteOffset);
}
/**
* The index of the accessor that contains the vertex indices.
* When this is undefined, the primitive defines non-indexed geometry.
* When defined, the accessor MUST have SCALAR type and an unsigned integer component type.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#_mesh_primitive_indices
* Type: Integer
* Required: NO
*/
std::optional<std::size_t> CGLTFMeshFileLoader::MeshExtractor::getIndicesAccessorIdx(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives[primitiveIdx].indices;
}
/**
* The index of the accessor that contains the POSITIONs.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
* Type: VEC3 (Float)
*/
std::optional<std::size_t> CGLTFMeshFileLoader::MeshExtractor::getPositionAccessorIdx(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives[primitiveIdx].attributes.position;
}
/**
* The index of the accessor that contains the NORMALs.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
* Type: VEC3 (Float)
* ! Required: NO (Appears to not be, needs another pair of eyes to research.)
*/
std::optional<std::size_t> CGLTFMeshFileLoader::MeshExtractor::getNormalAccessorIdx(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives[primitiveIdx].attributes.normal;
}
/**
* The index of the accessor that contains the TEXCOORDs.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
* Type: VEC3 (Float)
* ! Required: YES (Appears so, needs another pair of eyes to research.)
*/
std::optional<std::size_t> CGLTFMeshFileLoader::MeshExtractor::getTCoordAccessorIdx(
const std::size_t meshIdx,
const std::size_t primitiveIdx) const
{
const auto& texcoords = m_gltf_model.meshes->at(meshIdx).primitives[primitiveIdx].attributes.texcoord;
if (!texcoords.has_value())
return std::nullopt;
return texcoords->at(0);
}
/**
* This is where the actual model's GLTF file is loaded and parsed by tiniergltf.
*/
std::optional<tiniergltf::GlTF> CGLTFMeshFileLoader::tryParseGLTF(io::IReadFile* file)
{
auto size = file->getSize();
auto buf = std::make_unique<char[]>(size + 1);
file->read(buf.get(), size);
// We probably don't need this, but add it just to be sure.
buf[size] = '\0';
Json::CharReaderBuilder builder;
const std::unique_ptr<Json::CharReader> reader(builder.newCharReader());
Json::Value json;
JSONCPP_STRING err;
if (!reader->parse(buf.get(), buf.get() + size, &json, &err)) {
return std::nullopt;
}
try {
return tiniergltf::GlTF(json);
} catch (const std::runtime_error &e) {
return std::nullopt;
} catch (const std::out_of_range &e) {
return std::nullopt;
}
}
} // namespace scene
} // namespace irr