Remove the 'loops' occlusion culler (#13169)

This commit is contained in:
x2048 2023-01-23 10:58:29 +01:00 committed by GitHub
parent 8478796226
commit b8aaad4f1e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 223 additions and 356 deletions

View File

@ -628,11 +628,6 @@ update_last_checked (Last update check) string
# Ex: 5.5.0 is 005005000
update_last_known (Last known version update) int 0
# Type of occlusion_culler
# "loops" is the legacy algorithm with nested loops and O(N^3) complexity
# "bfs" is the new algorithm based on breadth-first-search and side culling
occlusion_culler (Occlusion Culler) enum bfs bfs,loops
# Use raytraced occlusion culling in the new culler.
# This flag enables use of raytraced occlusion culling test
enable_raytraced_culling (Enable Raytraced Culling) bool true

View File

@ -103,23 +103,18 @@ ClientMap::ClientMap(
m_cache_bilinear_filter = g_settings->getBool("bilinear_filter");
m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
m_new_occlusion_culler = g_settings->get("occlusion_culler") == "bfs";
g_settings->registerChangedCallback("occlusion_culler", on_settings_changed, this);
m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this);
}
void ClientMap::onSettingChanged(const std::string &name)
{
if (name == "occlusion_culler")
m_new_occlusion_culler = g_settings->get("occlusion_culler") == "bfs";
if (name == "enable_raytraced_culling")
m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
}
ClientMap::~ClientMap()
{
g_settings->deregisterChangedCallback("occlusion_culler", on_settings_changed, this);
g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this);
}
@ -252,363 +247,241 @@ private:
void ClientMap::updateDrawList()
{
if (m_new_occlusion_culler) {
ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
m_needs_update_drawlist = false;
m_needs_update_drawlist = false;
for (auto &i : m_drawlist) {
MapBlock *block = i.second;
block->refDrop();
}
m_drawlist.clear();
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
v3s16 p_blocks_min;
v3s16 p_blocks_max;
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
// Number of blocks occlusion culled
u32 blocks_occlusion_culled = 0;
// Blocks visited by the algorithm
u32 blocks_visited = 0;
// Block sides that were not traversed
u32 sides_skipped = 0;
// No occlusion culling when free_move is on and camera is inside ground
bool occlusion_culling_enabled = true;
if (m_control.allow_noclip) {
MapNode n = getNode(cam_pos_nodes);
if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
occlusion_culling_enabled = false;
}
v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
// Uncomment to debug occluded blocks in the wireframe mode
// TODO: Include this as a flag for an extended debugging setting
// if (occlusion_culling_enabled && m_control.show_wireframe)
// occlusion_culling_enabled = porting::getTimeS() & 1;
std::queue<v3s16> blocks_to_consider;
// Bits per block:
// [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max);
// Start breadth-first search with the block the camera is in
blocks_to_consider.push(camera_block);
blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible
// Recursively walk the space and pick mapblocks for drawing
while (blocks_to_consider.size() > 0) {
v3s16 block_coord = blocks_to_consider.front();
blocks_to_consider.pop();
auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord);
// Only visit each block once (it may have been queued up to three times)
if ((flags & 0x80) == 0x80)
continue;
flags |= 0x80;
blocks_visited++;
// Get the sector, block and mesh
MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
if (!sector)
continue;
MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y);
MapBlockMesh *mesh = block ? block->mesh : nullptr;
// Calculate the coordinates for range and frutum culling
v3f mesh_sphere_center;
f32 mesh_sphere_radius;
v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
if (mesh) {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ mesh->getBoundingSphereCenter();
mesh_sphere_radius = mesh->getBoundingRadius();
}
else {
mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
mesh_sphere_radius = 0.0f;
}
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Frustum culling
// Only do coarse culling here, to account for fast camera movement.
// This is needed because this function is not called every frame.
float frustum_cull_extra_radius = 300.0f;
if (is_frustum_culled(mesh_sphere_center,
mesh_sphere_radius + frustum_cull_extra_radius))
continue;
// Calculate the vector from the camera block to the current block
// We use it to determine through which sides of the current block we can continue the search
v3s16 look = block_coord - camera_block;
// Occluded near sides will further occlude the far sides
u8 visible_outer_sides = flags & 0x07;
// Raytraced occlusion culling - send rays from the camera to the block's corners
if (occlusion_culling_enabled && m_enable_raytraced_culling &&
block && mesh &&
visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) {
blocks_occlusion_culled++;
continue;
}
// The block is visible, add to the draw list
if (mesh) {
// Add to set
block->refGrab();
m_drawlist[block_coord] = block;
}
// Decide which sides to traverse next or to block away
// First, find the near sides that would occlude the far sides
// * A near side can itself be occluded by a nearby block (the test above ^^)
// * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
// mesh solid sides are +Z-Z+Y-Y+X-X
// if we are inside the block's coordinates on an axis,
// treat these sides as opaque, as they should not allow to reach the far sides
u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
(look.Y == 0 ? 12 : 0) |
(look.Z == 0 ? 48 : 0);
// get the mask for the sides that are relevant based on the direction
u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
(look.Y > 0 ? 4 : 8) |
(look.Z > 0 ? 16 : 32);
// This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
// Get he block's transparent sides
u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
// compress block transparent sides to ZYX mask of see-through axes
u8 near_transparency = (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
// when we are inside the camera block, do not block any sides
if (block_inner_sides == 0x3F)
block_inner_sides = 0;
near_transparency &= ~block_inner_sides & 0x3F;
near_transparency |= (near_transparency >> 1);
near_transparency = (near_transparency & 1) |
((near_transparency >> 1) & 2) |
((near_transparency >> 2) & 4);
// combine with known visible sides that matter
near_transparency &= visible_outer_sides;
// The rule for any far side to be visible:
// * Any of the adjacent near sides is transparent (different axes)
// * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
// Calculate vector from camera to mapblock center. Because we only need relation between
// coordinates we scale by 2 to avoid precision loss.
v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1;
// dominant axis flag
u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
// Queue next blocks for processing:
// - Examine "far" sides of the current blocks, i.e. never move towards the camera
// - Only traverse the sides that are not occluded
// - Only traverse the sides that are not opaque
// When queueing, mark the relevant side on the next block as 'visible'
for (s16 axis = 0; axis < 3; axis++) {
// Select a bit from transparent_sides for the side
u8 far_side_mask = 1 << (2 * axis);
// axis flag
u8 my_side = 1 << axis;
u8 adjacent_sides = my_side ^ 0x07;
auto traverse_far_side = [&](s8 next_pos_offset) {
// far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
v3s16 next_pos = block_coord;
next_pos[axis] += next_pos_offset;
// If a side is a see-through, mark the next block's side as visible, and queue
if (side_visible) {
auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos);
next_flags |= my_side;
blocks_to_consider.push(next_pos);
}
else {
sides_skipped++;
}
};
// Test the '-' direction of the axis
if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
traverse_far_side(-1);
// Test the '+' direction of the axis
far_side_mask <<= 1;
if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
traverse_far_side(+1);
}
}
g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
g_profiler->avg("MapBlocks examined [#]", blocks_visited);
g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
for (auto &i : m_drawlist) {
MapBlock *block = i.second;
block->refDrop();
}
else {
ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
m_drawlist.clear();
m_needs_update_drawlist = false;
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
for (auto &i : m_drawlist) {
MapBlock *block = i.second;
block->refDrop();
}
m_drawlist.clear();
v3s16 p_blocks_min;
v3s16 p_blocks_max;
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
// Number of blocks occlusion culled
u32 blocks_occlusion_culled = 0;
// Blocks visited by the algorithm
u32 blocks_visited = 0;
// Block sides that were not traversed
u32 sides_skipped = 0;
v3s16 p_blocks_min;
v3s16 p_blocks_max;
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
// Number of blocks currently loaded by the client
u32 blocks_loaded = 0;
// Number of blocks with mesh in rendering range
u32 blocks_in_range_with_mesh = 0;
// Number of blocks occlusion culled
u32 blocks_occlusion_culled = 0;
// No occlusion culling when free_move is on and camera is inside ground
bool occlusion_culling_enabled = true;
if (m_control.allow_noclip) {
MapNode n = getNode(cam_pos_nodes);
if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
occlusion_culling_enabled = false;
}
v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
// Uncomment to debug occluded blocks in the wireframe mode
// TODO: Include this as a flag for an extended debugging setting
//if (occlusion_culling_enabled && m_control.show_wireframe)
// occlusion_culling_enabled = porting::getTimeS() & 1;
for (const auto &sector_it : m_sectors) {
MapSector *sector = sector_it.second;
v2s16 sp = sector->getPos();
blocks_loaded += sector->size();
if (!m_control.range_all) {
if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
continue;
}
MapBlockVect sectorblocks;
sector->getBlocks(sectorblocks);
/*
Loop through blocks in sector
*/
u32 sector_blocks_drawn = 0;
for (MapBlock *block : sectorblocks) {
/*
Compare block position to camera position, skip
if not seen on display
*/
if (!block->mesh) {
// Ignore if mesh doesn't exist
continue;
}
v3s16 block_coord = block->getPos();
v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
+ block->mesh->getBoundingSphereCenter();
f32 mesh_sphere_radius = block->mesh->getBoundingRadius();
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Keep the block alive as long as it is in range.
block->resetUsageTimer();
blocks_in_range_with_mesh++;
// Frustum culling
// Only do coarse culling here, to account for fast camera movement.
// This is needed because this function is not called every frame.
constexpr float frustum_cull_extra_radius = 300.0f;
if (is_frustum_culled(mesh_sphere_center,
mesh_sphere_radius + frustum_cull_extra_radius))
continue;
// Occlusion culling
if (occlusion_culling_enabled && isBlockOccluded(block, cam_pos_nodes)) {
blocks_occlusion_culled++;
continue;
}
// Add to set
block->refGrab();
m_drawlist[block_coord] = block;
sector_blocks_drawn++;
} // foreach sectorblocks
if (sector_blocks_drawn != 0)
m_last_drawn_sectors.insert(sp);
}
g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
// No occlusion culling when free_move is on and camera is inside ground
bool occlusion_culling_enabled = true;
if (m_control.allow_noclip) {
MapNode n = getNode(cam_pos_nodes);
if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
occlusion_culling_enabled = false;
}
v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
// Uncomment to debug occluded blocks in the wireframe mode
// TODO: Include this as a flag for an extended debugging setting
// if (occlusion_culling_enabled && m_control.show_wireframe)
// occlusion_culling_enabled = porting::getTimeS() & 1;
std::queue<v3s16> blocks_to_consider;
// Bits per block:
// [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max);
// Start breadth-first search with the block the camera is in
blocks_to_consider.push(camera_block);
blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible
// Recursively walk the space and pick mapblocks for drawing
while (blocks_to_consider.size() > 0) {
v3s16 block_coord = blocks_to_consider.front();
blocks_to_consider.pop();
auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord);
// Only visit each block once (it may have been queued up to three times)
if ((flags & 0x80) == 0x80)
continue;
flags |= 0x80;
blocks_visited++;
// Get the sector, block and mesh
MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
if (!sector)
continue;
MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y);
MapBlockMesh *mesh = block ? block->mesh : nullptr;
// Calculate the coordinates for range and frutum culling
v3f mesh_sphere_center;
f32 mesh_sphere_radius;
v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
if (mesh) {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ mesh->getBoundingSphereCenter();
mesh_sphere_radius = mesh->getBoundingRadius();
}
else {
mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
mesh_sphere_radius = 0.0f;
}
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Frustum culling
// Only do coarse culling here, to account for fast camera movement.
// This is needed because this function is not called every frame.
float frustum_cull_extra_radius = 300.0f;
if (is_frustum_culled(mesh_sphere_center,
mesh_sphere_radius + frustum_cull_extra_radius))
continue;
// Calculate the vector from the camera block to the current block
// We use it to determine through which sides of the current block we can continue the search
v3s16 look = block_coord - camera_block;
// Occluded near sides will further occlude the far sides
u8 visible_outer_sides = flags & 0x07;
// Raytraced occlusion culling - send rays from the camera to the block's corners
if (occlusion_culling_enabled && m_enable_raytraced_culling &&
block && mesh &&
visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) {
blocks_occlusion_culled++;
continue;
}
// The block is visible, add to the draw list
if (mesh) {
// Add to set
block->refGrab();
m_drawlist[block_coord] = block;
}
// Decide which sides to traverse next or to block away
// First, find the near sides that would occlude the far sides
// * A near side can itself be occluded by a nearby block (the test above ^^)
// * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
// mesh solid sides are +Z-Z+Y-Y+X-X
// if we are inside the block's coordinates on an axis,
// treat these sides as opaque, as they should not allow to reach the far sides
u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
(look.Y == 0 ? 12 : 0) |
(look.Z == 0 ? 48 : 0);
// get the mask for the sides that are relevant based on the direction
u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
(look.Y > 0 ? 4 : 8) |
(look.Z > 0 ? 16 : 32);
// This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
// Get he block's transparent sides
u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
// compress block transparent sides to ZYX mask of see-through axes
u8 near_transparency = (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
// when we are inside the camera block, do not block any sides
if (block_inner_sides == 0x3F)
block_inner_sides = 0;
near_transparency &= ~block_inner_sides & 0x3F;
near_transparency |= (near_transparency >> 1);
near_transparency = (near_transparency & 1) |
((near_transparency >> 1) & 2) |
((near_transparency >> 2) & 4);
// combine with known visible sides that matter
near_transparency &= visible_outer_sides;
// The rule for any far side to be visible:
// * Any of the adjacent near sides is transparent (different axes)
// * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
// Calculate vector from camera to mapblock center. Because we only need relation between
// coordinates we scale by 2 to avoid precision loss.
v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1;
// dominant axis flag
u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
// Queue next blocks for processing:
// - Examine "far" sides of the current blocks, i.e. never move towards the camera
// - Only traverse the sides that are not occluded
// - Only traverse the sides that are not opaque
// When queueing, mark the relevant side on the next block as 'visible'
for (s16 axis = 0; axis < 3; axis++) {
// Select a bit from transparent_sides for the side
u8 far_side_mask = 1 << (2 * axis);
// axis flag
u8 my_side = 1 << axis;
u8 adjacent_sides = my_side ^ 0x07;
auto traverse_far_side = [&](s8 next_pos_offset) {
// far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
v3s16 next_pos = block_coord;
next_pos[axis] += next_pos_offset;
// If a side is a see-through, mark the next block's side as visible, and queue
if (side_visible) {
auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos);
next_flags |= my_side;
blocks_to_consider.push(next_pos);
}
else {
sides_skipped++;
}
};
// Test the '-' direction of the axis
if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
traverse_far_side(-1);
// Test the '+' direction of the axis
far_side_mask <<= 1;
if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
traverse_far_side(+1);
}
}
g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
g_profiler->avg("MapBlocks examined [#]", blocks_visited);
g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
}
void ClientMap::touchMapBlocks()
{
if (!m_new_occlusion_culler)
return;
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
v3s16 p_blocks_min;

View File

@ -66,7 +66,6 @@ void set_default_settings()
settings->setDefault("max_out_chat_queue_size", "20");
settings->setDefault("pause_on_lost_focus", "false");
settings->setDefault("enable_split_login_register", "true");
settings->setDefault("occlusion_culler", "bfs");
settings->setDefault("enable_raytraced_culling", "true");
settings->setDefault("chat_weblink_color", "#8888FF");