// Copyright (C) 2002-2008 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "COGLESDriver.h" #include #include "CNullDriver.h" #include "IContextManager.h" #ifdef _IRR_COMPILE_WITH_OGLES1_ #include "COpenGLCoreTexture.h" #include "COpenGLCoreRenderTarget.h" #include "COpenGLCoreCacheHandler.h" #include "COGLESMaterialRenderer.h" #include "EVertexAttributes.h" #include "CImage.h" #include "os.h" namespace irr { namespace video { COGLES1Driver::COGLES1Driver(const SIrrlichtCreationParameters ¶ms, io::IFileSystem *io, IContextManager *contextManager) : CNullDriver(io, params.WindowSize), COGLES1ExtensionHandler(), CacheHandler(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), ColorFormat(ECF_R8G8B8), Params(params), ContextManager(contextManager) { #ifdef _DEBUG setDebugName("COGLESDriver"); #endif core::dimension2d windowSize(0, 0); if (!ContextManager) return; ContextManager->grab(); ContextManager->generateSurface(); ContextManager->generateContext(); ExposedData = ContextManager->getContext(); ContextManager->activateContext(ExposedData, false); windowSize = params.WindowSize; genericDriverInit(windowSize, params.Stencilbuffer); } COGLES1Driver::~COGLES1Driver() { deleteMaterialRenders(); CacheHandler->getTextureCache().clear(); removeAllRenderTargets(); deleteAllTextures(); removeAllOcclusionQueries(); removeAllHardwareBuffers(); delete CacheHandler; if (ContextManager) { ContextManager->destroyContext(); ContextManager->destroySurface(); ContextManager->terminate(); ContextManager->drop(); } } // ----------------------------------------------------------------------- // METHODS // ----------------------------------------------------------------------- bool COGLES1Driver::genericDriverInit(const core::dimension2d &screenSize, bool stencilBuffer) { Name = glGetString(GL_VERSION); printVersion(); // print renderer information VendorName = glGetString(GL_VENDOR); os::Printer::log(VendorName.c_str(), ELL_INFORMATION); // load extensions initExtensions(); // reset cache handler delete CacheHandler; CacheHandler = new COGLES1CacheHandler(this); StencilBuffer = stencilBuffer; DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits); DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits); DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy); DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices); DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize); DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias); DriverAttributes->setAttribute("Version", Version); DriverAttributes->setAttribute("AntiAlias", AntiAlias); glPixelStorei(GL_PACK_ALIGNMENT, 1); UserClipPlane.reallocate(MaxUserClipPlanes); UserClipPlaneEnabled.resize(MaxUserClipPlanes); for (s32 i = 0; i < MaxUserClipPlanes; ++i) { UserClipPlane.push_back(core::plane3df()); UserClipPlaneEnabled[i] = false; } for (s32 i = 0; i < ETS_COUNT; ++i) setTransform(static_cast(i), core::IdentityMatrix); setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f)); glClearDepthf(1.0f); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST); glHint(GL_GENERATE_MIPMAP_HINT, GL_FASTEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); glAlphaFunc(GL_GREATER, 0.f); // create material renderers createMaterialRenderers(); // set the renderstates setRenderStates3DMode(); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // create matrix for flipping textures TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f)); // We need to reset once more at the beginning of the first rendering. // This fixes problems with intermediate changes to the material during texture load. ResetRenderStates = true; testGLError(__LINE__); return true; } void COGLES1Driver::createMaterialRenderers() { addAndDropMaterialRenderer(new COGLES1MaterialRenderer_SOLID(this)); addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this)); addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this)); addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this)); addAndDropMaterialRenderer(new COGLES1MaterialRenderer_ONETEXTURE_BLEND(this)); } bool COGLES1Driver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData &videoData, core::rect *sourceRect) { CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); if (ContextManager) ContextManager->activateContext(videoData, true); clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } bool COGLES1Driver::endScene() { CNullDriver::endScene(); glFlush(); if (ContextManager) return ContextManager->swapBuffers(); return false; } //! Returns the transformation set by setTransform const core::matrix4 &COGLES1Driver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COGLES1Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4 &mat) { Matrices[state] = mat; Transformation3DChanged = true; switch (state) { case ETS_VIEW: case ETS_WORLD: { // OGLES1 only has a model matrix, view and world is not existent. so lets fake these two. glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); // we have to update the clip planes to the latest view matrix for (u32 i = 0; i < MaxUserClipPlanes; ++i) if (UserClipPlaneEnabled[i]) uploadClipPlane(i); } break; case ETS_PROJECTION: { GLfloat glmat[16]; getGLMatrix(glmat, mat); // flip z to compensate OGLES1s right-hand coordinate system glmat[12] *= -1.0f; glMatrixMode(GL_PROJECTION); glLoadMatrixf(glmat); } break; default: break; } } bool COGLES1Driver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const u32 vertexCount = mb->getVertexCount(); const E_VERTEX_TYPE vType = mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); // buffer vertex data, and convert colours... core::array buffer(vertexSize * vertexCount); buffer.set_used(vertexSize * vertexCount); memcpy(buffer.pointer(), vertices, vertexSize * vertexCount); // in order to convert the colors into opengl format (RGBA) switch (vType) { case EVT_STANDARD: { S3DVertex *pb = reinterpret_cast(buffer.pointer()); const S3DVertex *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color)); } } break; case EVT_2TCOORDS: { S3DVertex2TCoords *pb = reinterpret_cast(buffer.pointer()); const S3DVertex2TCoords *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color)); } } break; case EVT_TANGENTS: { S3DVertexTangents *pb = reinterpret_cast(buffer.pointer()); const S3DVertexTangents *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color)); } } break; default: { return false; } } // get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_verticesID) { glGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer = true; } else if (HWBuffer->vbo_verticesSize < vertexCount * vertexSize) { newBuffer = true; } glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); // copy data to graphics card if (!newBuffer) glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer()); else { HWBuffer->vbo_verticesSize = vertexCount * vertexSize; if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC) glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW); else glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); } bool COGLES1Driver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *indices = mb->getIndices(); u32 indexCount = mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case (EIT_16BIT): { indexSize = sizeof(u16); break; } case (EIT_32BIT): { indexSize = sizeof(u32); break; } default: { return false; } } // get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_indicesID) { glGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer = true; } else if (HWBuffer->vbo_indicesSize < indexCount * indexSize) { newBuffer = true; } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); // copy data to graphics card if (!newBuffer) glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount * indexSize; if (HWBuffer->Mapped_Index == scene::EHM_STATIC) glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); } //! updates hardware buffer if needed bool COGLES1Driver::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !static_cast(HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer(static_cast(HWBuffer))) return false; } } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl *)HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer(static_cast(HWBuffer))) return false; } } return true; } //! Create hardware buffer from meshbuffer COGLES1Driver::SHWBufferLink *COGLES1Driver::createHardwareBuffer(const scene::IMeshBuffer *mb) { if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb); // add to map HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer); HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index(); HWBuffer->vbo_verticesID = 0; HWBuffer->vbo_indicesID = 0; HWBuffer->vbo_verticesSize = 0; HWBuffer->vbo_indicesSize = 0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; } void COGLES1Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = static_cast(_HWBuffer); if (HWBuffer->vbo_verticesID) { glDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID = 0; } if (HWBuffer->vbo_indicesID) { glDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID = 0; } CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COGLES1Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = static_cast(_HWBuffer); updateHardwareBuffer(HWBuffer); // check if update is needed const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const void *indexList = mb->getIndices(); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices = 0; } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList = 0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getPrimitiveCount(), mb->getVertexType(), mb->getPrimitiveType(), mb->getIndexType()); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) glBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index != scene::EHM_NEVER) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } IRenderTarget *COGLES1Driver::addRenderTarget() { COGLES1RenderTarget *renderTarget = new COGLES1RenderTarget(this); RenderTargets.push_back(renderTarget); return renderTarget; } // small helper function to create vertex buffer object adress offsets static inline u8 *buffer_offset(const long offset) { return ((u8 *)0 + offset); } //! draws a vertex primitive list void COGLES1Driver::drawVertexPrimitiveList(const void *vertices, u32 vertexCount, const void *indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; setRenderStates3DMode(); drawVertexPrimitiveList2d3d(vertices, vertexCount, (const u16 *)indexList, primitiveCount, vType, pType, iType); } void COGLES1Driver::drawVertexPrimitiveList2d3d(const void *vertices, u32 vertexCount, const void *indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType, bool threed) { if (!primitiveCount || !vertexCount) return; if (!threed && !checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices) { // convert colors to gl color format. vertexCount *= 4; // reused as color component count ColorBuffer.set_used(vertexCount); u32 i; switch (vType) { case EVT_STANDARD: { const S3DVertex *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_2TCOORDS: { const S3DVertex2TCoords *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_TANGENTS: { const S3DVertexTangents *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; } } // draw everything glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); if ((pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) glEnableClientState(GL_TEXTURE_COORD_ARRAY); #ifdef GL_OES_point_size_array else if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness == 0.0f)) glEnableClientState(GL_POINT_SIZE_ARRAY_OES); #endif if (threed && (pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) glEnableClientState(GL_NORMAL_ARRAY); if (vertices) glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); switch (vType) { case EVT_STANDARD: if (vertices) { if (threed) glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0); } if (Feature.MaxTextureUnits > 0 && CacheHandler->getTextureCache().get(1)) { glClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { if (threed) glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords); glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (Feature.MaxTextureUnits > 0) { glClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { if (threed) glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].TCoords); glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } if (Feature.MaxTextureUnits > 0) { glClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Tangent); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36)); glClientActiveTexture(GL_TEXTURE0 + 2); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Binormal); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48)); } break; } GLenum indexSize = 0; switch (iType) { case (EIT_16BIT): { indexSize = GL_UNSIGNED_SHORT; break; } case (EIT_32BIT): { #ifdef GL_OES_element_index_uint #ifndef GL_UNSIGNED_INT #define GL_UNSIGNED_INT 0x1405 #endif if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint]) indexSize = GL_UNSIGNED_INT; else #endif indexSize = GL_UNSIGNED_SHORT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: { #ifdef GL_OES_point_sprite if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite]) glEnable(GL_POINT_SPRITE_OES); #endif // if ==0 we use the point size array if (Material.Thickness != 0.f) { float quadratic[] = {0.0f, 0.0f, 10.01f}; glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, quadratic); float maxParticleSize = 1.0f; glGetFloatv(GL_POINT_SIZE_MAX, &maxParticleSize); // maxParticleSize=maxParticleSize 0) { if (vType == EVT_TANGENTS) { glClientActiveTexture(GL_TEXTURE0 + 2); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } if ((vType != EVT_STANDARD) || CacheHandler->getTextureCache().get(1)) { glClientActiveTexture(GL_TEXTURE0 + 1); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } glClientActiveTexture(GL_TEXTURE0); } #ifdef GL_OES_point_size_array if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness == 0.0f)) glDisableClientState(GL_POINT_SIZE_ARRAY_OES); #endif glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } //! draws a 2d image, using a color and the alpha channel of the texture void COGLES1Driver::draw2DImage(const video::ITexture *texture, const core::position2d &pos, const core::rect &sourceRect, const core::rect *clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; core::position2d targetPos(pos); core::position2d sourcePos(sourceRect.UpperLeftCorner); core::dimension2d sourceSize(sourceRect.getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) return; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) return; } } // clip these coordinates if (targetPos.X < 0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) return; } if (targetPos.Y < 0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) return; } // ok, we've clipped everything. // now draw it. // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2d &ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourcePos.X * invW, (isRTT ? (sourcePos.Y + sourceSize.Height) : sourcePos.Y) * invH, (sourcePos.X + sourceSize.Width) * invW, (isRTT ? sourcePos.Y : (sourcePos.Y + sourceSize.Height)) * invH); const core::rect poss(targetPos, sourceSize); if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vertices[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vertices[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vertices[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! The same, but with a four element array of colors, one for each vertex void COGLES1Driver::draw2DImage(const video::ITexture *texture, const core::rect &destRect, const core::rect &sourceRect, const core::rect *clipRect, const video::SColor *const colors, bool useAlphaChannelOfTexture) { if (!texture) return; // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2du &ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, (isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH, sourceRect.LowerRightCorner.X * invW, (isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) * invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, }; const video::SColor *const useColor = colors ? colors : temp; if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 || useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vertices[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vertices[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vertices[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); if (clipRect) glDisable(GL_SCISSOR_TEST); } void COGLES1Driver::draw2DImage(const video::ITexture *texture, u32 layer, bool flip) { if (!texture || !CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(false, true, true); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); Transformation3DChanged = true; u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f); vertices[1].Pos = core::vector3df(1.f, 1.f, 0.f); vertices[2].Pos = core::vector3df(1.f, -1.f, 0.f); vertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f); f32 modificator = (flip) ? 1.f : 0.f; vertices[0].TCoords = core::vector2df(0.f, 0.f + modificator); vertices[1].TCoords = core::vector2df(1.f, 0.f + modificator); vertices[2].TCoords = core::vector2df(1.f, 1.f - modificator); vertices[3].TCoords = core::vector2df(0.f, 1.f - modificator); vertices[0].Color = 0xFFFFFFFF; vertices[1].Color = 0xFFFFFFFF; vertices[2].Color = 0xFFFFFFFF; vertices[3].Color = 0xFFFFFFFF; drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! draws a set of 2d images, using a color and the alpha channel of the texture if desired. void COGLES1Driver::draw2DImageBatch(const video::ITexture *texture, const core::array> &positions, const core::array> &sourceRects, const core::rect *clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; const u32 drawCount = core::min_(positions.size(), sourceRects.size()); if (!drawCount) return; const core::dimension2d &ss = texture->getOriginalSize(); if (!ss.Width || !ss.Height) return; const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); core::array vertices; core::array quadIndices; vertices.reallocate(drawCount * 4); quadIndices.reallocate(drawCount * 6); for (u32 i = 0; i < drawCount; ++i) { if (!sourceRects[i].isValid()) continue; core::position2d targetPos(positions[i]); core::position2d sourcePos(sourceRects[i].UpperLeftCorner); // This needs to be signed as it may go negative. core::dimension2d sourceSize(sourceRects[i].getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) continue; } } // clip these coordinates if (targetPos.X < 0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X; targetPos.X = 0; } if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < 0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) continue; } // ok, we've clipped everything. const core::rect tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); const core::rect poss(targetPos, sourceSize); const u32 vstart = vertices.size(); vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y)); vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y)); vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y)); vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y)); quadIndices.push_back(vstart); quadIndices.push_back(vstart + 1); quadIndices.push_back(vstart + 2); quadIndices.push_back(vstart); quadIndices.push_back(vstart + 2); quadIndices.push_back(vstart + 3); } if (vertices.size()) drawVertexPrimitiveList2d3d(vertices.pointer(), vertices.size(), quadIndices.pointer(), vertices.size() / 2, video::EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT, false); } //! draw a 2d rectangle void COGLES1Driver::draw2DRectangle(SColor color, const core::rect &position, const core::rect *clip) { setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0); vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! draw an 2d rectangle void COGLES1Driver::draw2DRectangle(const core::rect &position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect *clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); u16 indices[] = {0, 1, 2, 3}; S3DVertex vertices[4]; vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorLeftUp, 0, 0); vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorRightUp, 0, 0); vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorRightDown, 0, 0); vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorLeftDown, 0, 0); drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false); } //! Draws a 2d line. void COGLES1Driver::draw2DLine(const core::position2d &start, const core::position2d &end, SColor color) { setRenderStates2DMode(color.getAlpha() < 255, false, false); u16 indices[] = {0, 1}; S3DVertex vertices[2]; vertices[0] = S3DVertex((f32)start.X, (f32)start.Y, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex((f32)end.X, (f32)end.Y, 0, 0, 0, 1, color, 1, 1); drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES, EIT_16BIT, false); } //! creates a matrix in supplied GLfloat array to pass to OGLES1 inline void COGLES1Driver::getGLMatrix(GLfloat gl_matrix[16], const core::matrix4 &m) { memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32)); } //! creates a opengltexturematrix from a D3D style texture matrix inline void COGLES1Driver::getGLTextureMatrix(GLfloat *o, const core::matrix4 &m) { o[0] = m[0]; o[1] = m[1]; o[2] = 0.f; o[3] = 0.f; o[4] = m[4]; o[5] = m[5]; o[6] = 0.f; o[7] = 0.f; o[8] = 0.f; o[9] = 0.f; o[10] = 1.f; o[11] = 0.f; o[12] = m[8]; o[13] = m[9]; o[14] = 0.f; o[15] = 1.f; } ITexture *COGLES1Driver::createDeviceDependentTexture(const io::path &name, IImage *image) { core::array imageArray(1); imageArray.push_back(image); COGLES1Texture *texture = new COGLES1Texture(name, imageArray, ETT_2D, this); return texture; } ITexture *COGLES1Driver::createDeviceDependentTextureCubemap(const io::path &name, const core::array &image) { COGLES1Texture *texture = new COGLES1Texture(name, image, ETT_CUBEMAP, this); return texture; } //! Sets a material. All 3d drawing functions draw geometry now using this material. void COGLES1Driver::setMaterial(const SMaterial &material) { Material = material; OverrideMaterial.apply(Material); for (u32 i = 0; i < Feature.MaxTextureUnits; ++i) setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i)); } //! prints error if an error happened. bool COGLES1Driver::testGLError(int code) { #ifdef _DEBUG GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR); break; case GL_STACK_OVERFLOW: os::Printer::log("GL_STACK_OVERFLOW", core::stringc(code).c_str(), ELL_ERROR); break; case GL_STACK_UNDERFLOW: os::Printer::log("GL_STACK_UNDERFLOW", core::stringc(code).c_str(), ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR); break; }; // _IRR_DEBUG_BREAK_IF(true); return true; #else return false; #endif } //! sets the needed renderstates void COGLES1Driver::setRenderStates3DMode() { if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages CacheHandler->setBlend(false); glDisable(GL_ALPHA_TEST); CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // switch back the matrices glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); GLfloat glmat[16]; getGLMatrix(glmat, Matrices[ETS_PROJECTION]); glmat[12] *= -1.0f; glMatrixMode(GL_PROJECTION); glLoadMatrixf(glmat); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material if (LastMaterial.MaterialType != Material.MaterialType && static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; CacheHandler->correctCacheMaterial(LastMaterial); ResetRenderStates = false; } if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } GLint COGLES1Driver::getTextureWrapMode(u8 clamp) const { switch (clamp) { case ETC_CLAMP: // return GL_CLAMP; not supported in ogl-es return GL_CLAMP_TO_EDGE; break; case ETC_CLAMP_TO_EDGE: return GL_CLAMP_TO_EDGE; break; case ETC_CLAMP_TO_BORDER: // return GL_CLAMP_TO_BORDER; not supported in ogl-es return GL_CLAMP_TO_EDGE; break; case ETC_MIRROR: #ifdef GL_OES_texture_mirrored_repeat if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat]) return GL_MIRRORED_REPEAT_OES; else #endif return GL_REPEAT; break; // the next three are not yet supported at all case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: #ifdef GL_OES_texture_mirrored_repeat if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat]) return GL_MIRRORED_REPEAT_OES; else #endif return GL_CLAMP_TO_EDGE; break; case ETC_REPEAT: default: return GL_REPEAT; break; } } //! Can be called by an IMaterialRenderer to make its work easier. void COGLES1Driver::setBasicRenderStates(const SMaterial &material, const SMaterial &lastmaterial, bool resetAllRenderStates) { if (resetAllRenderStates || lastmaterial.ColorMaterial != material.ColorMaterial) { // we only have diffuse_and_ambient in ogl-es if (material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT) glEnable(GL_COLOR_MATERIAL); else glDisable(GL_COLOR_MATERIAL); } if (resetAllRenderStates || lastmaterial.AmbientColor != material.AmbientColor || lastmaterial.DiffuseColor != material.DiffuseColor || lastmaterial.EmissiveColor != material.EmissiveColor || lastmaterial.ColorMaterial != material.ColorMaterial) { GLfloat color[4]; const f32 inv = 1.0f / 255.0f; if ((material.ColorMaterial != video::ECM_AMBIENT) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.AmbientColor.getRed() * inv; color[1] = material.AmbientColor.getGreen() * inv; color[2] = material.AmbientColor.getBlue() * inv; color[3] = material.AmbientColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color); } if ((material.ColorMaterial != video::ECM_DIFFUSE) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.DiffuseColor.getRed() * inv; color[1] = material.DiffuseColor.getGreen() * inv; color[2] = material.DiffuseColor.getBlue() * inv; color[3] = material.DiffuseColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color); } if (material.ColorMaterial != video::ECM_EMISSIVE) { color[0] = material.EmissiveColor.getRed() * inv; color[1] = material.EmissiveColor.getGreen() * inv; color[2] = material.EmissiveColor.getBlue() * inv; color[3] = material.EmissiveColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color); } } if (resetAllRenderStates || lastmaterial.SpecularColor != material.SpecularColor || lastmaterial.Shininess != material.Shininess) { GLfloat color[] = {0.f, 0.f, 0.f, 1.f}; const f32 inv = 1.0f / 255.0f; // disable Specular colors if no shininess is set if ((material.Shininess != 0.0f) && (material.ColorMaterial != video::ECM_SPECULAR)) { #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess); color[0] = material.SpecularColor.getRed() * inv; color[1] = material.SpecularColor.getGreen() * inv; color[2] = material.SpecularColor.getBlue() * inv; color[3] = material.SpecularColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color); } #ifdef GL_EXT_separate_specular_color else if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR); #endif } // TODO ogl-es // fillmode // if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud)) // glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL); // shademode if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading)) { if (material.GouraudShading) glShadeModel(GL_SMOOTH); else glShadeModel(GL_FLAT); } // lighting if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting)) { if (material.Lighting) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); } // zbuffer if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer) { switch (material.ZBuffer) { case ECFN_DISABLED: glDisable(GL_DEPTH_TEST); break; case ECFN_LESSEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_EQUAL); break; case ECFN_LESS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); break; case ECFN_NEVER: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_NEVER); break; } } // zwrite if (getWriteZBuffer(material)) { glDepthMask(GL_TRUE); } else { glDepthMask(GL_FALSE); } // back face culling if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) { if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { glCullFace(GL_FRONT_AND_BACK); glEnable(GL_CULL_FACE); } else if (material.BackfaceCulling) { glCullFace(GL_BACK); glEnable(GL_CULL_FACE); } else if (material.FrontfaceCulling) { glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); } else glDisable(GL_CULL_FACE); } // fog if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable) { if (material.FogEnable) glEnable(GL_FOG); else glDisable(GL_FOG); } // normalization if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals) { if (material.NormalizeNormals) glEnable(GL_NORMALIZE); else glDisable(GL_NORMALIZE); } // Color Mask if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask) { glColorMask( (material.ColorMask & ECP_RED) ? GL_TRUE : GL_FALSE, (material.ColorMask & ECP_GREEN) ? GL_TRUE : GL_FALSE, (material.ColorMask & ECP_BLUE) ? GL_TRUE : GL_FALSE, (material.ColorMask & ECP_ALPHA) ? GL_TRUE : GL_FALSE); } // Blend Equation if (material.BlendOperation == EBO_NONE) CacheHandler->setBlend(false); else { CacheHandler->setBlend(true); if (queryFeature(EVDF_BLEND_OPERATIONS)) { switch (material.BlendOperation) { case EBO_ADD: #if defined(GL_OES_blend_subtract) CacheHandler->setBlendEquation(GL_FUNC_ADD_OES); #endif break; case EBO_SUBTRACT: #if defined(GL_OES_blend_subtract) CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT_OES); #endif break; case EBO_REVSUBTRACT: #if defined(GL_OES_blend_subtract) CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT_OES); #endif break; default: break; } } } // Blend Factor if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF? && material.MaterialType != EMT_ONETEXTURE_BLEND) { E_BLEND_FACTOR srcRGBFact = EBF_ZERO; E_BLEND_FACTOR dstRGBFact = EBF_ZERO; E_BLEND_FACTOR srcAlphaFact = EBF_ZERO; E_BLEND_FACTOR dstAlphaFact = EBF_ZERO; E_MODULATE_FUNC modulo = EMFN_MODULATE_1X; u32 alphaSource = 0; unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor); if (queryFeature(EVDF_BLEND_SEPARATE)) { CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact), getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact)); } else { CacheHandler->setBlendFunc(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact)); } } // TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver. // thickness if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) { if (AntiAlias) { // glPointSize(core::clamp(static_cast(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1])); // we don't use point smoothing glPointSize(core::clamp(static_cast(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); } else { glPointSize(core::clamp(static_cast(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); glLineWidth(core::clamp(static_cast(material.Thickness), DimAliasedLine[0], DimAliasedLine[1])); } } // Anti aliasing if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE | EAAM_QUALITY))) glEnable(GL_MULTISAMPLE); else glDisable(GL_MULTISAMPLE); } // Texture parameters setTextureRenderStates(material, resetAllRenderStates); } //! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call. void COGLES1Driver::setTextureRenderStates(const SMaterial &material, bool resetAllRenderstates) { // Set textures to TU/TIU and apply filters to them for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i) { CacheHandler->getTextureCache().set(i, material.TextureLayers[i].Texture); const COGLES1Texture *tmpTexture = CacheHandler->getTextureCache().get(i); if (!tmpTexture) continue; GLenum tmpTextureType = tmpTexture->getOpenGLTextureType(); CacheHandler->setActiveTexture(GL_TEXTURE0 + i); { const bool isRTT = tmpTexture->isRenderTarget(); glMatrixMode(GL_TEXTURE); if (!isRTT && Matrices[ETS_TEXTURE_0 + i].isIdentity()) glLoadIdentity(); else { GLfloat glmat[16]; if (isRTT) getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i] * TextureFlipMatrix); else getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i]); glLoadMatrixf(glmat); } } COGLES1Texture::SStatesCache &statesCache = tmpTexture->getStatesCache(); if (resetAllRenderstates) statesCache.IsCached = false; #if defined(GL_EXT_texture_lod_bias) if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_lod_bias]) { if (material.TextureLayers[i].LODBias) { const float tmp = core::clamp(material.TextureLayers[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp); } else glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f); } #endif if (!statesCache.IsCached || material.TextureLayers[i].MagFilter != statesCache.MagFilter) { E_TEXTURE_MAG_FILTER magFilter = material.TextureLayers[i].MagFilter; glTexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER, magFilter == ETMAGF_NEAREST ? GL_NEAREST : (assert(magFilter == ETMAGF_LINEAR), GL_LINEAR)); statesCache.MagFilter = magFilter; } if (material.UseMipMaps && tmpTexture->hasMipMaps()) { if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter || !statesCache.MipMapStatus) { E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter; glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER, minFilter == ETMINF_NEAREST_MIPMAP_NEAREST ? GL_NEAREST_MIPMAP_NEAREST : minFilter == ETMINF_LINEAR_MIPMAP_NEAREST ? GL_LINEAR_MIPMAP_NEAREST : minFilter == ETMINF_NEAREST_MIPMAP_LINEAR ? GL_NEAREST_MIPMAP_LINEAR : (assert(minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR_MIPMAP_LINEAR)); statesCache.MinFilter = minFilter; statesCache.MipMapStatus = true; } } else { if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter || statesCache.MipMapStatus) { E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter; glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER, (minFilter == ETMINF_NEAREST_MIPMAP_NEAREST || minFilter == ETMINF_NEAREST_MIPMAP_LINEAR) ? GL_NEAREST : (assert(minFilter == ETMINF_LINEAR_MIPMAP_NEAREST || minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR)); statesCache.MinFilter = minFilter; statesCache.MipMapStatus = false; } } #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_filter_anisotropic] && (!statesCache.IsCached || material.TextureLayers[i].AnisotropicFilter != statesCache.AnisotropicFilter)) { glTexParameteri(tmpTextureType, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayers[i].AnisotropicFilter > 1 ? core::min_(MaxAnisotropy, material.TextureLayers[i].AnisotropicFilter) : 1); statesCache.AnisotropicFilter = material.TextureLayers[i].AnisotropicFilter; } #endif if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapU != statesCache.WrapU) { glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayers[i].TextureWrapU)); statesCache.WrapU = material.TextureLayers[i].TextureWrapU; } if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapV != statesCache.WrapV) { glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayers[i].TextureWrapV)); statesCache.WrapV = material.TextureLayers[i].TextureWrapV; } statesCache.IsCached = true; } // be sure to leave in texture stage 0 CacheHandler->setActiveTexture(GL_TEXTURE0); } //! sets the needed renderstates void COGLES1Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if (CurrentRenderMode != ERM_2D || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } if (Transformation3DChanged) { glMatrixMode(GL_PROJECTION); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m(core::matrix4::EM4CONST_NOTHING); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f); m.setTranslation(core::vector3df(-1, 1, 0)); glLoadMatrixf(m.pointer()); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); Transformation3DChanged = false; } } Material = (OverrideMaterial2DEnabled) ? OverrideMaterial2D : InitMaterial2D; Material.Lighting = false; Material.TextureLayers[0].Texture = (texture) ? const_cast(CacheHandler->getTextureCache().get(0)) : 0; setTransform(ETS_TEXTURE_0, core::IdentityMatrix); setBasicRenderStates(Material, LastMaterial, false); LastMaterial = Material; CacheHandler->correctCacheMaterial(LastMaterial); // no alphaChannel without texture alphaChannel &= texture; if (alphaChannel || alpha) { CacheHandler->setBlend(true); CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); CacheHandler->setBlendEquation(GL_FUNC_ADD); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GREATER, 0.f); } else { CacheHandler->setBlend(false); glDisable(GL_ALPHA_TEST); } if (texture) { // Due to the transformation change, the previous line would call a reset each frame // but we can safely reset the variable as it was false before Transformation3DChanged = false; if (alphaChannel) { // if alpha and alpha texture just modulate, otherwise use only the alpha channel if (alpha) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_TEXTURE); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR); } } else { if (alpha) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_PRIMARY_COLOR); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR); } else { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } } CurrentRenderMode = ERM_2D; } //! \return Returns the name of the video driver. const char *COGLES1Driver::getName() const { return Name.c_str(); } //! Sets the dynamic ambient light color. void COGLES1Driver::setAmbientLight(const SColorf &color) { CNullDriver::setAmbientLight(color); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data); } // this code was sent in by Oliver Klems, thank you void COGLES1Driver::setViewPort(const core::rect &area) { core::rect vp = area; core::rect rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight() > 0 && vp.getWidth() > 0) CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight()); ViewPort = vp; } void COGLES1Driver::setViewPortRaw(u32 width, u32 height) { CacheHandler->setViewport(0, 0, width, height); ViewPort = core::recti(0, 0, width, height); } //! Sets the fog mode. void COGLES1Driver::setFog(SColor c, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog); glFogf(GL_FOG_MODE, GLfloat((fogType == EFT_FOG_LINEAR) ? GL_LINEAR : (fogType == EFT_FOG_EXP) ? GL_EXP : GL_EXP2)); #ifdef GL_EXT_fog_coord if (FeatureAvailable[IRR_EXT_fog_coord]) glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH); #endif if (fogType == EFT_FOG_LINEAR) { glFogf(GL_FOG_START, start); glFogf(GL_FOG_END, end); } else glFogf(GL_FOG_DENSITY, density); if (pixelFog) glHint(GL_FOG_HINT, GL_NICEST); else glHint(GL_FOG_HINT, GL_FASTEST); SColorf color(c); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glFogfv(GL_FOG_COLOR, data); } //! Draws a 3d line. void COGLES1Driver::draw3DLine(const core::vector3df &start, const core::vector3df &end, SColor color) { setRenderStates3DMode(); u16 indices[] = {0, 1}; S3DVertex vertices[2]; vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0); drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COGLES1Driver::OnResize(const core::dimension2d &size) { CNullDriver::OnResize(size); CacheHandler->setViewport(0, 0, size.Width, size.Height); Transformation3DChanged = true; } //! Returns type of video driver E_DRIVER_TYPE COGLES1Driver::getDriverType() const { return EDT_OGLES1; } //! returns color format ECOLOR_FORMAT COGLES1Driver::getColorFormat() const { return ColorFormat; } //! Get a vertex shader constant index. s32 COGLES1Driver::getVertexShaderConstantID(const c8 *name) { return getPixelShaderConstantID(name); } //! Get a pixel shader constant index. s32 COGLES1Driver::getPixelShaderConstantID(const c8 *name) { os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->getPixelShaderConstantID()."); return -1; } //! Sets a constant for the vertex shader based on an index. bool COGLES1Driver::setVertexShaderConstant(s32 index, const f32 *floats, int count) { // pass this along, as in GLSL the same routine is used for both vertex and fragment shaders return setPixelShaderConstant(index, floats, count); } //! Int interface for the above. bool COGLES1Driver::setVertexShaderConstant(s32 index, const s32 *ints, int count) { return setPixelShaderConstant(index, ints, count); } bool COGLES1Driver::setVertexShaderConstant(s32 index, const u32 *ints, int count) { return setPixelShaderConstant(index, ints, count); } //! Sets a constant for the pixel shader based on an index. bool COGLES1Driver::setPixelShaderConstant(s32 index, const f32 *floats, int count) { os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant()."); return false; } //! Int interface for the above. bool COGLES1Driver::setPixelShaderConstant(s32 index, const s32 *ints, int count) { os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant()."); return false; } bool COGLES1Driver::setPixelShaderConstant(s32 index, const u32 *ints, int count) { os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COGLES1Driver::addHighLevelShaderMaterial( const c8 *vertexShaderProgram, const c8 *vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8 *pixelShaderProgram, const c8 *pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8 *geometryShaderProgram, const c8 *geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack *callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { os::Printer::log("No shader support."); return -1; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver *COGLES1Driver::getVideoDriver() { return this; } //! Returns pointer to the IGPUProgrammingServices interface. IGPUProgrammingServices *COGLES1Driver::getGPUProgrammingServices() { return this; } ITexture *COGLES1Driver::addRenderTargetTexture(const core::dimension2d &size, const io::path &name, const ECOLOR_FORMAT format) { // disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); bool supportForFBO = (Feature.ColorAttachment > 0); core::dimension2du destSize(size); if (!supportForFBO) { destSize = core::dimension2d(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height)); destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false); } COGLES1Texture *renderTargetTexture = new COGLES1Texture(name, destSize, ETT_2D, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); // restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } ITexture *COGLES1Driver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path &name, const ECOLOR_FORMAT format) { // disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); bool supportForFBO = (Feature.ColorAttachment > 0); const core::dimension2d size(sideLen, sideLen); core::dimension2du destSize(size); if (!supportForFBO) { destSize = core::dimension2d(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height)); destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false); } COGLES1Texture *renderTargetTexture = new COGLES1Texture(name, destSize, ETT_CUBEMAP, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); // restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } //! Returns the maximum amount of primitives u32 COGLES1Driver::getMaximalPrimitiveCount() const { return 65535; } bool COGLES1Driver::setRenderTargetEx(IRenderTarget *target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { if (target && target->getDriverType() != EDT_OGLES1) { os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL driver.", ELL_ERROR); return false; } bool supportForFBO = (Feature.ColorAttachment > 0); core::dimension2d destRenderTargetSize(0, 0); if (target) { COGLES1RenderTarget *renderTarget = static_cast(target); if (supportForFBO) { CacheHandler->setFBO(renderTarget->getBufferID()); renderTarget->update(); } destRenderTargetSize = renderTarget->getSize(); setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height); } else { if (supportForFBO) CacheHandler->setFBO(0); else { COGLES1RenderTarget *prevRenderTarget = static_cast(CurrentRenderTarget); COGLES1Texture *renderTargetTexture = static_cast(prevRenderTarget->getTexture()); if (renderTargetTexture) { const COGLES1Texture *prevTexture = CacheHandler->getTextureCache().get(0); CacheHandler->getTextureCache().set(0, renderTargetTexture); const core::dimension2d size = renderTargetTexture->getSize(); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, size.Width, size.Height); CacheHandler->getTextureCache().set(0, prevTexture); } } destRenderTargetSize = core::dimension2d(0, 0); setViewPortRaw(ScreenSize.Width, ScreenSize.Height); } if (CurrentRenderTargetSize != destRenderTargetSize) { CurrentRenderTargetSize = destRenderTargetSize; Transformation3DChanged = true; } CurrentRenderTarget = target; if (!supportForFBO) { clearFlag |= ECBF_COLOR; clearFlag |= ECBF_DEPTH; } clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } void COGLES1Driver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { GLbitfield mask = 0; if (flag & ECBF_COLOR) { glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (flag & ECBF_DEPTH) { glDepthMask(GL_TRUE); glClearDepthf(depth); mask |= GL_DEPTH_BUFFER_BIT; } if (flag & ECBF_STENCIL) { glClearStencil(stencil); mask |= GL_STENCIL_BUFFER_BIT; } if (mask) glClear(mask); } //! Returns an image created from the last rendered frame. // We want to read the front buffer to get the latest render finished. // This is not possible under ogl-es, though, so one has to call this method // outside of the render loop only. IImage *COGLES1Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target == video::ERT_MULTI_RENDER_TEXTURES || target == video::ERT_RENDER_TEXTURE || target == video::ERT_STEREO_BOTH_BUFFERS) return 0; GLint internalformat = GL_RGBA; GLint type = GL_UNSIGNED_BYTE; if (false && (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_IMG_read_format] || FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_read_format] || FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_read_format_bgra])) { #ifdef GL_IMPLEMENTATION_COLOR_READ_TYPE_OES glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES, &internalformat); glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE_OES, &type); #endif // there are formats we don't support ATM if (GL_UNSIGNED_SHORT_4_4_4_4 == type) type = GL_UNSIGNED_SHORT_5_5_5_1; #ifdef GL_EXT_read_format_bgra else if (GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT == type) type = GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT; #endif } IImage *newImage = 0; if ((GL_RGBA == internalformat) #ifdef GL_EXT_read_format_bgra || (GL_BGRA_EXT == internalformat) #endif ) { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_A8R8G8B8, ScreenSize); else newImage = new CImage(ECF_A1R5G5B5, ScreenSize); } else { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_R8G8B8, ScreenSize); else newImage = new CImage(ECF_R5G6B5, ScreenSize); } u8 *pixels = static_cast(newImage->getData()); if (!pixels) { newImage->drop(); return 0; } glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels); // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch = newImage->getPitch(); u8 *p2 = pixels + (ScreenSize.Height - 1) * pitch; u8 *tmpBuffer = new u8[pitch]; for (u32 i = 0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); memcpy(pixels, p2, pitch); memcpy(p2, tmpBuffer, pitch); pixels += pitch; p2 -= pitch; } delete[] tmpBuffer; if (testGLError(__LINE__)) { newImage->drop(); return 0; } return newImage; } void COGLES1Driver::removeTexture(ITexture *texture) { CacheHandler->getTextureCache().remove(texture); CNullDriver::removeTexture(texture); } //! Set/unset a clipping plane. bool COGLES1Driver::setClipPlane(u32 index, const core::plane3df &plane, bool enable) { if (index >= MaxUserClipPlanes) return false; UserClipPlane[index] = plane; enableClipPlane(index, enable); return true; } void COGLES1Driver::uploadClipPlane(u32 index) { // opengl needs an array of doubles for the plane equation float clip_plane[4]; clip_plane[0] = UserClipPlane[index].Normal.X; clip_plane[1] = UserClipPlane[index].Normal.Y; clip_plane[2] = UserClipPlane[index].Normal.Z; clip_plane[3] = UserClipPlane[index].D; glClipPlanef(GL_CLIP_PLANE0 + index, clip_plane); } //! Enable/disable a clipping plane. void COGLES1Driver::enableClipPlane(u32 index, bool enable) { if (index >= MaxUserClipPlanes) return; if (enable) { if (!UserClipPlaneEnabled[index]) { uploadClipPlane(index); glEnable(GL_CLIP_PLANE0 + index); } } else glDisable(GL_CLIP_PLANE0 + index); UserClipPlaneEnabled[index] = enable; } core::dimension2du COGLES1Driver::getMaxTextureSize() const { return core::dimension2du(MaxTextureSize, MaxTextureSize); } GLenum COGLES1Driver::getGLBlend(E_BLEND_FACTOR factor) const { static GLenum const blendTable[] = { GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA_SATURATE, }; return blendTable[factor]; } GLenum COGLES1Driver::getZBufferBits() const { GLenum bits = 0; switch (Params.ZBufferBits) { case 24: #if defined(GL_OES_depth24) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth24)) bits = GL_DEPTH_COMPONENT24_OES; else #endif bits = GL_DEPTH_COMPONENT16; break; case 32: #if defined(GL_OES_depth32) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32)) bits = GL_DEPTH_COMPONENT32_OES; else #endif bits = GL_DEPTH_COMPONENT16; break; default: bits = GL_DEPTH_COMPONENT16; break; } return bits; } bool COGLES1Driver::getColorFormatParameters(ECOLOR_FORMAT format, GLint &internalFormat, GLenum &pixelFormat, GLenum &pixelType, void (**converter)(const void *, s32, void *)) const { bool supported = false; internalFormat = GL_RGBA; pixelFormat = GL_RGBA; pixelType = GL_UNSIGNED_BYTE; *converter = 0; switch (format) { case ECF_A1R5G5B5: supported = true; internalFormat = GL_RGBA; pixelFormat = GL_RGBA; pixelType = GL_UNSIGNED_SHORT_5_5_5_1; *converter = CColorConverter::convert_A1R5G5B5toR5G5B5A1; break; case ECF_R5G6B5: supported = true; internalFormat = GL_RGB; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_SHORT_5_6_5; break; case ECF_R8G8B8: supported = true; internalFormat = GL_RGB; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_BYTE; break; case ECF_A8R8G8B8: supported = true; if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_IMG_texture_format_BGRA8888) || queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_format_BGRA8888) || queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_APPLE_texture_format_BGRA8888)) { internalFormat = GL_BGRA; pixelFormat = GL_BGRA; } else { internalFormat = GL_RGBA; pixelFormat = GL_RGBA; *converter = CColorConverter::convert_A8R8G8B8toA8B8G8R8; } pixelType = GL_UNSIGNED_BYTE; break; case ECF_D16: supported = true; internalFormat = GL_DEPTH_COMPONENT16; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_SHORT; break; case ECF_D32: #if defined(GL_OES_depth32) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32)) { supported = true; internalFormat = GL_DEPTH_COMPONENT32_OES; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_INT; } #endif break; case ECF_D24S8: #ifdef GL_OES_packed_depth_stencil if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_packed_depth_stencil)) { supported = true; internalFormat = GL_DEPTH24_STENCIL8_OES; pixelFormat = GL_DEPTH_STENCIL_OES; pixelType = GL_UNSIGNED_INT_24_8_OES; } #endif break; case ECF_R8: break; case ECF_R8G8: break; case ECF_R16: break; case ECF_R16G16: break; case ECF_R16F: break; case ECF_G16R16F: break; case ECF_A16B16G16R16F: break; case ECF_R32F: break; case ECF_G32R32F: break; case ECF_A32B32G32R32F: break; default: break; } #ifdef _IRR_IOS_PLATFORM_ if (internalFormat == GL_BGRA) internalFormat = GL_RGBA; #endif return supported; } bool COGLES1Driver::queryTextureFormat(ECOLOR_FORMAT format) const { GLint dummyInternalFormat; GLenum dummyPixelFormat; GLenum dummyPixelType; void (*dummyConverter)(const void *, s32, void *); return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter); } bool COGLES1Driver::needsTransparentRenderPass(const irr::video::SMaterial &material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); } COGLES1CacheHandler *COGLES1Driver::getCacheHandler() const { return CacheHandler; } } // end namespace } // end namespace #endif // _IRR_COMPILE_WITH_OGLES1_ namespace irr { namespace video { #ifndef _IRR_COMPILE_WITH_OGLES1_ class IVideoDriver; class IContextManager; #endif IVideoDriver *createOGLES1Driver(const SIrrlichtCreationParameters ¶ms, io::IFileSystem *io, IContextManager *contextManager) { #ifdef _IRR_COMPILE_WITH_OGLES1_ return new COGLES1Driver(params, io, contextManager); #else return 0; #endif // _IRR_COMPILE_WITH_OGLES1_ } } // end namespace } // end namespace