/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "mapgen_math.h" #include "voxel.h" #include "mapblock.h" #include "mapnode.h" #include "map.h" #include "nodedef.h" #include "voxelalgorithms.h" #include "profiler.h" #include "settings.h" // For g_settings #include "main.h" // For g_profiler #include "emerge.h" #include "biome.h" // can use ported lib from http://mandelbulber.googlecode.com/svn/trunk/src //#include "mandelbulber/fractal.h" //#include "mandelbulber/fractal.cpp" double mandelbox(double x, double y, double z, double d, int nn = 10) { int s = 7; x *= s; y *= s; z *= s; d *= s; double posX = x; double posY = y; double posZ = z; double dr = 1.0; double r = 0.0; double scale = 2; double minRadius2 = 0.25; double fixedRadius2 = 1; for (int n = 0; n < nn; n++) { // Reflect if (x > 1.0) x = 2.0 - x; else if (x < -1.0) x = -2.0 - x; if (y > 1.0) y = 2.0 - y; else if (y < -1.0) y = -2.0 - y; if (z > 1.0) z = 2.0 - z; else if (z < -1.0) z = -2.0 - z; // Sphere Inversion double r2 = x * x + y * y + z * z; if (r2 < minRadius2) { x = x * fixedRadius2 / minRadius2; y = y * fixedRadius2 / minRadius2; z = z * fixedRadius2 / minRadius2; dr = dr * fixedRadius2 / minRadius2; } else if (r2 < fixedRadius2) { x = x * fixedRadius2 / r2; y = y * fixedRadius2 / r2; z = z * fixedRadius2 / r2; fixedRadius2 *= fixedRadius2 / r2; } x = x * scale + posX; y = y * scale + posY; z = z * scale + posZ; dr *= scale; } r = sqrt(x * x + y * y + z * z); return ((r / fabs(dr)) < d); } double mengersponge(double x, double y, double z, double d, int MI = 10) { double r = x * x + y * y + z * z; double scale = 3; int i = 0; for (i = 0; i < MI && r < 9; i++) { x = fabs(x); y = fabs(y); z = fabs(z); if (x - y < 0) { double x1 = y; y = x; x = x1; } if (x - z < 0) { double x1 = z; z = x; x = x1; } if (y - z < 0) { double y1 = z; z = y; y = y1; } x = scale * x - 1 * (scale - 1); y = scale * y - 1 * (scale - 1); z = scale * z; if (z > 0.5 * 1 * (scale - 1)) z -= 1 * (scale - 1); r = x * x + y * y + z * z; } return ((sqrt(r)) * pow(scale, (-i)) < d); } double sphere(double x, double y, double z, double d, int ITR = 1) { return v3f(x, y, z).getLength() < d; } //////////////////////// Mapgen Math parameter read/write void MapgenMathParams::readParams(Settings *settings) { //params = settings->getJson("mg_math"); // can be counfigured from here. std::string value = "{}"; Json::Reader reader; if (!reader.parse( value, params ) ) { errorstream << "Failed to parse json conf var ='" << value << "' : " << reader.getFormattedErrorMessages(); } if (params["generator"].empty()) params["generator"] = settings->get("mgmath_generator"); } void MapgenMathParams::writeParams(Settings *settings) { //settings->setJson("mg_math", params); settings->set("mgmath_generator", params["generator"].asString()); } /////////////////////////////////////////////////////////////////////////////// MapgenMath::MapgenMath(int mapgenid, MapgenParams *params_, EmergeManager *emerge) : MapgenV7(mapgenid, params_, emerge) { mg_params = (MapgenMathParams *)params_; this->flags &= ~MG_LIGHT; Json::Value & params = mg_params->params; invert = params["invert"].empty() ? 1 : params["invert"].asBool(); //params["invert"].empty()?1:params["invert"].asBool(); size = params["size"].empty() ? 0 : params["size"].asDouble(); // = max_r scale = params["scale"].empty() ? 0 : params["scale"].asDouble(); //(double)1 / size; if(!params["center"].empty()) center = v3f(params["center"]["x"].asFloat(), params["center"]["y"].asFloat(), params["center"]["z"].asFloat()); //v3f(5, -size - 5, 5); iterations = params["iterations"].empty() ? 0 : params["iterations"].asInt(); //10; distance = params["distance"].empty() ? 0 : params["distance"].asDouble(); // = 1/size; func = &sphere; if (params["generator"].empty()) params["generator"] = "mandelbox"; if (params["generator"].asString() == "mengersponge") { if (!size) size = (MAP_GENERATION_LIMIT - 1000) / 2; if (!iterations) iterations = 10; if (!distance) distance = 0.0003; //if (!scale) scale = (double)0.1 / size; //if (!distance) distance = 0.01; //10/size;//sqrt3 * bd4; //if (!scale) scale = 0.01; //10/size;//sqrt3 * bd4; //center=v3f(-size/3,-size/3+(-2*-invert),2); center = v3f(-size, -size, -size); func = &mengersponge; } else if (params["generator"].asString() == "mandelbox") { /* size = MAP_GENERATION_LIMIT - 1000; //size = 1000; distance = 0.01; //100/size; //0.01; iterations = 10; center = v3f(1, 1, 1); // *size/6; */ //mandelbox if (!size) size = 1000; if (!distance) distance = 0.01; if(params["invert"].empty()) invert = 0; //center=v3f(2,-size/4,2); //size = 10000; //center=v3f(size/2,-size*0.9,size/2); if(params["center"].empty())center = v3f(size * 0.3, -size * 0.6, size * 0.5); func = &mandelbox; } else if (params["generator"].asString() == "sphere") { if(params["invert"].empty()) invert = 0; if (!size) size = 100; if (!distance) distance = size; func = &sphere; if (!scale) scale = 1; //sphere //size = 1000;scale = 1;center = v3f(2,-size-2,2); } if (!iterations) iterations = 10; if (!size) size = 1000; if (!scale) scale = (double)1 / size; if (!distance) distance = scale; if (params["center"].empty() && !center.getLength()) center = v3f(3, -size + (-5 - (-invert * 10)), 3); //size ||= params["size"].empty()?1000:params["size"].asDouble(); // = max_r } MapgenMath::~MapgenMath() { } //////////////////////// Map generator int MapgenMath::generateTerrain() { MapNode n_air(CONTENT_AIR, LIGHT_SUN), n_water_source(c_water_source, LIGHT_SUN); MapNode n_stone(c_stone, LIGHT_SUN); u32 index = 0; v3s16 em = vm->m_area.getExtent(); #if 1 /* debug v3f vec0 = (v3f(node_min.X, node_min.Y, node_min.Z) - center) * scale ; errorstream << " X=" << node_min.X << " Y=" << node_min.Y << " Z=" << node_min.Z //<< " N="<< mengersponge(vec0.X, vec0.Y, vec0.Z, distance, iterations) << " N=" << (*func)(vec0.X, vec0.Y, vec0.Z, distance, iterations) << " Sc=" << scale << " gen=" << params["generator"].asString() << " J=" << Json::FastWriter().write(params) << std::endl; */ for (s16 z = node_min.Z; z <= node_max.Z; z++) { for (s16 x = node_min.X; x <= node_max.X; x++, index++) { //Biome *biome = bmgr->biomes[biomemap[index]]; u32 i = vm->m_area.index(x, node_min.Y, z); for (s16 y = node_min.Y; y <= node_max.Y; y++) { v3f vec = (v3f(x, y, z) - center) * scale ; double d = (*func)(vec.X, vec.Y, vec.Z, distance, iterations); if ((!invert && d > 0) || (invert && d == 0) ) { if (vm->m_data[i].getContent() == CONTENT_IGNORE) // vm->m_data[i] = (y > water_level + biome->filler) ? // MapNode(biome->c_filler) : n_stone; vm->m_data[i] = n_stone; } else if (y <= water_level) { vm->m_data[i] = n_water_source; } else { vm->m_data[i] = n_air; } vm->m_area.add_y(em, i, 1); } } } #endif #if 0 // mandelbulber, unfinished but works sFractal par; par.doubles.N = 10; par.doubles.power = 9.0; par.doubles.foldingSphericalFixed = 1.0; par.doubles.foldingSphericalMin = 0.5; //no par.formula = smoothMandelbox; par.doubles.N = 40; invert = 0;//no par.mandelbox.doubles.sharpness = 3.0; par.mandelbox.doubles.scale = 1; par.mandelbox.doubles.sharpness = 2; par.mandelbox.doubles.foldingLimit = 1.0; par.mandelbox.doubles.foldingValue = 2; //ok par.formula = mandelboxVaryScale4D; par.doubles.N = 50; scale = 5; invert = 1; //ok par.mandelbox.doubles.vary4D.scaleVary = 0.1; par.mandelbox.doubles.vary4D.fold = 1; par.mandelbox.doubles.vary4D.rPower = 1; par.mandelbox.doubles.vary4D.minR = 0.5; par.mandelbox.doubles.vary4D.wadd = 0; par.doubles.constantFactor = 1.0; par.formula = menger_sponge; par.doubles.N = 15; invert = 0; size = 30000; center = v3f(-size / 2, -size + (-2 * -invert), 2); scale = (double)1 / size; //ok //double tresh = 1.5; //par.formula = mandelbulb2; par.doubles.N = 10; scale = (double)1/size; invert=1; center = v3f(5,-size-5,0); //ok //par.formula = hypercomplex; par.doubles.N = 20; scale = 0.0001; invert=1; center = v3f(0,-10001,0); //(double)50 / max_r; //no par.formula = trig_DE; par.doubles.N = 5; scale = (double)10; invert=1; //no par.formula = trig_optim; scale = (double)10; par.doubles.N = 4; //par.formula = mandelbulb2; scale = (double)1/10000; par.doubles.N = 10; invert = 1; center = v3f(1,-4201,1); //ok // no par.formula = tglad; //par.formula = xenodreambuie; par.juliaMode = 1; par.doubles.julia.x = -1; par.doubles.power = 2.0; center=v3f(-size/2,-size/2-5,5); //ok par.mandelbox.doubles.vary4D.scaleVary = 0.1; par.mandelbox.doubles.vary4D.fold = 1; par.mandelbox.doubles.vary4D.minR = 0.5; par.mandelbox.doubles.vary4D.rPower = 1; par.mandelbox.doubles.vary4D.wadd = 0; //no par.formula = mandelboxVaryScale4D; par.doubles.cadd = -1.3; //par.formula = aexion; // ok but center //par.formula = benesi; par.doubles.N = 10; center = v3f(0,0,0); invert = 0; //ok // par.formula = bristorbrot; //ok v3f vec0(node_min.X, node_min.Y, node_min.Z); vec0 = (vec0 - center) * scale ; errorstream << " X=" << node_min.X << " Y=" << node_min.Y << " Z=" << node_min.Z << " N=" << Compute(CVector3(vec0.X, vec0.Y, vec0.Z), par) //<<" F="<< Compute(CVector3(node_min.X,node_min.Y,node_min.Z), par) //<<" L="<