// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #pragma once #include "IMeshBuffer.h" #include "S3DVertex.h" namespace irr { namespace scene { //! A mesh buffer able to choose between S3DVertex2TCoords, S3DVertex and S3DVertexTangents at runtime struct SSkinMeshBuffer : public IMeshBuffer { //! Default constructor SSkinMeshBuffer(video::E_VERTEX_TYPE vt = video::EVT_STANDARD) : ChangedID_Vertex(1), ChangedID_Index(1), VertexType(vt), PrimitiveType(EPT_TRIANGLES), MappingHint_Vertex(EHM_NEVER), MappingHint_Index(EHM_NEVER), HWBuffer(NULL), BoundingBoxNeedsRecalculated(true) { #ifdef _DEBUG setDebugName("SSkinMeshBuffer"); #endif } //! Get Material of this buffer. const video::SMaterial &getMaterial() const override { return Material; } //! Get Material of this buffer. video::SMaterial &getMaterial() override { return Material; } //! Get standard vertex at given index virtual video::S3DVertex *getVertex(u32 index) { switch (VertexType) { case video::EVT_2TCOORDS: return (video::S3DVertex *)&Vertices_2TCoords[index]; case video::EVT_TANGENTS: return (video::S3DVertex *)&Vertices_Tangents[index]; default: return &Vertices_Standard[index]; } } //! Get pointer to vertex array const void *getVertices() const override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords.const_pointer(); case video::EVT_TANGENTS: return Vertices_Tangents.const_pointer(); default: return Vertices_Standard.const_pointer(); } } //! Get pointer to vertex array void *getVertices() override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords.pointer(); case video::EVT_TANGENTS: return Vertices_Tangents.pointer(); default: return Vertices_Standard.pointer(); } } //! Get vertex count u32 getVertexCount() const override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords.size(); case video::EVT_TANGENTS: return Vertices_Tangents.size(); default: return Vertices_Standard.size(); } } //! Get type of index data which is stored in this meshbuffer. /** \return Index type of this buffer. */ video::E_INDEX_TYPE getIndexType() const override { return video::EIT_16BIT; } //! Get pointer to index array const u16 *getIndices() const override { return Indices.const_pointer(); } //! Get pointer to index array u16 *getIndices() override { return Indices.pointer(); } //! Get index count u32 getIndexCount() const override { return Indices.size(); } //! Get bounding box const core::aabbox3d &getBoundingBox() const override { return BoundingBox; } //! Set bounding box void setBoundingBox(const core::aabbox3df &box) override { BoundingBox = box; } //! Recalculate bounding box void recalculateBoundingBox() override { if (!BoundingBoxNeedsRecalculated) return; BoundingBoxNeedsRecalculated = false; switch (VertexType) { case video::EVT_STANDARD: { if (Vertices_Standard.empty()) BoundingBox.reset(0, 0, 0); else { BoundingBox.reset(Vertices_Standard[0].Pos); for (u32 i = 1; i < Vertices_Standard.size(); ++i) BoundingBox.addInternalPoint(Vertices_Standard[i].Pos); } break; } case video::EVT_2TCOORDS: { if (Vertices_2TCoords.empty()) BoundingBox.reset(0, 0, 0); else { BoundingBox.reset(Vertices_2TCoords[0].Pos); for (u32 i = 1; i < Vertices_2TCoords.size(); ++i) BoundingBox.addInternalPoint(Vertices_2TCoords[i].Pos); } break; } case video::EVT_TANGENTS: { if (Vertices_Tangents.empty()) BoundingBox.reset(0, 0, 0); else { BoundingBox.reset(Vertices_Tangents[0].Pos); for (u32 i = 1; i < Vertices_Tangents.size(); ++i) BoundingBox.addInternalPoint(Vertices_Tangents[i].Pos); } break; } } } //! Get vertex type video::E_VERTEX_TYPE getVertexType() const override { return VertexType; } //! Convert to 2tcoords vertex type void convertTo2TCoords() { if (VertexType == video::EVT_STANDARD) { for (u32 n = 0; n < Vertices_Standard.size(); ++n) { video::S3DVertex2TCoords Vertex; Vertex.Color = Vertices_Standard[n].Color; Vertex.Pos = Vertices_Standard[n].Pos; Vertex.Normal = Vertices_Standard[n].Normal; Vertex.TCoords = Vertices_Standard[n].TCoords; Vertices_2TCoords.push_back(Vertex); } Vertices_Standard.clear(); VertexType = video::EVT_2TCOORDS; } } //! Convert to tangents vertex type void convertToTangents() { if (VertexType == video::EVT_STANDARD) { for (u32 n = 0; n < Vertices_Standard.size(); ++n) { video::S3DVertexTangents Vertex; Vertex.Color = Vertices_Standard[n].Color; Vertex.Pos = Vertices_Standard[n].Pos; Vertex.Normal = Vertices_Standard[n].Normal; Vertex.TCoords = Vertices_Standard[n].TCoords; Vertices_Tangents.push_back(Vertex); } Vertices_Standard.clear(); VertexType = video::EVT_TANGENTS; } else if (VertexType == video::EVT_2TCOORDS) { for (u32 n = 0; n < Vertices_2TCoords.size(); ++n) { video::S3DVertexTangents Vertex; Vertex.Color = Vertices_2TCoords[n].Color; Vertex.Pos = Vertices_2TCoords[n].Pos; Vertex.Normal = Vertices_2TCoords[n].Normal; Vertex.TCoords = Vertices_2TCoords[n].TCoords; Vertices_Tangents.push_back(Vertex); } Vertices_2TCoords.clear(); VertexType = video::EVT_TANGENTS; } } //! returns position of vertex i const core::vector3df &getPosition(u32 i) const override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].Pos; case video::EVT_TANGENTS: return Vertices_Tangents[i].Pos; default: return Vertices_Standard[i].Pos; } } //! returns position of vertex i core::vector3df &getPosition(u32 i) override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].Pos; case video::EVT_TANGENTS: return Vertices_Tangents[i].Pos; default: return Vertices_Standard[i].Pos; } } //! returns normal of vertex i const core::vector3df &getNormal(u32 i) const override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].Normal; case video::EVT_TANGENTS: return Vertices_Tangents[i].Normal; default: return Vertices_Standard[i].Normal; } } //! returns normal of vertex i core::vector3df &getNormal(u32 i) override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].Normal; case video::EVT_TANGENTS: return Vertices_Tangents[i].Normal; default: return Vertices_Standard[i].Normal; } } //! returns texture coords of vertex i const core::vector2df &getTCoords(u32 i) const override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].TCoords; case video::EVT_TANGENTS: return Vertices_Tangents[i].TCoords; default: return Vertices_Standard[i].TCoords; } } //! returns texture coords of vertex i core::vector2df &getTCoords(u32 i) override { switch (VertexType) { case video::EVT_2TCOORDS: return Vertices_2TCoords[i].TCoords; case video::EVT_TANGENTS: return Vertices_Tangents[i].TCoords; default: return Vertices_Standard[i].TCoords; } } //! append the vertices and indices to the current buffer void append(const void* const vertices, u32 numVertices, const u16* const indices, u32 numIndices) override { if (vertices == getVertices()) throw std::logic_error("can't append own vertices"); if (VertexType != video::EVT_STANDARD) throw std::logic_error("invalid vertex type"); const u32 prevVertexCount = getVertexCount(); Vertices_Standard.reallocate(prevVertexCount + numVertices); for (u32 i=0; i < numVertices; ++i) { Vertices_Standard.push_back(static_cast(vertices)[i]); BoundingBox.addInternalPoint(static_cast(vertices)[i].Pos); } Indices.reallocate(getIndexCount() + numIndices); for (u32 i=0; i < numIndices; ++i) { Indices.push_back(indices[i] + prevVertexCount); } } //! NOT IMPLEMENTED YET: append the meshbuffer to the current buffer void append(const IMeshBuffer* const other) override { throw std::logic_error("not implemented yet"); } //! get the current hardware mapping hint for vertex buffers E_HARDWARE_MAPPING getHardwareMappingHint_Vertex() const override { return MappingHint_Vertex; } //! get the current hardware mapping hint for index buffers E_HARDWARE_MAPPING getHardwareMappingHint_Index() const override { return MappingHint_Index; } //! set the hardware mapping hint, for driver void setHardwareMappingHint(E_HARDWARE_MAPPING NewMappingHint, E_BUFFER_TYPE Buffer = EBT_VERTEX_AND_INDEX) override { if (Buffer == EBT_VERTEX) MappingHint_Vertex = NewMappingHint; else if (Buffer == EBT_INDEX) MappingHint_Index = NewMappingHint; else if (Buffer == EBT_VERTEX_AND_INDEX) { MappingHint_Vertex = NewMappingHint; MappingHint_Index = NewMappingHint; } } //! Describe what kind of primitive geometry is used by the meshbuffer void setPrimitiveType(E_PRIMITIVE_TYPE type) override { PrimitiveType = type; } //! Get the kind of primitive geometry which is used by the meshbuffer E_PRIMITIVE_TYPE getPrimitiveType() const override { return PrimitiveType; } //! flags the mesh as changed, reloads hardware buffers void setDirty(E_BUFFER_TYPE Buffer = EBT_VERTEX_AND_INDEX) override { if (Buffer == EBT_VERTEX_AND_INDEX || Buffer == EBT_VERTEX) ++ChangedID_Vertex; if (Buffer == EBT_VERTEX_AND_INDEX || Buffer == EBT_INDEX) ++ChangedID_Index; } u32 getChangedID_Vertex() const override { return ChangedID_Vertex; } u32 getChangedID_Index() const override { return ChangedID_Index; } void setHWBuffer(void *ptr) const override { HWBuffer = ptr; } void *getHWBuffer() const override { return HWBuffer; } //! Call this after changing the positions of any vertex. void boundingBoxNeedsRecalculated(void) { BoundingBoxNeedsRecalculated = true; } core::array Vertices_Tangents; core::array Vertices_2TCoords; core::array Vertices_Standard; core::array Indices; u32 ChangedID_Vertex; u32 ChangedID_Index; // ISkinnedMesh::SJoint *AttachedJoint; core::matrix4 Transformation; video::SMaterial Material; video::E_VERTEX_TYPE VertexType; core::aabbox3d BoundingBox; //! Primitive type used for rendering (triangles, lines, ...) E_PRIMITIVE_TYPE PrimitiveType; // hardware mapping hint E_HARDWARE_MAPPING MappingHint_Vertex : 3; E_HARDWARE_MAPPING MappingHint_Index : 3; mutable void *HWBuffer; bool BoundingBoxNeedsRecalculated : 1; }; } // end namespace scene } // end namespace irr