uniform mat4 mWorldViewProj; uniform mat4 mWorld; // Color of the light emitted by the sun. uniform vec3 dayLight; uniform vec3 eyePosition; // The cameraOffset is the current center of the visible world. uniform vec3 cameraOffset; uniform float animationTimer; varying vec3 vPosition; // World position in the visible world (i.e. relative to the cameraOffset.) // This can be used for many shader effects without loss of precision. // If the absolute position is required it can be calculated with // cameraOffset + worldPosition (for large coordinates the limits of float // precision must be considered). varying vec3 worldPosition; varying vec3 eyeVec; varying vec3 lightVec; varying vec3 tsEyeVec; varying vec3 tsLightVec; varying float area_enable_parallax; // Color of the light emitted by the light sources. const vec3 artificialLight = vec3(1.04, 1.04, 1.04); const float e = 2.718281828459; const float BS = 10.0; float smoothCurve(float x) { return x * x * (3.0 - 2.0 * x); } float triangleWave(float x) { return abs(fract(x + 0.5) * 2.0 - 1.0); } float smoothTriangleWave(float x) { return smoothCurve(triangleWave(x)) * 2.0 - 1.0; } #if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_TRANSPARENT || \ MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_OPAQUE || \ MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_BASIC) && ENABLE_WAVING_WATER // // Simple, fast noise function. // See: https://gist.github.com/patriciogonzalezvivo/670c22f3966e662d2f83 // vec4 perm(vec4 x) { return mod(((x * 34.0) + 1.0) * x, 289.0); } float snoise(vec3 p) { vec3 a = floor(p); vec3 d = p - a; d = d * d * (3.0 - 2.0 * d); vec4 b = a.xxyy + vec4(0.0, 1.0, 0.0, 1.0); vec4 k1 = perm(b.xyxy); vec4 k2 = perm(k1.xyxy + b.zzww); vec4 c = k2 + a.zzzz; vec4 k3 = perm(c); vec4 k4 = perm(c + 1.0); vec4 o1 = fract(k3 * (1.0 / 41.0)); vec4 o2 = fract(k4 * (1.0 / 41.0)); vec4 o3 = o2 * d.z + o1 * (1.0 - d.z); vec2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x); return o4.y * d.y + o4.x * (1.0 - d.y); } #endif void main(void) { gl_TexCoord[0] = gl_MultiTexCoord0; //TODO: make offset depending on view angle and parallax uv displacement //thats for textures that doesnt align vertically, like dirt with grass //gl_TexCoord[0].y += 0.008; //Allow parallax/relief mapping only for certain kind of nodes //Variable is also used to control area of the effect #if (DRAW_TYPE == NDT_NORMAL || DRAW_TYPE == NDT_LIQUID || DRAW_TYPE == NDT_FLOWINGLIQUID) area_enable_parallax = 1.0; #else area_enable_parallax = 0.0; #endif float disp_x; float disp_z; #if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES && ENABLE_WAVING_LEAVES) || \ (MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS && ENABLE_WAVING_PLANTS) vec4 pos2 = mWorld * gl_Vertex; float tOffset = (pos2.x + pos2.y) * 0.001 + pos2.z * 0.002; disp_x = (smoothTriangleWave(animationTimer * 23.0 + tOffset) + smoothTriangleWave(animationTimer * 11.0 + tOffset)) * 0.4; disp_z = (smoothTriangleWave(animationTimer * 31.0 + tOffset) + smoothTriangleWave(animationTimer * 29.0 + tOffset) + smoothTriangleWave(animationTimer * 13.0 + tOffset)) * 0.5; #endif worldPosition = (mWorld * gl_Vertex).xyz; #if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_TRANSPARENT || \ MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_OPAQUE || \ MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_BASIC) && ENABLE_WAVING_WATER // Generate waves with Perlin-type noise. // The constants are calibrated such that they roughly // correspond to the old sine waves. vec4 pos = gl_Vertex; vec3 wavePos = worldPosition + cameraOffset; // The waves are slightly compressed along the z-axis to get // wave-fronts along the x-axis. wavePos.x /= WATER_WAVE_LENGTH * 3; wavePos.z /= WATER_WAVE_LENGTH * 2; wavePos.z += animationTimer * WATER_WAVE_SPEED * 10; pos.y += (snoise(wavePos) - 1) * WATER_WAVE_HEIGHT * 5; gl_Position = mWorldViewProj * pos; #elif MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES && ENABLE_WAVING_LEAVES vec4 pos = gl_Vertex; pos.x += disp_x; pos.y += disp_z * 0.1; pos.z += disp_z; gl_Position = mWorldViewProj * pos; #elif MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS && ENABLE_WAVING_PLANTS vec4 pos = gl_Vertex; if (gl_TexCoord[0].y < 0.05) { pos.x += disp_x; pos.z += disp_z; } gl_Position = mWorldViewProj * pos; #else gl_Position = mWorldViewProj * gl_Vertex; #endif vPosition = gl_Position.xyz; // Don't generate heightmaps when too far from the eye float dist = distance (vec3(0.0, 0.0, 0.0), vPosition); if (dist > 150.0) { area_enable_parallax = 0.0; } vec3 sunPosition = vec3 (0.0, eyePosition.y * BS + 900.0, 0.0); vec3 normal, tangent, binormal; normal = normalize(gl_NormalMatrix * gl_Normal); tangent = normalize(gl_NormalMatrix * gl_MultiTexCoord1.xyz); binormal = normalize(gl_NormalMatrix * gl_MultiTexCoord2.xyz); vec3 v; lightVec = sunPosition - worldPosition; v.x = dot(lightVec, tangent); v.y = dot(lightVec, binormal); v.z = dot(lightVec, normal); tsLightVec = normalize (v); eyeVec = -(gl_ModelViewMatrix * gl_Vertex).xyz; v.x = dot(eyeVec, tangent); v.y = dot(eyeVec, binormal); v.z = dot(eyeVec, normal); tsEyeVec = normalize (v); // Calculate color. // Red, green and blue components are pre-multiplied with // the brightness, so now we have to multiply these // colors with the color of the incoming light. // The pre-baked colors are halved to prevent overflow. vec4 color; // The alpha gives the ratio of sunlight in the incoming light. float nightRatio = 1 - gl_Color.a; color.rgb = gl_Color.rgb * (gl_Color.a * dayLight.rgb + nightRatio * artificialLight.rgb) * 2; color.a = 1; // Emphase blue a bit in darker places // See C++ implementation in mapblock_mesh.cpp final_color_blend() float brightness = (color.r + color.g + color.b) / 3; color.b += max(0.0, 0.021 - abs(0.2 * brightness - 0.021) + 0.07 * brightness); gl_FrontColor = gl_BackColor = clamp(color, 0.0, 1.0); }