/* Minetest Copyright (C) 2010-2015 kwolekr, Ryan Kwolek Copyright (C) 2010-2015 paramat, Matt Gregory This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "mapgen.h" #include "voxel.h" #include "noise.h" #include "mapblock.h" #include "mapnode.h" #include "map.h" #include "content_sao.h" #include "nodedef.h" #include "voxelalgorithms.h" //#include "profiler.h" // For TimeTaker #include "settings.h" // For g_settings #include "emerge.h" #include "dungeongen.h" #include "cavegen.h" #include "treegen.h" #include "mg_biome.h" #include "mg_ore.h" #include "mg_decoration.h" #include "mapgen_fractal.h" FlagDesc flagdesc_mapgen_fractal[] = { {NULL, 0} }; /////////////////////////////////////////////////////////////////////////////////////// MapgenFractal::MapgenFractal(int mapgenid, MapgenParams *params, EmergeManager *emerge) : Mapgen(mapgenid, params, emerge) { this->m_emerge = emerge; this->bmgr = emerge->biomemgr; //// amount of elements to skip for the next index //// for noise/height/biome maps (not vmanip) this->ystride = csize.X; // 1-down overgeneration this->zstride_1d = csize.X * (csize.Y + 1); this->biomemap = new u8[csize.X * csize.Z]; this->heightmap = new s16[csize.X * csize.Z]; this->heatmap = NULL; this->humidmap = NULL; MapgenFractalParams *sp = (MapgenFractalParams *)params->sparams; this->spflags = sp->spflags; this->cave_width = sp->cave_width; this->fractal = sp->fractal; this->iterations = sp->iterations; this->scale = sp->scale; this->offset = sp->offset; this->slice_w = sp->slice_w; this->julia_x = sp->julia_x; this->julia_y = sp->julia_y; this->julia_z = sp->julia_z; this->julia_w = sp->julia_w; //// 2D terrain noise noise_seabed = new Noise(&sp->np_seabed, seed, csize.X, csize.Z); noise_filler_depth = new Noise(&sp->np_filler_depth, seed, csize.X, csize.Z); //// 3D terrain noise // 1-down overgeneraion noise_cave1 = new Noise(&sp->np_cave1, seed, csize.X, csize.Y + 1, csize.Z); noise_cave2 = new Noise(&sp->np_cave2, seed, csize.X, csize.Y + 1, csize.Z); //// Biome noise noise_heat = new Noise(¶ms->np_biome_heat, seed, csize.X, csize.Z); noise_humidity = new Noise(¶ms->np_biome_humidity, seed, csize.X, csize.Z); noise_heat_blend = new Noise(¶ms->np_biome_heat_blend, seed, csize.X, csize.Z); noise_humidity_blend = new Noise(¶ms->np_biome_humidity_blend, seed, csize.X, csize.Z); this->formula = fractal / 2 + fractal % 2; this->julia = fractal % 2 == 0; //// Resolve nodes to be used INodeDefManager *ndef = emerge->ndef; c_stone = ndef->getId("mapgen_stone"); c_water_source = ndef->getId("mapgen_water_source"); c_lava_source = ndef->getId("mapgen_lava_source"); c_desert_stone = ndef->getId("mapgen_desert_stone"); c_ice = ndef->getId("mapgen_ice"); c_sandstone = ndef->getId("mapgen_sandstone"); c_cobble = ndef->getId("mapgen_cobble"); c_stair_cobble = ndef->getId("mapgen_stair_cobble"); c_mossycobble = ndef->getId("mapgen_mossycobble"); c_sandstonebrick = ndef->getId("mapgen_sandstonebrick"); c_stair_sandstonebrick = ndef->getId("mapgen_stair_sandstonebrick"); if (c_ice == CONTENT_IGNORE) c_ice = CONTENT_AIR; if (c_mossycobble == CONTENT_IGNORE) c_mossycobble = c_cobble; if (c_stair_cobble == CONTENT_IGNORE) c_stair_cobble = c_cobble; if (c_sandstonebrick == CONTENT_IGNORE) c_sandstonebrick = c_sandstone; if (c_stair_sandstonebrick == CONTENT_IGNORE) c_stair_sandstonebrick = c_sandstone; } MapgenFractal::~MapgenFractal() { delete noise_seabed; delete noise_filler_depth; delete noise_cave1; delete noise_cave2; delete noise_heat; delete noise_humidity; delete noise_heat_blend; delete noise_humidity_blend; delete[] heightmap; delete[] biomemap; } MapgenFractalParams::MapgenFractalParams() { spflags = 0; cave_width = 0.3; fractal = 1; iterations = 11; scale = v3f(4096.0, 1024.0, 4096.0); offset = v3f(1.79, 0.0, 0.0); slice_w = 0.0; julia_x = 0.33; julia_y = 0.33; julia_z = 0.33; julia_w = 0.33; np_seabed = NoiseParams(-14, 9, v3f(600, 600, 600), 41900, 5, 0.6, 2.0); np_filler_depth = NoiseParams(0, 1.2, v3f(150, 150, 150), 261, 3, 0.7, 2.0); np_cave1 = NoiseParams(0, 12, v3f(96, 96, 96), 52534, 4, 0.5, 2.0); np_cave2 = NoiseParams(0, 12, v3f(96, 96, 96), 10325, 4, 0.5, 2.0); } void MapgenFractalParams::readParams(const Settings *settings) { settings->getFlagStrNoEx("mgfractal_spflags", spflags, flagdesc_mapgen_fractal); settings->getFloatNoEx("mgfractal_cave_width", cave_width); settings->getU16NoEx("mgfractal_fractal", fractal); settings->getU16NoEx("mgfractal_iterations", iterations); settings->getV3FNoEx("mgfractal_scale", scale); settings->getV3FNoEx("mgfractal_offset", offset); settings->getFloatNoEx("mgfractal_slice_w", slice_w); settings->getFloatNoEx("mgfractal_julia_x", julia_x); settings->getFloatNoEx("mgfractal_julia_y", julia_y); settings->getFloatNoEx("mgfractal_julia_z", julia_z); settings->getFloatNoEx("mgfractal_julia_w", julia_w); settings->getNoiseParams("mgfractal_np_seabed", np_seabed); settings->getNoiseParams("mgfractal_np_filler_depth", np_filler_depth); settings->getNoiseParams("mgfractal_np_cave1", np_cave1); settings->getNoiseParams("mgfractal_np_cave2", np_cave2); } void MapgenFractalParams::writeParams(Settings *settings) const { settings->setFlagStr("mgfractal_spflags", spflags, flagdesc_mapgen_fractal, U32_MAX); settings->setFloat("mgfractal_cave_width", cave_width); settings->setU16("mgfractal_fractal", fractal); settings->setU16("mgfractal_iterations", iterations); settings->setV3F("mgfractal_scale", scale); settings->setV3F("mgfractal_offset", offset); settings->setFloat("mgfractal_slice_w", slice_w); settings->setFloat("mgfractal_julia_x", julia_x); settings->setFloat("mgfractal_julia_y", julia_y); settings->setFloat("mgfractal_julia_z", julia_z); settings->setFloat("mgfractal_julia_w", julia_w); settings->setNoiseParams("mgfractal_np_seabed", np_seabed); settings->setNoiseParams("mgfractal_np_filler_depth", np_filler_depth); settings->setNoiseParams("mgfractal_np_cave1", np_cave1); settings->setNoiseParams("mgfractal_np_cave2", np_cave2); } ///////////////////////////////////////////////////////////////// int MapgenFractal::getSpawnLevelAtPoint(v2s16 p) { bool solid_below = false; // Dry solid node is present below to spawn on u8 air_count = 0; // Consecutive air nodes above the dry solid node s16 seabed_level = NoisePerlin2D(&noise_seabed->np, p.X, p.Y, seed); // Seabed can rise above water_level or might be raised to create dry land s16 search_start = MYMAX(seabed_level, water_level + 1); if (seabed_level > water_level) solid_below = true; for (s16 y = search_start; y <= search_start + 128; y++) { if (getFractalAtPoint(p.X, y, p.Y)) { // Fractal node solid_below = true; air_count = 0; } else if (solid_below) { // Air above solid node air_count++; if (air_count == 2) return y - 2; } } return MAX_MAP_GENERATION_LIMIT; // Unsuitable spawn point } void MapgenFractal::makeChunk(BlockMakeData *data) { // Pre-conditions assert(data->vmanip); assert(data->nodedef); assert(data->blockpos_requested.X >= data->blockpos_min.X && data->blockpos_requested.Y >= data->blockpos_min.Y && data->blockpos_requested.Z >= data->blockpos_min.Z); assert(data->blockpos_requested.X <= data->blockpos_max.X && data->blockpos_requested.Y <= data->blockpos_max.Y && data->blockpos_requested.Z <= data->blockpos_max.Z); this->generating = true; this->vm = data->vmanip; this->ndef = data->nodedef; //TimeTaker t("makeChunk"); v3s16 blockpos_min = data->blockpos_min; v3s16 blockpos_max = data->blockpos_max; node_min = blockpos_min * MAP_BLOCKSIZE; node_max = (blockpos_max + v3s16(1, 1, 1)) * MAP_BLOCKSIZE - v3s16(1, 1, 1); full_node_min = (blockpos_min - 1) * MAP_BLOCKSIZE; full_node_max = (blockpos_max + 2) * MAP_BLOCKSIZE - v3s16(1, 1, 1); blockseed = getBlockSeed2(full_node_min, seed); // Make some noise calculateNoise(); // Generate base terrain, mountains, and ridges with initial heightmaps s16 stone_surface_max_y = generateTerrain(); // Create heightmap updateHeightmap(node_min, node_max); // Create biomemap at heightmap surface bmgr->calcBiomes(csize.X, csize.Z, noise_heat->result, noise_humidity->result, heightmap, biomemap); // Actually place the biome-specific nodes MgStoneType stone_type = generateBiomes(noise_heat->result, noise_humidity->result); if (flags & MG_CAVES) generateCaves(stone_surface_max_y); if ((flags & MG_DUNGEONS) && (stone_surface_max_y >= node_min.Y)) { DungeonParams dp; dp.np_rarity = nparams_dungeon_rarity; dp.np_density = nparams_dungeon_density; dp.np_wetness = nparams_dungeon_wetness; dp.c_water = c_water_source; if (stone_type == STONE) { dp.c_cobble = c_cobble; dp.c_moss = c_mossycobble; dp.c_stair = c_stair_cobble; dp.diagonal_dirs = false; dp.mossratio = 3.0; dp.holesize = v3s16(1, 2, 1); dp.roomsize = v3s16(0, 0, 0); dp.notifytype = GENNOTIFY_DUNGEON; } else if (stone_type == DESERT_STONE) { dp.c_cobble = c_desert_stone; dp.c_moss = c_desert_stone; dp.c_stair = c_desert_stone; dp.diagonal_dirs = true; dp.mossratio = 0.0; dp.holesize = v3s16(2, 3, 2); dp.roomsize = v3s16(2, 5, 2); dp.notifytype = GENNOTIFY_TEMPLE; } else if (stone_type == SANDSTONE) { dp.c_cobble = c_sandstonebrick; dp.c_moss = c_sandstonebrick; dp.c_stair = c_sandstonebrick; dp.diagonal_dirs = false; dp.mossratio = 0.0; dp.holesize = v3s16(2, 2, 2); dp.roomsize = v3s16(2, 0, 2); dp.notifytype = GENNOTIFY_DUNGEON; } DungeonGen dgen(this, &dp); dgen.generate(blockseed, full_node_min, full_node_max); } // Generate the registered decorations if (flags & MG_DECORATIONS) m_emerge->decomgr->placeAllDecos(this, blockseed, node_min, node_max); // Generate the registered ores m_emerge->oremgr->placeAllOres(this, blockseed, node_min, node_max); // Sprinkle some dust on top after everything else was generated dustTopNodes(); //printf("makeChunk: %dms\n", t.stop()); updateLiquid(&data->transforming_liquid, full_node_min, full_node_max); if (flags & MG_LIGHT) calcLighting(node_min - v3s16(0, 1, 0), node_max + v3s16(0, 1, 0), full_node_min, full_node_max); //setLighting(node_min - v3s16(1, 0, 1) * MAP_BLOCKSIZE, // node_max + v3s16(1, 0, 1) * MAP_BLOCKSIZE, 0xFF); this->generating = false; } void MapgenFractal::calculateNoise() { //TimeTaker t("calculateNoise", NULL, PRECISION_MICRO); s16 x = node_min.X; s16 z = node_min.Z; noise_seabed->perlinMap2D(x, z); // Cave noises are calculated in generateCaves() // only if solid terrain is present in mapchunk noise_filler_depth->perlinMap2D(x, z); noise_heat->perlinMap2D(x, z); noise_humidity->perlinMap2D(x, z); noise_heat_blend->perlinMap2D(x, z); noise_humidity_blend->perlinMap2D(x, z); for (s32 i = 0; i < csize.X * csize.Z; i++) { noise_heat->result[i] += noise_heat_blend->result[i]; noise_humidity->result[i] += noise_humidity_blend->result[i]; } heatmap = noise_heat->result; humidmap = noise_humidity->result; //printf("calculateNoise: %dus\n", t.stop()); } bool MapgenFractal::getFractalAtPoint(s16 x, s16 y, s16 z) { float cx, cy, cz, cw, ox, oy, oz, ow; if (julia) { // Julia set cx = julia_x; cy = julia_y; cz = julia_z; cw = julia_w; ox = (float)x / scale.X - offset.X; oy = (float)y / scale.Y - offset.Y; oz = (float)z / scale.Z - offset.Z; ow = slice_w; } else { // Mandelbrot set cx = (float)x / scale.X - offset.X; cy = (float)y / scale.Y - offset.Y; cz = (float)z / scale.Z - offset.Z; cw = slice_w; ox = 0.0f; oy = 0.0f; oz = 0.0f; ow = 0.0f; } float nx = 0.0f; float ny = 0.0f; float nz = 0.0f; float nw = 0.0f; for (u16 iter = 0; iter < iterations; iter++) { if (formula == 1) { // 4D "Roundy" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 2) { // 4D "Squarry" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow - oy * oz) + cw; } else if (formula == 3) { // 4D "Mandy Cousin" nx = ox * ox - oy * oy - oz * oz + ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz + oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 4) { // 4D "Variation" nx = ox * ox - oy * oy - oz * oz - ow * ow + cx; ny = 2.0f * (ox * oy + oz * ow) + cy; nz = 2.0f * (ox * oz - oy * ow) + cz; nw = 2.0f * (ox * ow + oy * oz) + cw; } else if (formula == 5) { // 3D "Mandelbrot/Mandelbar" nx = ox * ox - oy * oy - oz * oz + cx; ny = 2.0f * ox * oy + cy; nz = -2.0f * ox * oz + cz; } else if (formula == 6) { // 3D "Christmas Tree" // Altering the formula here is necessary to avoid division by zero if (fabs(oz) < 0.000000001f) { nx = ox * ox - oy * oy - oz * oz + cx; ny = 2.0f * oy * ox + cy; nz = 4.0f * oz * ox + cz; } else { float a = (2.0f * ox) / (sqrt(oy * oy + oz * oz)); nx = ox * ox - oy * oy - oz * oz + cx; ny = a * (oy * oy - oz * oz) + cy; nz = a * 2.0f * oy * oz + cz; } } else if (formula == 7) { // 3D "Mandelbulb" if (fabs(oy) < 0.000000001f) { nx = ox * ox - oz * oz + cx; ny = cy; nz = -2.0f * oz * sqrt(ox * ox) + cz; } else { float a = 1.0f - (oz * oz) / (ox * ox + oy * oy); nx = (ox * ox - oy * oy) * a + cx; ny = 2.0f * ox * oy * a + cy; nz = -2.0f * oz * sqrt(ox * ox + oy * oy) + cz; } } else if (formula == 8) { // 3D "Cosine Mandelbulb" if (fabs(oy) < 0.000000001f) { nx = 2.0f * ox * oz + cx; ny = 4.0f * oy * oz + cy; nz = oz * oz - ox * ox - oy * oy + cz; } else { float a = (2.0f * oz) / sqrt(ox * ox + oy * oy); nx = (ox * ox - oy * oy) * a + cx; ny = 2.0f * ox * oy * a + cy; nz = oz * oz - ox * ox - oy * oy + cz; } } else if (formula == 9) { // 4D "Mandelbulb" float rxy = sqrt(ox * ox + oy * oy); float rxyz = sqrt(ox * ox + oy * oy + oz * oz); if (fabs(ow) < 0.000000001f && fabs(oz) < 0.000000001f) { nx = (ox * ox - oy * oy) + cx; ny = 2.0f * ox * oy + cy; nz = -2.0f * rxy * oz + cz; nw = 2.0f * rxyz * ow + cw; } else { float a = 1.0f - (ow * ow) / (rxyz * rxyz); float b = a * (1.0f - (oz * oz) / (rxy * rxy)); nx = (ox * ox - oy * oy) * b + cx; ny = 2.0f * ox * oy * b + cy; nz = -2.0f * rxy * oz * a + cz; nw = 2.0f * rxyz * ow + cw; } } if (nx * nx + ny * ny + nz * nz + nw * nw > 4.0f) return false; ox = nx; oy = ny; oz = nz; ow = nw; } return true; } s16 MapgenFractal::generateTerrain() { MapNode n_air(CONTENT_AIR); MapNode n_stone(c_stone); MapNode n_water(c_water_source); s16 stone_surface_max_y = -MAX_MAP_GENERATION_LIMIT; u32 index2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) { for (s16 y = node_min.Y - 1; y <= node_max.Y + 1; y++) { u32 vi = vm->m_area.index(node_min.X, y, z); for (s16 x = node_min.X; x <= node_max.X; x++, vi++, index2d++) { if (vm->m_data[vi].getContent() == CONTENT_IGNORE) { s16 seabed_height = noise_seabed->result[index2d]; if (y <= seabed_height || getFractalAtPoint(x, y, z)) { vm->m_data[vi] = n_stone; if (y > stone_surface_max_y) stone_surface_max_y = y; } else if (y <= water_level) { vm->m_data[vi] = n_water; } else { vm->m_data[vi] = n_air; } } } index2d -= ystride; } index2d += ystride; } return stone_surface_max_y; } MgStoneType MapgenFractal::generateBiomes(float *heat_map, float *humidity_map) { v3s16 em = vm->m_area.getExtent(); u32 index = 0; MgStoneType stone_type = STONE; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { Biome *biome = NULL; u16 depth_top = 0; u16 base_filler = 0; u16 depth_water_top = 0; u32 vi = vm->m_area.index(x, node_max.Y, z); // Check node at base of mapchunk above, either a node of a previously // generated mapchunk or if not, a node of overgenerated base terrain. content_t c_above = vm->m_data[vi + em.X].getContent(); bool air_above = c_above == CONTENT_AIR; bool water_above = c_above == c_water_source; // If there is air or water above enable top/filler placement, otherwise force // nplaced to stone level by setting a number exceeding any possible filler depth. u16 nplaced = (air_above || water_above) ? 0 : U16_MAX; for (s16 y = node_max.Y; y >= node_min.Y; y--) { content_t c = vm->m_data[vi].getContent(); // Biome is recalculated each time an upper surface is detected while // working down a column. The selected biome then remains in effect for // all nodes below until the next surface and biome recalculation. // Biome is recalculated: // 1. At the surface of stone below air or water. // 2. At the surface of water below air. // 3. When stone or water is detected but biome has not yet been calculated. if ((c == c_stone && (air_above || water_above || !biome)) || (c == c_water_source && (air_above || !biome))) { biome = bmgr->getBiome(heat_map[index], humidity_map[index], y); depth_top = biome->depth_top; base_filler = MYMAX(depth_top + biome->depth_filler + noise_filler_depth->result[index], 0); depth_water_top = biome->depth_water_top; // Detect stone type for dungeons during every biome calculation. // This is more efficient than detecting per-node and will not // miss any desert stone or sandstone biomes. if (biome->c_stone == c_desert_stone) stone_type = DESERT_STONE; else if (biome->c_stone == c_sandstone) stone_type = SANDSTONE; } if (c == c_stone) { content_t c_below = vm->m_data[vi - em.X].getContent(); // If the node below isn't solid, make this node stone, so that // any top/filler nodes above are structurally supported. // This is done by aborting the cycle of top/filler placement // immediately by forcing nplaced to stone level. if (c_below == CONTENT_AIR || c_below == c_water_source) nplaced = U16_MAX; if (nplaced < depth_top) { vm->m_data[vi] = MapNode(biome->c_top); nplaced++; } else if (nplaced < base_filler) { vm->m_data[vi] = MapNode(biome->c_filler); nplaced++; } else { vm->m_data[vi] = MapNode(biome->c_stone); } air_above = false; water_above = false; } else if (c == c_water_source) { vm->m_data[vi] = MapNode((y > (s32)(water_level - depth_water_top)) ? biome->c_water_top : biome->c_water); nplaced = 0; // Enable top/filler placement for next surface air_above = false; water_above = true; } else if (c == CONTENT_AIR) { nplaced = 0; // Enable top/filler placement for next surface air_above = true; water_above = false; } else { // Possible various nodes overgenerated from neighbouring mapchunks nplaced = U16_MAX; // Disable top/filler placement air_above = false; water_above = false; } vm->m_area.add_y(em, vi, -1); } } return stone_type; } void MapgenFractal::dustTopNodes() { if (node_max.Y < water_level) return; v3s16 em = vm->m_area.getExtent(); u32 index = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index++) { Biome *biome = (Biome *)bmgr->getRaw(biomemap[index]); if (biome->c_dust == CONTENT_IGNORE) continue; u32 vi = vm->m_area.index(x, full_node_max.Y, z); content_t c_full_max = vm->m_data[vi].getContent(); s16 y_start; if (c_full_max == CONTENT_AIR) { y_start = full_node_max.Y - 1; } else if (c_full_max == CONTENT_IGNORE) { vi = vm->m_area.index(x, node_max.Y + 1, z); content_t c_max = vm->m_data[vi].getContent(); if (c_max == CONTENT_AIR) y_start = node_max.Y; else continue; } else { continue; } vi = vm->m_area.index(x, y_start, z); for (s16 y = y_start; y >= node_min.Y - 1; y--) { if (vm->m_data[vi].getContent() != CONTENT_AIR) break; vm->m_area.add_y(em, vi, -1); } content_t c = vm->m_data[vi].getContent(); if (!ndef->get(c).buildable_to && c != CONTENT_IGNORE && c != biome->c_dust) { vm->m_area.add_y(em, vi, 1); vm->m_data[vi] = MapNode(biome->c_dust); } } } void MapgenFractal::generateCaves(s16 max_stone_y) { if (max_stone_y < node_min.Y) return; noise_cave1->perlinMap3D(node_min.X, node_min.Y - 1, node_min.Z); noise_cave2->perlinMap3D(node_min.X, node_min.Y - 1, node_min.Z); v3s16 em = vm->m_area.getExtent(); u32 index2d = 0; for (s16 z = node_min.Z; z <= node_max.Z; z++) for (s16 x = node_min.X; x <= node_max.X; x++, index2d++) { bool column_is_open = false; // Is column open to overground bool is_tunnel = false; // Is tunnel or tunnel floor u32 vi = vm->m_area.index(x, node_max.Y, z); u32 index3d = (z - node_min.Z) * zstride_1d + csize.Y * ystride + (x - node_min.X); // Biome of column Biome *biome = (Biome *)bmgr->getRaw(biomemap[index2d]); // Don't excavate the overgenerated stone at node_max.Y + 1, // this creates a 'roof' over the tunnel, preventing light in // tunnels at mapchunk borders when generating mapchunks upwards. // This 'roof' is removed when the mapchunk above is generated. for (s16 y = node_max.Y; y >= node_min.Y - 1; y--, index3d -= ystride, vm->m_area.add_y(em, vi, -1)) { content_t c = vm->m_data[vi].getContent(); if (c == CONTENT_AIR || c == biome->c_water_top || c == biome->c_water) { column_is_open = true; continue; } // Ground float d1 = contour(noise_cave1->result[index3d]); float d2 = contour(noise_cave2->result[index3d]); if (d1 * d2 > cave_width && ndef->get(c).is_ground_content) { // In tunnel and ground content, excavate vm->m_data[vi] = MapNode(CONTENT_AIR); is_tunnel = true; } else { // Not in tunnel or not ground content if (is_tunnel && column_is_open && (c == biome->c_filler || c == biome->c_stone)) // Tunnel entrance floor vm->m_data[vi] = MapNode(biome->c_top); column_is_open = false; is_tunnel = false; } } } if (node_max.Y > MGFRACTAL_LARGE_CAVE_DEPTH) return; PseudoRandom ps(blockseed + 21343); u32 bruises_count = ps.range(0, 2); for (u32 i = 0; i < bruises_count; i++) { CaveV5 cave(this, &ps); cave.makeCave(node_min, node_max, max_stone_y); } }