/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "mesh.h" #include "debug.h" #include "log.h" #include "irrMap.h" #include #include #include #include #include // In Irrlicht 1.8 the signature of ITexture::lock was changed from // (bool, u32) to (E_TEXTURE_LOCK_MODE, u32). #if IRRLICHT_VERSION_MAJOR == 1 && IRRLICHT_VERSION_MINOR <= 7 #define MY_ETLM_READ_ONLY true #else #define MY_ETLM_READ_ONLY video::ETLM_READ_ONLY #endif inline static void applyShadeFactor(video::SColor& color, float factor) { color.setRed(core::clamp(core::round32(color.getRed()*factor), 0, 255)); color.setGreen(core::clamp(core::round32(color.getGreen()*factor), 0, 255)); color.setBlue(core::clamp(core::round32(color.getBlue()*factor), 0, 255)); } void applyFacesShading(video::SColor &color, const v3f &normal) { /* Some drawtypes have normals set to (0, 0, 0), this must result in maximum brightness: shade factor 1.0. Shade factors for aligned cube faces are: +Y 1.000000 sqrt(1.0) -Y 0.447213 sqrt(0.2) +-X 0.670820 sqrt(0.45) +-Z 0.836660 sqrt(0.7) */ float x2 = normal.X * normal.X; float y2 = normal.Y * normal.Y; float z2 = normal.Z * normal.Z; if (normal.Y < 0) applyShadeFactor(color, 0.670820f * x2 + 0.447213f * y2 + 0.836660f * z2); else if ((x2 > 1e-3) || (z2 > 1e-3)) applyShadeFactor(color, 0.670820f * x2 + 1.000000f * y2 + 0.836660f * z2); } scene::IAnimatedMesh* createCubeMesh(v3f scale) { video::SColor c(255,255,255,255); video::S3DVertex vertices[24] = { // Up video::S3DVertex(-0.5,+0.5,-0.5, 0,1,0, c, 0,1), video::S3DVertex(-0.5,+0.5,+0.5, 0,1,0, c, 0,0), video::S3DVertex(+0.5,+0.5,+0.5, 0,1,0, c, 1,0), video::S3DVertex(+0.5,+0.5,-0.5, 0,1,0, c, 1,1), // Down video::S3DVertex(-0.5,-0.5,-0.5, 0,-1,0, c, 0,0), video::S3DVertex(+0.5,-0.5,-0.5, 0,-1,0, c, 1,0), video::S3DVertex(+0.5,-0.5,+0.5, 0,-1,0, c, 1,1), video::S3DVertex(-0.5,-0.5,+0.5, 0,-1,0, c, 0,1), // Right video::S3DVertex(+0.5,-0.5,-0.5, 1,0,0, c, 0,1), video::S3DVertex(+0.5,+0.5,-0.5, 1,0,0, c, 0,0), video::S3DVertex(+0.5,+0.5,+0.5, 1,0,0, c, 1,0), video::S3DVertex(+0.5,-0.5,+0.5, 1,0,0, c, 1,1), // Left video::S3DVertex(-0.5,-0.5,-0.5, -1,0,0, c, 1,1), video::S3DVertex(-0.5,-0.5,+0.5, -1,0,0, c, 0,1), video::S3DVertex(-0.5,+0.5,+0.5, -1,0,0, c, 0,0), video::S3DVertex(-0.5,+0.5,-0.5, -1,0,0, c, 1,0), // Back video::S3DVertex(-0.5,-0.5,+0.5, 0,0,1, c, 1,1), video::S3DVertex(+0.5,-0.5,+0.5, 0,0,1, c, 0,1), video::S3DVertex(+0.5,+0.5,+0.5, 0,0,1, c, 0,0), video::S3DVertex(-0.5,+0.5,+0.5, 0,0,1, c, 1,0), // Front video::S3DVertex(-0.5,-0.5,-0.5, 0,0,-1, c, 0,1), video::S3DVertex(-0.5,+0.5,-0.5, 0,0,-1, c, 0,0), video::S3DVertex(+0.5,+0.5,-0.5, 0,0,-1, c, 1,0), video::S3DVertex(+0.5,-0.5,-0.5, 0,0,-1, c, 1,1), }; u16 indices[6] = {0,1,2,2,3,0}; scene::SMesh *mesh = new scene::SMesh(); for (u32 i=0; i<6; ++i) { scene::IMeshBuffer *buf = new scene::SMeshBuffer(); buf->append(vertices + 4 * i, 4, indices, 6); // Set default material buf->getMaterial().setFlag(video::EMF_LIGHTING, false); buf->getMaterial().setFlag(video::EMF_BILINEAR_FILTER, false); buf->getMaterial().MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL_REF; // Add mesh buffer to mesh mesh->addMeshBuffer(buf); buf->drop(); } scene::SAnimatedMesh *anim_mesh = new scene::SAnimatedMesh(mesh); mesh->drop(); scaleMesh(anim_mesh, scale); // also recalculates bounding box return anim_mesh; } void scaleMesh(scene::IMesh *mesh, v3f scale) { if (mesh == NULL) return; aabb3f bbox; bbox.reset(0, 0, 0); u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos *= scale; buf->recalculateBoundingBox(); // calculate total bounding box if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } mesh->setBoundingBox(bbox); } void translateMesh(scene::IMesh *mesh, v3f vec) { if (mesh == NULL) return; aabb3f bbox; bbox.reset(0, 0, 0); u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *)buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *)(vertices + i * stride))->Pos += vec; buf->recalculateBoundingBox(); // calculate total bounding box if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } mesh->setBoundingBox(bbox); } void setMeshBufferColor(scene::IMeshBuffer *buf, const video::SColor &color) { const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *) buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) ((video::S3DVertex *) (vertices + i * stride))->Color = color; } void setAnimatedMeshColor(scene::IAnimatedMeshSceneNode *node, const video::SColor &color) { for (u32 i = 0; i < node->getMaterialCount(); ++i) { node->getMaterial(i).EmissiveColor = color; } } void setMeshColor(scene::IMesh *mesh, const video::SColor &color) { if (mesh == NULL) return; u32 mc = mesh->getMeshBufferCount(); for (u32 j = 0; j < mc; j++) setMeshBufferColor(mesh->getMeshBuffer(j), color); } void setMeshBufferTextureCoords(scene::IMeshBuffer *buf, const v2f *uv, u32 count) { const u32 stride = getVertexPitchFromType(buf->getVertexType()); assert(buf->getVertexCount() >= count); u8 *vertices = (u8 *) buf->getVertices(); for (u32 i = 0; i < count; i++) ((video::S3DVertex*) (vertices + i * stride))->TCoords = uv[i]; } template static void applyToMesh(scene::IMesh *mesh, const F &fn) { u16 mc = mesh->getMeshBufferCount(); for (u16 j = 0; j < mc; j++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(j); const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); char *vertices = reinterpret_cast(buf->getVertices()); for (u32 i = 0; i < vertex_count; i++) fn(reinterpret_cast(vertices + i * stride)); } } void colorizeMeshBuffer(scene::IMeshBuffer *buf, const video::SColor *buffercolor) { const u32 stride = getVertexPitchFromType(buf->getVertexType()); u32 vertex_count = buf->getVertexCount(); u8 *vertices = (u8 *) buf->getVertices(); for (u32 i = 0; i < vertex_count; i++) { video::S3DVertex *vertex = (video::S3DVertex *) (vertices + i * stride); video::SColor *vc = &(vertex->Color); // Reset color *vc = *buffercolor; // Apply shading applyFacesShading(*vc, vertex->Normal); } } void setMeshColorByNormalXYZ(scene::IMesh *mesh, const video::SColor &colorX, const video::SColor &colorY, const video::SColor &colorZ) { if (!mesh) return; auto colorizator = [=] (video::S3DVertex *vertex) { f32 x = fabs(vertex->Normal.X); f32 y = fabs(vertex->Normal.Y); f32 z = fabs(vertex->Normal.Z); if (x >= y && x >= z) vertex->Color = colorX; else if (y >= z) vertex->Color = colorY; else vertex->Color = colorZ; }; applyToMesh(mesh, colorizator); } void setMeshColorByNormal(scene::IMesh *mesh, const v3f &normal, const video::SColor &color) { if (!mesh) return; auto colorizator = [normal, color] (video::S3DVertex *vertex) { if (vertex->Normal == normal) vertex->Color = color; }; applyToMesh(mesh, colorizator); } template static void rotateMesh(scene::IMesh *mesh, float degrees) { degrees *= M_PI / 180.0f; float c = std::cos(degrees); float s = std::sin(degrees); auto rotator = [c, s] (video::S3DVertex *vertex) { float u = vertex->Pos.*U; float v = vertex->Pos.*V; vertex->Pos.*U = c * u - s * v; vertex->Pos.*V = s * u + c * v; }; applyToMesh(mesh, rotator); } void rotateMeshXYby(scene::IMesh *mesh, f64 degrees) { rotateMesh<&v3f::X, &v3f::Y>(mesh, degrees); } void rotateMeshXZby(scene::IMesh *mesh, f64 degrees) { rotateMesh<&v3f::X, &v3f::Z>(mesh, degrees); } void rotateMeshYZby(scene::IMesh *mesh, f64 degrees) { rotateMesh<&v3f::Y, &v3f::Z>(mesh, degrees); } void rotateMeshBy6dFacedir(scene::IMesh *mesh, int facedir) { int axisdir = facedir >> 2; facedir &= 0x03; switch (facedir) { case 1: rotateMeshXZby(mesh, -90); break; case 2: rotateMeshXZby(mesh, 180); break; case 3: rotateMeshXZby(mesh, 90); break; } switch (axisdir) { case 1: rotateMeshYZby(mesh, 90); break; // z+ case 2: rotateMeshYZby(mesh, -90); break; // z- case 3: rotateMeshXYby(mesh, -90); break; // x+ case 4: rotateMeshXYby(mesh, 90); break; // x- case 5: rotateMeshXYby(mesh, -180); break; } } void recalculateBoundingBox(scene::IMesh *src_mesh) { aabb3f bbox; bbox.reset(0,0,0); for (u16 j = 0; j < src_mesh->getMeshBufferCount(); j++) { scene::IMeshBuffer *buf = src_mesh->getMeshBuffer(j); buf->recalculateBoundingBox(); if (j == 0) bbox = buf->getBoundingBox(); else bbox.addInternalBox(buf->getBoundingBox()); } src_mesh->setBoundingBox(bbox); } bool checkMeshNormals(scene::IMesh *mesh) { u32 buffer_count = mesh->getMeshBufferCount(); for (u32 i = 0; i < buffer_count; i++) { scene::IMeshBuffer *buffer = mesh->getMeshBuffer(i); // Here we intentionally check only first normal, assuming that if buffer // has it valid, then most likely all other ones are fine too. We can // check all of the normals to have length, but it seems like an overkill // hurting the performance and covering only really weird broken models. f32 length = buffer->getNormal(0).getLength(); if (!std::isfinite(length) || length < 1e-10f) return false; } return true; } scene::IMeshBuffer* cloneMeshBuffer(scene::IMeshBuffer *mesh_buffer) { switch (mesh_buffer->getVertexType()) { case video::EVT_STANDARD: { video::S3DVertex *v = (video::S3DVertex *) mesh_buffer->getVertices(); u16 *indices = mesh_buffer->getIndices(); scene::SMeshBuffer *cloned_buffer = new scene::SMeshBuffer(); cloned_buffer->append(v, mesh_buffer->getVertexCount(), indices, mesh_buffer->getIndexCount()); return cloned_buffer; } case video::EVT_2TCOORDS: { video::S3DVertex2TCoords *v = (video::S3DVertex2TCoords *) mesh_buffer->getVertices(); u16 *indices = mesh_buffer->getIndices(); scene::SMeshBufferLightMap *cloned_buffer = new scene::SMeshBufferLightMap(); cloned_buffer->append(v, mesh_buffer->getVertexCount(), indices, mesh_buffer->getIndexCount()); return cloned_buffer; } case video::EVT_TANGENTS: { video::S3DVertexTangents *v = (video::S3DVertexTangents *) mesh_buffer->getVertices(); u16 *indices = mesh_buffer->getIndices(); scene::SMeshBufferTangents *cloned_buffer = new scene::SMeshBufferTangents(); cloned_buffer->append(v, mesh_buffer->getVertexCount(), indices, mesh_buffer->getIndexCount()); return cloned_buffer; } } // This should not happen. sanity_check(false); return NULL; } scene::SMesh* cloneMesh(scene::IMesh *src_mesh) { scene::SMesh* dst_mesh = new scene::SMesh(); for (u16 j = 0; j < src_mesh->getMeshBufferCount(); j++) { scene::IMeshBuffer *temp_buf = cloneMeshBuffer( src_mesh->getMeshBuffer(j)); dst_mesh->addMeshBuffer(temp_buf); temp_buf->drop(); } return dst_mesh; } scene::IMesh* convertNodeboxesToMesh(const std::vector &boxes, const f32 *uv_coords, float expand) { scene::SMesh* dst_mesh = new scene::SMesh(); for (u16 j = 0; j < 6; j++) { scene::IMeshBuffer *buf = new scene::SMeshBuffer(); buf->getMaterial().setFlag(video::EMF_LIGHTING, false); buf->getMaterial().setFlag(video::EMF_BILINEAR_FILTER, false); dst_mesh->addMeshBuffer(buf); buf->drop(); } video::SColor c(255,255,255,255); for (aabb3f box : boxes) { box.repair(); box.MinEdge.X -= expand; box.MinEdge.Y -= expand; box.MinEdge.Z -= expand; box.MaxEdge.X += expand; box.MaxEdge.Y += expand; box.MaxEdge.Z += expand; // Compute texture UV coords f32 tx1 = (box.MinEdge.X / BS) + 0.5; f32 ty1 = (box.MinEdge.Y / BS) + 0.5; f32 tz1 = (box.MinEdge.Z / BS) + 0.5; f32 tx2 = (box.MaxEdge.X / BS) + 0.5; f32 ty2 = (box.MaxEdge.Y / BS) + 0.5; f32 tz2 = (box.MaxEdge.Z / BS) + 0.5; f32 txc_default[24] = { // up tx1, 1 - tz2, tx2, 1 - tz1, // down tx1, tz1, tx2, tz2, // right tz1, 1 - ty2, tz2, 1 - ty1, // left 1 - tz2, 1 - ty2, 1 - tz1, 1 - ty1, // back 1 - tx2, 1 - ty2, 1 - tx1, 1 - ty1, // front tx1, 1 - ty2, tx2, 1 - ty1, }; // use default texture UV mapping if not provided const f32 *txc = uv_coords ? uv_coords : txc_default; v3f min = box.MinEdge; v3f max = box.MaxEdge; video::S3DVertex vertices[24] = { // up video::S3DVertex(min.X,max.Y,max.Z, 0,1,0, c, txc[0],txc[1]), video::S3DVertex(max.X,max.Y,max.Z, 0,1,0, c, txc[2],txc[1]), video::S3DVertex(max.X,max.Y,min.Z, 0,1,0, c, txc[2],txc[3]), video::S3DVertex(min.X,max.Y,min.Z, 0,1,0, c, txc[0],txc[3]), // down video::S3DVertex(min.X,min.Y,min.Z, 0,-1,0, c, txc[4],txc[5]), video::S3DVertex(max.X,min.Y,min.Z, 0,-1,0, c, txc[6],txc[5]), video::S3DVertex(max.X,min.Y,max.Z, 0,-1,0, c, txc[6],txc[7]), video::S3DVertex(min.X,min.Y,max.Z, 0,-1,0, c, txc[4],txc[7]), // right video::S3DVertex(max.X,max.Y,min.Z, 1,0,0, c, txc[ 8],txc[9]), video::S3DVertex(max.X,max.Y,max.Z, 1,0,0, c, txc[10],txc[9]), video::S3DVertex(max.X,min.Y,max.Z, 1,0,0, c, txc[10],txc[11]), video::S3DVertex(max.X,min.Y,min.Z, 1,0,0, c, txc[ 8],txc[11]), // left video::S3DVertex(min.X,max.Y,max.Z, -1,0,0, c, txc[12],txc[13]), video::S3DVertex(min.X,max.Y,min.Z, -1,0,0, c, txc[14],txc[13]), video::S3DVertex(min.X,min.Y,min.Z, -1,0,0, c, txc[14],txc[15]), video::S3DVertex(min.X,min.Y,max.Z, -1,0,0, c, txc[12],txc[15]), // back video::S3DVertex(max.X,max.Y,max.Z, 0,0,1, c, txc[16],txc[17]), video::S3DVertex(min.X,max.Y,max.Z, 0,0,1, c, txc[18],txc[17]), video::S3DVertex(min.X,min.Y,max.Z, 0,0,1, c, txc[18],txc[19]), video::S3DVertex(max.X,min.Y,max.Z, 0,0,1, c, txc[16],txc[19]), // front video::S3DVertex(min.X,max.Y,min.Z, 0,0,-1, c, txc[20],txc[21]), video::S3DVertex(max.X,max.Y,min.Z, 0,0,-1, c, txc[22],txc[21]), video::S3DVertex(max.X,min.Y,min.Z, 0,0,-1, c, txc[22],txc[23]), video::S3DVertex(min.X,min.Y,min.Z, 0,0,-1, c, txc[20],txc[23]), }; u16 indices[] = {0,1,2,2,3,0}; for(u16 j = 0; j < 24; j += 4) { scene::IMeshBuffer *buf = dst_mesh->getMeshBuffer(j / 4); buf->append(vertices + j, 4, indices, 6); } } return dst_mesh; } struct vcache { core::array tris; float score; s16 cachepos; u16 NumActiveTris; }; struct tcache { u16 ind[3]; float score; bool drawn; }; const u16 cachesize = 32; float FindVertexScore(vcache *v) { const float CacheDecayPower = 1.5f; const float LastTriScore = 0.75f; const float ValenceBoostScale = 2.0f; const float ValenceBoostPower = 0.5f; const float MaxSizeVertexCache = 32.0f; if (v->NumActiveTris == 0) { // No tri needs this vertex! return -1.0f; } float Score = 0.0f; int CachePosition = v->cachepos; if (CachePosition < 0) { // Vertex is not in FIFO cache - no score. } else { if (CachePosition < 3) { // This vertex was used in the last triangle, // so it has a fixed score. Score = LastTriScore; } else { // Points for being high in the cache. const float Scaler = 1.0f / (MaxSizeVertexCache - 3); Score = 1.0f - (CachePosition - 3) * Scaler; Score = powf(Score, CacheDecayPower); } } // Bonus points for having a low number of tris still to // use the vert, so we get rid of lone verts quickly. float ValenceBoost = powf(v->NumActiveTris, -ValenceBoostPower); Score += ValenceBoostScale * ValenceBoost; return Score; } /* A specialized LRU cache for the Forsyth algorithm. */ class f_lru { public: f_lru(vcache *v, tcache *t): vc(v), tc(t) { for (int &i : cache) { i = -1; } } // Adds this vertex index and returns the highest-scoring triangle index u32 add(u16 vert, bool updatetris = false) { bool found = false; // Mark existing pos as empty for (u16 i = 0; i < cachesize; i++) { if (cache[i] == vert) { // Move everything down for (u16 j = i; j; j--) { cache[j] = cache[j - 1]; } found = true; break; } } if (!found) { if (cache[cachesize-1] != -1) vc[cache[cachesize-1]].cachepos = -1; // Move everything down for (u16 i = cachesize - 1; i; i--) { cache[i] = cache[i - 1]; } } cache[0] = vert; u32 highest = 0; float hiscore = 0; if (updatetris) { // Update cache positions for (u16 i = 0; i < cachesize; i++) { if (cache[i] == -1) break; vc[cache[i]].cachepos = i; vc[cache[i]].score = FindVertexScore(&vc[cache[i]]); } // Update triangle scores for (int i : cache) { if (i == -1) break; const u16 trisize = vc[i].tris.size(); for (u16 t = 0; t < trisize; t++) { tcache *tri = &tc[vc[i].tris[t]]; tri->score = vc[tri->ind[0]].score + vc[tri->ind[1]].score + vc[tri->ind[2]].score; if (tri->score > hiscore) { hiscore = tri->score; highest = vc[i].tris[t]; } } } } return highest; } private: s32 cache[cachesize]; vcache *vc; tcache *tc; }; /** Vertex cache optimization according to the Forsyth paper: http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html The function is thread-safe (read: you can optimize several meshes in different threads) \param mesh Source mesh for the operation. */ scene::IMesh* createForsythOptimizedMesh(const scene::IMesh *mesh) { if (!mesh) return 0; scene::SMesh *newmesh = new scene::SMesh(); newmesh->BoundingBox = mesh->getBoundingBox(); const u32 mbcount = mesh->getMeshBufferCount(); for (u32 b = 0; b < mbcount; ++b) { const scene::IMeshBuffer *mb = mesh->getMeshBuffer(b); if (mb->getIndexType() != video::EIT_16BIT) { //os::Printer::log("Cannot optimize a mesh with 32bit indices", ELL_ERROR); newmesh->drop(); return 0; } const u32 icount = mb->getIndexCount(); const u32 tcount = icount / 3; const u32 vcount = mb->getVertexCount(); const u16 *ind = mb->getIndices(); vcache *vc = new vcache[vcount]; tcache *tc = new tcache[tcount]; f_lru lru(vc, tc); // init for (u16 i = 0; i < vcount; i++) { vc[i].score = 0; vc[i].cachepos = -1; vc[i].NumActiveTris = 0; } // First pass: count how many times a vert is used for (u32 i = 0; i < icount; i += 3) { vc[ind[i]].NumActiveTris++; vc[ind[i + 1]].NumActiveTris++; vc[ind[i + 2]].NumActiveTris++; const u32 tri_ind = i/3; tc[tri_ind].ind[0] = ind[i]; tc[tri_ind].ind[1] = ind[i + 1]; tc[tri_ind].ind[2] = ind[i + 2]; } // Second pass: list of each triangle for (u32 i = 0; i < tcount; i++) { vc[tc[i].ind[0]].tris.push_back(i); vc[tc[i].ind[1]].tris.push_back(i); vc[tc[i].ind[2]].tris.push_back(i); tc[i].drawn = false; } // Give initial scores for (u16 i = 0; i < vcount; i++) { vc[i].score = FindVertexScore(&vc[i]); } for (u32 i = 0; i < tcount; i++) { tc[i].score = vc[tc[i].ind[0]].score + vc[tc[i].ind[1]].score + vc[tc[i].ind[2]].score; } switch(mb->getVertexType()) { case video::EVT_STANDARD: { video::S3DVertex *v = (video::S3DVertex *) mb->getVertices(); scene::SMeshBuffer *buf = new scene::SMeshBuffer(); buf->Material = mb->getMaterial(); buf->Vertices.reallocate(vcount); buf->Indices.reallocate(icount); core::map sind; // search index for fast operation typedef core::map::Node snode; // Main algorithm u32 highest = 0; u32 drawcalls = 0; for (;;) { if (tc[highest].drawn) { bool found = false; float hiscore = 0; for (u32 t = 0; t < tcount; t++) { if (!tc[t].drawn) { if (tc[t].score > hiscore) { highest = t; hiscore = tc[t].score; found = true; } } } if (!found) break; } // Output the best triangle u16 newind = buf->Vertices.size(); snode *s = sind.find(v[tc[highest].ind[0]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[0]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[0]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[1]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[1]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[1]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[2]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[2]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[2]], newind); } else { buf->Indices.push_back(s->getValue()); } vc[tc[highest].ind[0]].NumActiveTris--; vc[tc[highest].ind[1]].NumActiveTris--; vc[tc[highest].ind[2]].NumActiveTris--; tc[highest].drawn = true; for (u16 j : tc[highest].ind) { vcache *vert = &vc[j]; for (u16 t = 0; t < vert->tris.size(); t++) { if (highest == vert->tris[t]) { vert->tris.erase(t); break; } } } lru.add(tc[highest].ind[0]); lru.add(tc[highest].ind[1]); highest = lru.add(tc[highest].ind[2], true); drawcalls++; } buf->setBoundingBox(mb->getBoundingBox()); newmesh->addMeshBuffer(buf); buf->drop(); } break; case video::EVT_2TCOORDS: { video::S3DVertex2TCoords *v = (video::S3DVertex2TCoords *) mb->getVertices(); scene::SMeshBufferLightMap *buf = new scene::SMeshBufferLightMap(); buf->Material = mb->getMaterial(); buf->Vertices.reallocate(vcount); buf->Indices.reallocate(icount); core::map sind; // search index for fast operation typedef core::map::Node snode; // Main algorithm u32 highest = 0; u32 drawcalls = 0; for (;;) { if (tc[highest].drawn) { bool found = false; float hiscore = 0; for (u32 t = 0; t < tcount; t++) { if (!tc[t].drawn) { if (tc[t].score > hiscore) { highest = t; hiscore = tc[t].score; found = true; } } } if (!found) break; } // Output the best triangle u16 newind = buf->Vertices.size(); snode *s = sind.find(v[tc[highest].ind[0]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[0]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[0]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[1]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[1]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[1]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[2]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[2]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[2]], newind); } else { buf->Indices.push_back(s->getValue()); } vc[tc[highest].ind[0]].NumActiveTris--; vc[tc[highest].ind[1]].NumActiveTris--; vc[tc[highest].ind[2]].NumActiveTris--; tc[highest].drawn = true; for (u16 j : tc[highest].ind) { vcache *vert = &vc[j]; for (u16 t = 0; t < vert->tris.size(); t++) { if (highest == vert->tris[t]) { vert->tris.erase(t); break; } } } lru.add(tc[highest].ind[0]); lru.add(tc[highest].ind[1]); highest = lru.add(tc[highest].ind[2]); drawcalls++; } buf->setBoundingBox(mb->getBoundingBox()); newmesh->addMeshBuffer(buf); buf->drop(); } break; case video::EVT_TANGENTS: { video::S3DVertexTangents *v = (video::S3DVertexTangents *) mb->getVertices(); scene::SMeshBufferTangents *buf = new scene::SMeshBufferTangents(); buf->Material = mb->getMaterial(); buf->Vertices.reallocate(vcount); buf->Indices.reallocate(icount); core::map sind; // search index for fast operation typedef core::map::Node snode; // Main algorithm u32 highest = 0; u32 drawcalls = 0; for (;;) { if (tc[highest].drawn) { bool found = false; float hiscore = 0; for (u32 t = 0; t < tcount; t++) { if (!tc[t].drawn) { if (tc[t].score > hiscore) { highest = t; hiscore = tc[t].score; found = true; } } } if (!found) break; } // Output the best triangle u16 newind = buf->Vertices.size(); snode *s = sind.find(v[tc[highest].ind[0]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[0]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[0]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[1]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[1]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[1]], newind); newind++; } else { buf->Indices.push_back(s->getValue()); } s = sind.find(v[tc[highest].ind[2]]); if (!s) { buf->Vertices.push_back(v[tc[highest].ind[2]]); buf->Indices.push_back(newind); sind.insert(v[tc[highest].ind[2]], newind); } else { buf->Indices.push_back(s->getValue()); } vc[tc[highest].ind[0]].NumActiveTris--; vc[tc[highest].ind[1]].NumActiveTris--; vc[tc[highest].ind[2]].NumActiveTris--; tc[highest].drawn = true; for (u16 j : tc[highest].ind) { vcache *vert = &vc[j]; for (u16 t = 0; t < vert->tris.size(); t++) { if (highest == vert->tris[t]) { vert->tris.erase(t); break; } } } lru.add(tc[highest].ind[0]); lru.add(tc[highest].ind[1]); highest = lru.add(tc[highest].ind[2]); drawcalls++; } buf->setBoundingBox(mb->getBoundingBox()); newmesh->addMeshBuffer(buf); buf->drop(); } break; } delete [] vc; delete [] tc; } // for each meshbuffer return newmesh; }