/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "clientmap.h" #include "client.h" #include "mapblock_mesh.h" #include #include #include "mapsector.h" #include "mapblock.h" #include "profiler.h" #include "settings.h" #include "camera.h" // CameraModes #include "util/basic_macros.h" #include "client/renderingengine.h" #include // struct MeshBufListList void MeshBufListList::clear() { for (auto &list : lists) list.clear(); } void MeshBufListList::add(scene::IMeshBuffer *buf, v3s16 position, u8 layer) { // Append to the correct layer std::vector &list = lists[layer]; const video::SMaterial &m = buf->getMaterial(); for (MeshBufList &l : list) { // comparing a full material is quite expensive so we don't do it if // not even first texture is equal if (l.m.TextureLayer[0].Texture != m.TextureLayer[0].Texture) continue; if (l.m == m) { l.bufs.emplace_back(position, buf); return; } } MeshBufList l; l.m = m; l.bufs.emplace_back(position, buf); list.emplace_back(l); } static void on_settings_changed(const std::string &name, void *data) { static_cast(data)->onSettingChanged(name); } // ClientMap ClientMap::ClientMap( Client *client, RenderingEngine *rendering_engine, MapDrawControl &control, s32 id ): Map(client), scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(), rendering_engine->get_scene_manager(), id), m_client(client), m_rendering_engine(rendering_engine), m_control(control), m_drawlist(MapBlockComparer(v3s16(0,0,0))) { /* * @Liso: Sadly C++ doesn't have introspection, so the only way we have to know * the class is whith a name ;) Name property cames from ISceneNode base class. */ Name = "ClientMap"; m_box = aabb3f(-BS*1000000,-BS*1000000,-BS*1000000, BS*1000000,BS*1000000,BS*1000000); /* TODO: Add a callback function so these can be updated when a setting * changes. At this point in time it doesn't matter (e.g. /set * is documented to change server settings only) * * TODO: Local caching of settings is not optimal and should at some stage * be updated to use a global settings object for getting thse values * (as opposed to the this local caching). This can be addressed in * a later release. */ m_cache_trilinear_filter = g_settings->getBool("trilinear_filter"); m_cache_bilinear_filter = g_settings->getBool("bilinear_filter"); m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter"); m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance"); m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling"); g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this); } void ClientMap::onSettingChanged(const std::string &name) { if (name == "enable_raytraced_culling") m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling"); } ClientMap::~ClientMap() { g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this); } void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset) { v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset; v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE); m_camera_position = pos; m_camera_direction = dir; m_camera_fov = fov; m_camera_offset = offset; v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset; v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE); // reorder the blocks when camera crosses block boundary if (previous_block != current_block) m_needs_update_drawlist = true; // reorder transparent meshes when camera crosses node boundary if (previous_node != current_node) m_needs_update_transparent_meshes = true; } MapSector * ClientMap::emergeSector(v2s16 p2d) { // Check that it doesn't exist already MapSector *sector = getSectorNoGenerate(p2d); // Create it if it does not exist yet if (!sector) { sector = new MapSector(this, p2d, m_gamedef); m_sectors[p2d] = sector; } return sector; } void ClientMap::OnRegisterSceneNode() { if(IsVisible) { SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID); SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT); } ISceneNode::OnRegisterSceneNode(); // It's not needed to register this node to the shadow renderer // we have other way to find it } void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes, v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range) { if (range <= 0.0f) range = m_control.wanted_range; v3s16 box_nodes_d = range * v3s16(1, 1, 1); // Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d' // can exceed the range of v3s16 when a large view range is used near the // world edges. v3s32 p_nodes_min( cam_pos_nodes.X - box_nodes_d.X, cam_pos_nodes.Y - box_nodes_d.Y, cam_pos_nodes.Z - box_nodes_d.Z); v3s32 p_nodes_max( cam_pos_nodes.X + box_nodes_d.X, cam_pos_nodes.Y + box_nodes_d.Y, cam_pos_nodes.Z + box_nodes_d.Z); // Take a fair amount as we will be dropping more out later // Umm... these additions are a bit strange but they are needed. *p_blocks_min = v3s16( p_nodes_min.X / MAP_BLOCKSIZE - 3, p_nodes_min.Y / MAP_BLOCKSIZE - 3, p_nodes_min.Z / MAP_BLOCKSIZE - 3); *p_blocks_max = v3s16( p_nodes_max.X / MAP_BLOCKSIZE + 1, p_nodes_max.Y / MAP_BLOCKSIZE + 1, p_nodes_max.Z / MAP_BLOCKSIZE + 1); } class MapBlockFlags { public: static constexpr u16 CHUNK_EDGE = 8; static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1; static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk MapBlockFlags(v3s16 min_pos, v3s16 max_pos) : min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1) { chunks.resize(volume.X * volume.Y * volume.Z); } class Chunk { public: inline u8 &getBits(v3s16 pos) { std::size_t address = getAddress(pos); return bits[address]; } private: inline std::size_t getAddress(v3s16 pos) { std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE); return address; } std::array bits; }; Chunk &getChunk(v3s16 pos) { v3s16 delta = (pos - min_pos) / CHUNK_EDGE; std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y; Chunk *chunk = chunks[address].get(); if (!chunk) { chunk = new Chunk(); chunks[address].reset(chunk); } return *chunk; } private: std::vector> chunks; v3s16 min_pos; v3s16 volume; }; void ClientMap::updateDrawList() { ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG); m_needs_update_drawlist = false; for (auto &i : m_drawlist) { MapBlock *block = i.second; block->refDrop(); } m_drawlist.clear(); v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS); v3s16 p_blocks_min; v3s16 p_blocks_max; getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max); // Number of blocks occlusion culled u32 blocks_occlusion_culled = 0; // Blocks visited by the algorithm u32 blocks_visited = 0; // Block sides that were not traversed u32 sides_skipped = 0; // No occlusion culling when free_move is on and camera is inside ground bool occlusion_culling_enabled = true; if (m_control.allow_noclip) { MapNode n = getNode(cam_pos_nodes); if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2) occlusion_culling_enabled = false; } v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE); m_drawlist = std::map(MapBlockComparer(camera_block)); auto is_frustum_culled = m_client->getCamera()->getFrustumCuller(); // Uncomment to debug occluded blocks in the wireframe mode // TODO: Include this as a flag for an extended debugging setting // if (occlusion_culling_enabled && m_control.show_wireframe) // occlusion_culling_enabled = porting::getTimeS() & 1; std::queue blocks_to_consider; // Bits per block: // [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ] MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max); // Start breadth-first search with the block the camera is in blocks_to_consider.push(camera_block); blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible // Recursively walk the space and pick mapblocks for drawing while (blocks_to_consider.size() > 0) { v3s16 block_coord = blocks_to_consider.front(); blocks_to_consider.pop(); auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord); // Only visit each block once (it may have been queued up to three times) if ((flags & 0x80) == 0x80) continue; flags |= 0x80; blocks_visited++; // Get the sector, block and mesh MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z)); if (!sector) continue; MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y); MapBlockMesh *mesh = block ? block->mesh : nullptr; // Calculate the coordinates for range and frutum culling v3f mesh_sphere_center; f32 mesh_sphere_radius; v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE; if (mesh) { mesh_sphere_center = intToFloat(block_pos_nodes, BS) + mesh->getBoundingSphereCenter(); mesh_sphere_radius = mesh->getBoundingRadius(); } else { mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS); mesh_sphere_radius = 0.0f; } // First, perform a simple distance check. if (!m_control.range_all && mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) > m_control.wanted_range * BS + mesh_sphere_radius) continue; // Out of range, skip. // Frustum culling // Only do coarse culling here, to account for fast camera movement. // This is needed because this function is not called every frame. float frustum_cull_extra_radius = 300.0f; if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius + frustum_cull_extra_radius)) continue; // Calculate the vector from the camera block to the current block // We use it to determine through which sides of the current block we can continue the search v3s16 look = block_coord - camera_block; // Occluded near sides will further occlude the far sides u8 visible_outer_sides = flags & 0x07; // Raytraced occlusion culling - send rays from the camera to the block's corners if (occlusion_culling_enabled && m_enable_raytraced_culling && block && mesh && visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) { blocks_occlusion_culled++; continue; } // The block is visible, add to the draw list if (mesh) { // Add to set block->refGrab(); m_drawlist[block_coord] = block; } // Decide which sides to traverse next or to block away // First, find the near sides that would occlude the far sides // * A near side can itself be occluded by a nearby block (the test above ^^) // * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level) // mesh solid sides are +Z-Z+Y-Y+X-X // if we are inside the block's coordinates on an axis, // treat these sides as opaque, as they should not allow to reach the far sides u8 block_inner_sides = (look.X == 0 ? 3 : 0) | (look.Y == 0 ? 12 : 0) | (look.Z == 0 ? 48 : 0); // get the mask for the sides that are relevant based on the direction u8 near_inner_sides = (look.X > 0 ? 1 : 2) | (look.Y > 0 ? 4 : 8) | (look.Z > 0 ? 16 : 32); // This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ. // Get he block's transparent sides u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F; // compress block transparent sides to ZYX mask of see-through axes u8 near_transparency = (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides); // when we are inside the camera block, do not block any sides if (block_inner_sides == 0x3F) block_inner_sides = 0; near_transparency &= ~block_inner_sides & 0x3F; near_transparency |= (near_transparency >> 1); near_transparency = (near_transparency & 1) | ((near_transparency >> 1) & 2) | ((near_transparency >> 2) & 4); // combine with known visible sides that matter near_transparency &= visible_outer_sides; // The rule for any far side to be visible: // * Any of the adjacent near sides is transparent (different axes) // * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector // Calculate vector from camera to mapblock center. Because we only need relation between // coordinates we scale by 2 to avoid precision loss. v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1; // dominant axis flag u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) | ((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) | ((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2); // Queue next blocks for processing: // - Examine "far" sides of the current blocks, i.e. never move towards the camera // - Only traverse the sides that are not occluded // - Only traverse the sides that are not opaque // When queueing, mark the relevant side on the next block as 'visible' for (s16 axis = 0; axis < 3; axis++) { // Select a bit from transparent_sides for the side u8 far_side_mask = 1 << (2 * axis); // axis flag u8 my_side = 1 << axis; u8 adjacent_sides = my_side ^ 0x07; auto traverse_far_side = [&](s8 next_pos_offset) { // far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0; side_visible = side_visible && ((far_side_mask & transparent_sides) != 0); v3s16 next_pos = block_coord; next_pos[axis] += next_pos_offset; // If a side is a see-through, mark the next block's side as visible, and queue if (side_visible) { auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos); next_flags |= my_side; blocks_to_consider.push(next_pos); } else { sides_skipped++; } }; // Test the '-' direction of the axis if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis]) traverse_far_side(-1); // Test the '+' direction of the axis far_side_mask <<= 1; if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis]) traverse_far_side(+1); } } g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled); g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped); g_profiler->avg("MapBlocks examined [#]", blocks_visited); g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size()); } void ClientMap::touchMapBlocks() { v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS); v3s16 p_blocks_min; v3s16 p_blocks_max; getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max); // Number of blocks currently loaded by the client u32 blocks_loaded = 0; // Number of blocks with mesh in rendering range u32 blocks_in_range_with_mesh = 0; for (const auto §or_it : m_sectors) { MapSector *sector = sector_it.second; v2s16 sp = sector->getPos(); blocks_loaded += sector->size(); if (!m_control.range_all) { if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X || sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z) continue; } MapBlockVect sectorblocks; sector->getBlocks(sectorblocks); /* Loop through blocks in sector */ for (MapBlock *block : sectorblocks) { /* Compare block position to camera position, skip if not seen on display */ if (!block->mesh) { // Ignore if mesh doesn't exist continue; } v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS) + block->mesh->getBoundingSphereCenter(); f32 mesh_sphere_radius = block->mesh->getBoundingRadius(); // First, perform a simple distance check. if (!m_control.range_all && mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) > m_control.wanted_range * BS + mesh_sphere_radius) continue; // Out of range, skip. // Keep the block alive as long as it is in range. block->resetUsageTimer(); blocks_in_range_with_mesh++; } } g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh); g_profiler->avg("MapBlocks loaded [#]", blocks_loaded); } void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass) { bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT; std::string prefix; if (pass == scene::ESNRP_SOLID) prefix = "renderMap(SOLID): "; else prefix = "renderMap(TRANSPARENT): "; /* This is called two times per frame, reset on the non-transparent one */ if (pass == scene::ESNRP_SOLID) m_last_drawn_sectors.clear(); /* Get animation parameters */ const float animation_time = m_client->getAnimationTime(); const int crack = m_client->getCrackLevel(); const u32 daynight_ratio = m_client->getEnv().getDayNightRatio(); const v3f camera_position = m_camera_position; /* Get all blocks and draw all visible ones */ u32 vertex_count = 0; u32 drawcall_count = 0; // For limiting number of mesh animations per frame u32 mesh_animate_count = 0; //u32 mesh_animate_count_far = 0; /* Update transparent meshes */ if (is_transparent_pass) updateTransparentMeshBuffers(); /* Draw the selected MapBlocks */ MeshBufListList grouped_buffers; std::vector draw_order; video::SMaterial previous_material; auto is_frustum_culled = m_client->getCamera()->getFrustumCuller(); for (auto &i : m_drawlist) { v3s16 block_pos = i.first; MapBlock *block = i.second; MapBlockMesh *block_mesh = block->mesh; // If the mesh of the block happened to get deleted, ignore it if (!block_mesh) continue; // Do exact frustum culling // (The one in updateDrawList is only coarse.) v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS) + block_mesh->getBoundingSphereCenter(); f32 mesh_sphere_radius = block_mesh->getBoundingRadius(); if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius)) continue; v3f block_pos_r = intToFloat(block->getPosRelative() + MAP_BLOCKSIZE / 2, BS); float d = camera_position.getDistanceFrom(block_pos_r); d = MYMAX(0,d - BLOCK_MAX_RADIUS); // Mesh animation if (pass == scene::ESNRP_SOLID) { // Pretty random but this should work somewhat nicely bool faraway = d >= BS * 50; if (block_mesh->isAnimationForced() || !faraway || mesh_animate_count < (m_control.range_all ? 200 : 50)) { bool animated = block_mesh->animate(faraway, animation_time, crack, daynight_ratio); if (animated) mesh_animate_count++; } else { block_mesh->decreaseAnimationForceTimer(); } } /* Get the meshbuffers of the block */ if (is_transparent_pass) { // In transparent pass, the mesh will give us // the partial buffers in the correct order for (auto &buffer : block_mesh->getTransparentBuffers()) draw_order.emplace_back(block_pos, &buffer); } else { // otherwise, group buffers across meshes // using MeshBufListList for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) { scene::IMesh *mesh = block_mesh->getMesh(layer); assert(mesh); u32 c = mesh->getMeshBufferCount(); for (u32 i = 0; i < c; i++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(i); video::SMaterial& material = buf->getMaterial(); video::IMaterialRenderer* rnd = driver->getMaterialRenderer(material.MaterialType); bool transparent = (rnd && rnd->isTransparent()); if (!transparent) { if (buf->getVertexCount() == 0) errorstream << "Block [" << analyze_block(block) << "] contains an empty meshbuf" << std::endl; grouped_buffers.add(buf, block_pos, layer); } } } } } // Capture draw order for all solid meshes for (auto &lists : grouped_buffers.lists) { for (MeshBufList &list : lists) { // iterate in reverse to draw closest blocks first for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) { draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin()); } } } TimeTaker draw("Drawing mesh buffers"); core::matrix4 m; // Model matrix v3f offset = intToFloat(m_camera_offset, BS); u32 material_swaps = 0; // Render all mesh buffers in order drawcall_count += draw_order.size(); for (auto &descriptor : draw_order) { scene::IMeshBuffer *buf = descriptor.getBuffer(); if (!descriptor.m_reuse_material) { auto &material = buf->getMaterial(); // Apply filter settings material.setFlag(video::EMF_TRILINEAR_FILTER, m_cache_trilinear_filter); material.setFlag(video::EMF_BILINEAR_FILTER, m_cache_bilinear_filter); material.setFlag(video::EMF_ANISOTROPIC_FILTER, m_cache_anistropic_filter); material.setFlag(video::EMF_WIREFRAME, m_control.show_wireframe); // pass the shadow map texture to the buffer texture ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer(); if (shadow && shadow->is_active()) { auto &layer = material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW]; layer.Texture = shadow->get_texture(); layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE; layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE; // Do not enable filter on shadow texture to avoid visual artifacts // with colored shadows. // Filtering is done in shader code anyway layer.BilinearFilter = false; layer.AnisotropicFilter = false; layer.TrilinearFilter = false; } driver->setMaterial(material); ++material_swaps; material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr; } v3f block_wpos = intToFloat(descriptor.m_pos * MAP_BLOCKSIZE, BS); m.setTranslation(block_wpos - offset); driver->setTransform(video::ETS_WORLD, m); descriptor.draw(driver); vertex_count += buf->getIndexCount(); } g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true)); // Log only on solid pass because values are the same if (pass == scene::ESNRP_SOLID) { g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count); } if (pass == scene::ESNRP_TRANSPARENT) { g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size()); } g_profiler->avg(prefix + "vertices drawn [#]", vertex_count); g_profiler->avg(prefix + "drawcalls [#]", drawcall_count); g_profiler->avg(prefix + "material swaps [#]", material_swaps); } static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step, float step_multiplier, float start_distance, float end_distance, const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d, int *result, bool *sunlight_seen) { int brightness_sum = 0; int brightness_count = 0; float distance = start_distance; dir.normalize(); v3f pf = p0; pf += dir * distance; int noncount = 0; bool nonlight_seen = false; bool allow_allowing_non_sunlight_propagates = false; bool allow_non_sunlight_propagates = false; // Check content nearly at camera position { v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS); MapNode n = map->getNode(p); if(ndef->getLightingFlags(n).has_light && !ndef->getLightingFlags(n).sunlight_propagates) allow_allowing_non_sunlight_propagates = true; } // If would start at CONTENT_IGNORE, start closer { v3s16 p = floatToInt(pf, BS); MapNode n = map->getNode(p); if(n.getContent() == CONTENT_IGNORE){ float newd = 2*BS; pf = p0 + dir * 2*newd; distance = newd; sunlight_min_d = 0; } } for (int i=0; distance < end_distance; i++) { pf += dir * step; distance += step; step *= step_multiplier; v3s16 p = floatToInt(pf, BS); MapNode n = map->getNode(p); ContentLightingFlags f = ndef->getLightingFlags(n); if (allow_allowing_non_sunlight_propagates && i == 0 && f.has_light && !f.sunlight_propagates) { allow_non_sunlight_propagates = true; } if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){ nonlight_seen = true; noncount++; if(noncount >= 4) break; continue; } if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen) if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN) *sunlight_seen = true; noncount = 0; brightness_sum += decode_light(n.getLightBlend(daylight_factor, f)); brightness_count++; } *result = 0; if(brightness_count == 0) return false; *result = brightness_sum / brightness_count; /*std::cerr<<"Sampled "< 35*BS) sunlight_min_d = 35*BS; std::vector values; values.reserve(ARRLEN(z_directions)); for (u32 i = 0; i < ARRLEN(z_directions); i++) { v3f z_dir = z_directions[i]; core::CMatrix4 a; a.buildRotateFromTo(v3f(0,1,0), z_dir); v3f dir = m_camera_direction; a.rotateVect(dir); int br = 0; float step = BS*1.5; if(max_d > 35*BS) step = max_d / 35 * 1.5; float off = step * z_offsets[i]; bool sunlight_seen_now = false; bool ok = getVisibleBrightness(this, m_camera_position, dir, step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor, sunlight_min_d, &br, &sunlight_seen_now); if(sunlight_seen_now) sunlight_seen_count++; if(!ok) continue; values.push_back(br); // Don't try too much if being in the sun is clear if(sunlight_seen_count >= 20) break; } int brightness_sum = 0; int brightness_count = 0; std::sort(values.begin(), values.end()); u32 num_values_to_use = values.size(); if(num_values_to_use >= 10) num_values_to_use -= num_values_to_use/2; else if(num_values_to_use >= 7) num_values_to_use -= num_values_to_use/3; u32 first_value_i = (values.size() - num_values_to_use) / 2; for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) { brightness_sum += values[i]; brightness_count++; } int ret = 0; if(brightness_count == 0){ MapNode n = getNode(floatToInt(m_camera_position, BS)); ContentLightingFlags f = m_nodedef->getLightingFlags(n); if(f.has_light){ ret = decode_light(n.getLightBlend(daylight_factor, f)); } else { ret = oldvalue; } } else { ret = brightness_sum / brightness_count; } *sunlight_seen_result = (sunlight_seen_count > 0); return ret; } void ClientMap::renderPostFx(CameraMode cam_mode) { // Sadly ISceneManager has no "post effects" render pass, in that case we // could just register for that and handle it in renderMap(). MapNode n = getNode(floatToInt(m_camera_position, BS)); const ContentFeatures& features = m_nodedef->get(n); video::SColor post_effect_color = features.post_effect_color; // If the camera is in a solid node, make everything black. // (first person mode only) if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST && !m_control.allow_noclip) { post_effect_color = video::SColor(255, 0, 0, 0); } if (post_effect_color.getAlpha() != 0) { // Draw a full-screen rectangle video::IVideoDriver* driver = SceneManager->getVideoDriver(); v2u32 ss = driver->getScreenSize(); core::rect rect(0,0, ss.X, ss.Y); driver->draw2DRectangle(post_effect_color, rect); } } void ClientMap::PrintInfo(std::ostream &out) { out<<"ClientMap: "; } void ClientMap::renderMapShadows(video::IVideoDriver *driver, const video::SMaterial &material, s32 pass, int frame, int total_frames) { bool is_transparent_pass = pass != scene::ESNRP_SOLID; std::string prefix; if (is_transparent_pass) prefix = "renderMap(SHADOW TRANS): "; else prefix = "renderMap(SHADOW SOLID): "; u32 drawcall_count = 0; u32 vertex_count = 0; MeshBufListList grouped_buffers; std::vector draw_order; int count = 0; int low_bound = is_transparent_pass ? 0 : m_drawlist_shadow.size() / total_frames * frame; int high_bound = is_transparent_pass ? m_drawlist_shadow.size() : m_drawlist_shadow.size() / total_frames * (frame + 1); // transparent pass should be rendered in one go if (is_transparent_pass && frame != total_frames - 1) { return; } for (const auto &i : m_drawlist_shadow) { // only process specific part of the list & break early ++count; if (count <= low_bound) continue; if (count > high_bound) break; v3s16 block_pos = i.first; MapBlock *block = i.second; // If the mesh of the block happened to get deleted, ignore it if (!block->mesh) continue; /* Get the meshbuffers of the block */ if (is_transparent_pass) { // In transparent pass, the mesh will give us // the partial buffers in the correct order for (auto &buffer : block->mesh->getTransparentBuffers()) draw_order.emplace_back(block_pos, &buffer); } else { // otherwise, group buffers across meshes // using MeshBufListList MapBlockMesh *mapBlockMesh = block->mesh; assert(mapBlockMesh); for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) { scene::IMesh *mesh = mapBlockMesh->getMesh(layer); assert(mesh); u32 c = mesh->getMeshBufferCount(); for (u32 i = 0; i < c; i++) { scene::IMeshBuffer *buf = mesh->getMeshBuffer(i); video::SMaterial &mat = buf->getMaterial(); auto rnd = driver->getMaterialRenderer(mat.MaterialType); bool transparent = rnd && rnd->isTransparent(); if (!transparent) grouped_buffers.add(buf, block_pos, layer); } } } } u32 buffer_count = 0; for (auto &lists : grouped_buffers.lists) for (MeshBufList &list : lists) buffer_count += list.bufs.size(); draw_order.reserve(draw_order.size() + buffer_count); // Capture draw order for all solid meshes for (auto &lists : grouped_buffers.lists) { for (MeshBufList &list : lists) { // iterate in reverse to draw closest blocks first for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin()); } } TimeTaker draw("Drawing shadow mesh buffers"); core::matrix4 m; // Model matrix v3f offset = intToFloat(m_camera_offset, BS); u32 material_swaps = 0; // Render all mesh buffers in order drawcall_count += draw_order.size(); for (auto &descriptor : draw_order) { scene::IMeshBuffer *buf = descriptor.getBuffer(); if (!descriptor.m_reuse_material) { // override some material properties video::SMaterial local_material = buf->getMaterial(); local_material.MaterialType = material.MaterialType; local_material.BackfaceCulling = material.BackfaceCulling; local_material.FrontfaceCulling = material.FrontfaceCulling; local_material.BlendOperation = material.BlendOperation; local_material.Lighting = false; driver->setMaterial(local_material); ++material_swaps; } v3f block_wpos = intToFloat(descriptor.m_pos * MAP_BLOCKSIZE, BS); m.setTranslation(block_wpos - offset); driver->setTransform(video::ETS_WORLD, m); descriptor.draw(driver); vertex_count += buf->getIndexCount(); } // restore the driver material state video::SMaterial clean; clean.BlendOperation = video::EBO_ADD; driver->setMaterial(clean); // reset material to defaults driver->draw3DLine(v3f(), v3f(), video::SColor(0)); g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true)); g_profiler->avg(prefix + "vertices drawn [#]", vertex_count); g_profiler->avg(prefix + "drawcalls [#]", drawcall_count); g_profiler->avg(prefix + "material swaps [#]", material_swaps); } /* Custom update draw list for the pov of shadow light. */ void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length) { ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG); v3s16 cam_pos_nodes = floatToInt(shadow_light_pos, BS); v3s16 p_blocks_min; v3s16 p_blocks_max; getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max, radius + length); for (auto &i : m_drawlist_shadow) { MapBlock *block = i.second; block->refDrop(); } m_drawlist_shadow.clear(); // Number of blocks currently loaded by the client u32 blocks_loaded = 0; // Number of blocks with mesh in rendering range u32 blocks_in_range_with_mesh = 0; // Number of blocks occlusion culled u32 blocks_occlusion_culled = 0; for (auto §or_it : m_sectors) { MapSector *sector = sector_it.second; if (!sector) continue; blocks_loaded += sector->size(); MapBlockVect sectorblocks; sector->getBlocks(sectorblocks); /* Loop through blocks in sector */ for (MapBlock *block : sectorblocks) { if (!block->mesh) { // Ignore if mesh doesn't exist continue; } v3f block_pos = intToFloat(block->getPos() * MAP_BLOCKSIZE, BS); v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos); if (projection.getDistanceFrom(block_pos) > radius) continue; blocks_in_range_with_mesh++; // This block is in range. Reset usage timer. block->resetUsageTimer(); // Add to set if (m_drawlist_shadow.find(block->getPos()) == m_drawlist_shadow.end()) { block->refGrab(); m_drawlist_shadow[block->getPos()] = block; } } } g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh); g_profiler->avg("SHADOW MapBlocks occlusion culled [#]", blocks_occlusion_culled); g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size()); g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded); } void ClientMap::updateTransparentMeshBuffers() { ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG); u32 sorted_blocks = 0; u32 unsorted_blocks = 0; f32 sorting_distance_sq = pow(m_cache_transparency_sorting_distance * BS, 2.0f); // Update the order of transparent mesh buffers in each mesh for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) { MapBlock* block = it->second; if (!block->mesh) continue; if (m_needs_update_transparent_meshes || block->mesh->getTransparentBuffers().size() == 0) { v3s16 block_pos = block->getPos(); v3f block_pos_f = intToFloat(block_pos * MAP_BLOCKSIZE + MAP_BLOCKSIZE / 2, BS); f32 distance = m_camera_position.getDistanceFromSQ(block_pos_f); if (distance <= sorting_distance_sq) { block->mesh->updateTransparentBuffers(m_camera_position, block_pos); ++sorted_blocks; } else { block->mesh->consolidateTransparentBuffers(); ++unsorted_blocks; } } } g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks); g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks); m_needs_update_transparent_meshes = false; } scene::IMeshBuffer* ClientMap::DrawDescriptor::getBuffer() { return m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer; } void ClientMap::DrawDescriptor::draw(video::IVideoDriver* driver) { if (m_use_partial_buffer) { m_partial_buffer->beforeDraw(); driver->drawMeshBuffer(m_partial_buffer->getBuffer()); m_partial_buffer->afterDraw(); } else { driver->drawMeshBuffer(m_buffer); } }