/* Minetest Copyright (C) 2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "nodedef.h" #include "main.h" // For g_settings #include "itemdef.h" #ifndef SERVER #include "tile.h" #include "mesh.h" #include #endif #include "log.h" #include "settings.h" #include "nameidmapping.h" #include "util/numeric.h" #include "util/serialize.h" #include "exceptions.h" #include "debug.h" #include "gamedef.h" /* NodeBox */ void NodeBox::reset() { type = NODEBOX_REGULAR; // default is empty fixed.clear(); // default is sign/ladder-like wall_top = aabb3f(-BS/2, BS/2-BS/16., -BS/2, BS/2, BS/2, BS/2); wall_bottom = aabb3f(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2); wall_side = aabb3f(-BS/2, -BS/2, -BS/2, -BS/2+BS/16., BS/2, BS/2); } void NodeBox::serialize(std::ostream &os, u16 protocol_version) const { int version = protocol_version >= 21 ? 2 : 1; writeU8(os, version); if (version == 1 && type == NODEBOX_LEVELED) writeU8(os, NODEBOX_FIXED); else writeU8(os, type); if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED) { writeU16(os, fixed.size()); for(std::vector::const_iterator i = fixed.begin(); i != fixed.end(); i++) { writeV3F1000(os, i->MinEdge); writeV3F1000(os, i->MaxEdge); } } else if(type == NODEBOX_WALLMOUNTED) { writeV3F1000(os, wall_top.MinEdge); writeV3F1000(os, wall_top.MaxEdge); writeV3F1000(os, wall_bottom.MinEdge); writeV3F1000(os, wall_bottom.MaxEdge); writeV3F1000(os, wall_side.MinEdge); writeV3F1000(os, wall_side.MaxEdge); } } void NodeBox::deSerialize(std::istream &is) { int version = readU8(is); if(version < 1 || version > 2) throw SerializationError("unsupported NodeBox version"); reset(); type = (enum NodeBoxType)readU8(is); if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED) { u16 fixed_count = readU16(is); while(fixed_count--) { aabb3f box; box.MinEdge = readV3F1000(is); box.MaxEdge = readV3F1000(is); fixed.push_back(box); } } else if(type == NODEBOX_WALLMOUNTED) { wall_top.MinEdge = readV3F1000(is); wall_top.MaxEdge = readV3F1000(is); wall_bottom.MinEdge = readV3F1000(is); wall_bottom.MaxEdge = readV3F1000(is); wall_side.MinEdge = readV3F1000(is); wall_side.MaxEdge = readV3F1000(is); } } /* TileDef */ void TileDef::serialize(std::ostream &os, u16 protocol_version) const { if(protocol_version >= 17) writeU8(os, 1); else writeU8(os, 0); os<= 17) writeU8(os, backface_culling); } void TileDef::deSerialize(std::istream &is) { int version = readU8(is); name = deSerializeString(is); animation.type = (TileAnimationType)readU8(is); animation.aspect_w = readU16(is); animation.aspect_h = readU16(is); animation.length = readF1000(is); if(version >= 1) backface_culling = readU8(is); } /* SimpleSoundSpec serialization */ static void serializeSimpleSoundSpec(const SimpleSoundSpec &ss, std::ostream &os) { os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for(u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); writeU8(os, CF_SPECIAL_COUNT); for(u32 i = 0; i < CF_SPECIAL_COUNT; i++){ tiledef_special[i].serialize(os, protocol_version); } writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os< &result) const; virtual const ContentFeatures& get(const std::string &name) const; content_t allocateId(); virtual content_t set(const std::string &name, const ContentFeatures &def); virtual content_t allocateDummy(const std::string &name); virtual void updateAliases(IItemDefManager *idef); virtual void updateTextures(IGameDef *gamedef); void serialize(std::ostream &os, u16 protocol_version); void deSerialize(std::istream &is); virtual NodeResolver *getResolver(); private: void addNameIdMapping(content_t i, std::string name); #ifndef SERVER void fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type); #endif // Features indexed by id std::vector m_content_features; // A mapping for fast converting back and forth between names and ids NameIdMapping m_name_id_mapping; // Like m_name_id_mapping, but only from names to ids, and includes // item aliases too. Updated by updateAliases() // Note: Not serialized. std::map m_name_id_mapping_with_aliases; // A mapping from groups to a list of content_ts (and their levels) // that belong to it. Necessary for a direct lookup in getIds(). // Note: Not serialized. std::map m_group_to_items; // Next possibly free id content_t m_next_id; // NodeResolver to queue pending node resolutions NodeResolver m_resolver; }; CNodeDefManager::CNodeDefManager() : m_resolver(this) { clear(); } CNodeDefManager::~CNodeDefManager() { #ifndef SERVER for (u32 i = 0; i < m_content_features.size(); i++) { ContentFeatures *f = &m_content_features[i]; for (u32 j = 0; j < 24; j++) { if (f->mesh_ptr[j]) f->mesh_ptr[j]->drop(); } } #endif } void CNodeDefManager::clear() { m_content_features.clear(); m_name_id_mapping.clear(); m_name_id_mapping_with_aliases.clear(); m_group_to_items.clear(); m_next_id = 0; u32 initial_length = 0; initial_length = MYMAX(initial_length, CONTENT_UNKNOWN + 1); initial_length = MYMAX(initial_length, CONTENT_AIR + 1); initial_length = MYMAX(initial_length, CONTENT_IGNORE + 1); m_content_features.resize(initial_length); // Set CONTENT_UNKNOWN { ContentFeatures f; f.name = "unknown"; // Insert directly into containers content_t c = CONTENT_UNKNOWN; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_AIR { ContentFeatures f; f.name = "air"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_LIGHT; f.light_propagates = true; f.sunlight_propagates = true; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_AIR; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_IGNORE { ContentFeatures f; f.name = "ignore"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_NONE; f.light_propagates = false; f.sunlight_propagates = false; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; // A way to remove accidental CONTENT_IGNOREs f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_IGNORE; m_content_features[c] = f; addNameIdMapping(c, f.name); } } IWritableNodeDefManager *CNodeDefManager::clone() { CNodeDefManager *mgr = new CNodeDefManager(); *mgr = *this; return mgr; } inline const ContentFeatures& CNodeDefManager::get(content_t c) const { return c < m_content_features.size() ? m_content_features[c] : m_content_features[CONTENT_UNKNOWN]; } inline const ContentFeatures& CNodeDefManager::get(const MapNode &n) const { return get(n.getContent()); } bool CNodeDefManager::getId(const std::string &name, content_t &result) const { std::map::const_iterator i = m_name_id_mapping_with_aliases.find(name); if(i == m_name_id_mapping_with_aliases.end()) return false; result = i->second; return true; } content_t CNodeDefManager::getId(const std::string &name) const { content_t id = CONTENT_IGNORE; getId(name, id); return id; } void CNodeDefManager::getIds(const std::string &name, std::set &result) const { //TimeTaker t("getIds", NULL, PRECISION_MICRO); if (name.substr(0,6) != "group:") { content_t id = CONTENT_IGNORE; if(getId(name, id)) result.insert(id); return; } std::string group = name.substr(6); std::map::const_iterator i = m_group_to_items.find(group); if (i == m_group_to_items.end()) return; const GroupItems &items = i->second; for (GroupItems::const_iterator j = items.begin(); j != items.end(); ++j) { if ((*j).second != 0) result.insert((*j).first); } //printf("getIds: %dus\n", t.stop()); } const ContentFeatures& CNodeDefManager::get(const std::string &name) const { content_t id = CONTENT_UNKNOWN; getId(name, id); return get(id); } // returns CONTENT_IGNORE if no free ID found content_t CNodeDefManager::allocateId() { for (content_t id = m_next_id; id >= m_next_id; // overflow? ++id) { while (id >= m_content_features.size()) { m_content_features.push_back(ContentFeatures()); } const ContentFeatures &f = m_content_features[id]; if (f.name == "") { m_next_id = id + 1; return id; } } // If we arrive here, an overflow occurred in id. // That means no ID was found return CONTENT_IGNORE; } // IWritableNodeDefManager content_t CNodeDefManager::set(const std::string &name, const ContentFeatures &def) { assert(name != ""); assert(name == def.name); // Don't allow redefining ignore (but allow air and unknown) if (name == "ignore") { infostream << "NodeDefManager: WARNING: Ignoring " "CONTENT_IGNORE redefinition"<first; std::map::iterator j = m_group_to_items.find(group_name); if (j == m_group_to_items.end()) { m_group_to_items[group_name].push_back( std::make_pair(id, i->second)); } else { GroupItems &items = j->second; items.push_back(std::make_pair(id, i->second)); } } return id; } content_t CNodeDefManager::allocateDummy(const std::string &name) { assert(name != ""); ContentFeatures f; f.name = name; return set(name, f); } void CNodeDefManager::updateAliases(IItemDefManager *idef) { std::set all = idef->getAll(); m_name_id_mapping_with_aliases.clear(); for (std::set::iterator i = all.begin(); i != all.end(); i++) { std::string name = *i; std::string convert_to = idef->getAlias(name); content_t id; if (m_name_id_mapping.getId(convert_to, id)) { m_name_id_mapping_with_aliases.insert( std::make_pair(name, id)); } } } void CNodeDefManager::updateTextures(IGameDef *gamedef) { #ifndef SERVER infostream << "CNodeDefManager::updateTextures(): Updating " "textures in node definitions" << std::endl; ITextureSource *tsrc = gamedef->tsrc(); IShaderSource *shdsrc = gamedef->getShaderSource(); scene::ISceneManager* smgr = gamedef->getSceneManager(); scene::IMeshManipulator* meshmanip = smgr->getMeshManipulator(); bool new_style_water = g_settings->getBool("new_style_water"); bool new_style_leaves = g_settings->getBool("new_style_leaves"); bool connected_glass = g_settings->getBool("connected_glass"); bool opaque_water = g_settings->getBool("opaque_water"); bool enable_shaders = g_settings->getBool("enable_shaders"); bool enable_bumpmapping = g_settings->getBool("enable_bumpmapping"); bool enable_parallax_occlusion = g_settings->getBool("enable_parallax_occlusion"); bool enable_mesh_cache = g_settings->getBool("enable_mesh_cache"); bool use_normal_texture = enable_shaders && (enable_bumpmapping || enable_parallax_occlusion); for (u32 i = 0; i < m_content_features.size(); i++) { ContentFeatures *f = &m_content_features[i]; // Figure out the actual tiles to use TileDef tiledef[6]; for (u32 j = 0; j < 6; j++) { tiledef[j] = f->tiledef[j]; if (tiledef[j].name == "") tiledef[j].name = "unknown_node.png"; } bool is_liquid = false; bool is_water_surface = false; u8 material_type = (f->alpha == 255) ? TILE_MATERIAL_BASIC : TILE_MATERIAL_ALPHA; switch (f->drawtype) { default: case NDT_NORMAL: f->solidness = 2; break; case NDT_AIRLIKE: f->solidness = 0; break; case NDT_LIQUID: assert(f->liquid_type == LIQUID_SOURCE); if (opaque_water) f->alpha = 255; if (new_style_water){ f->solidness = 0; } else { f->solidness = 1; f->backface_culling = false; } is_liquid = true; break; case NDT_FLOWINGLIQUID: assert(f->liquid_type == LIQUID_FLOWING); f->solidness = 0; if (opaque_water) f->alpha = 255; is_liquid = true; break; case NDT_GLASSLIKE: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED_OPTIONAL: f->solidness = 0; f->visual_solidness = 1; f->drawtype = connected_glass ? NDT_GLASSLIKE_FRAMED : NDT_GLASSLIKE; break; case NDT_ALLFACES: f->solidness = 0; f->visual_solidness = 1; break; case NDT_ALLFACES_OPTIONAL: if (new_style_leaves) { f->drawtype = NDT_ALLFACES; f->solidness = 0; f->visual_solidness = 1; } else { f->drawtype = NDT_NORMAL; f->solidness = 2; for (u32 i = 0; i < 6; i++) tiledef[i].name += std::string("^[noalpha"); } if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_LEAVES; break; case NDT_PLANTLIKE: f->solidness = 0; f->backface_culling = false; if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_PLANTS; break; case NDT_FIRELIKE: f->backface_culling = false; f->solidness = 0; break; case NDT_MESH: f->solidness = 0; f->backface_culling = false; break; case NDT_TORCHLIKE: case NDT_SIGNLIKE: case NDT_FENCELIKE: case NDT_RAILLIKE: case NDT_NODEBOX: f->solidness = 0; break; } if (is_liquid) { material_type = (f->alpha == 255) ? TILE_MATERIAL_LIQUID_OPAQUE : TILE_MATERIAL_LIQUID_TRANSPARENT; if (f->name == "default:water_source") is_water_surface = true; } u32 tile_shader[6]; for (u16 j = 0; j < 6; j++) { tile_shader[j] = shdsrc->getShader("nodes_shader", material_type, f->drawtype); } if (is_water_surface) { tile_shader[0] = shdsrc->getShader("water_surface_shader", material_type, f->drawtype); } // Tiles (fill in f->tiles[]) for (u16 j = 0; j < 6; j++) { fillTileAttribs(tsrc, &f->tiles[j], &tiledef[j], tile_shader[j], use_normal_texture, f->backface_culling, f->alpha, material_type); } // Special tiles (fill in f->special_tiles[]) for (u16 j = 0; j < CF_SPECIAL_COUNT; j++) { fillTileAttribs(tsrc, &f->special_tiles[j], &f->tiledef_special[j], tile_shader[j], use_normal_texture, f->tiledef_special[j].backface_culling, f->alpha, material_type); } if ((f->drawtype == NDT_MESH) && (f->mesh != "")) { // Meshnode drawtype // Read the mesh and apply scale f->mesh_ptr[0] = gamedef->getMesh(f->mesh); if (f->mesh_ptr[0]){ v3f scale = v3f(1.0, 1.0, 1.0) * BS * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); } } else if ((f->drawtype == NDT_NODEBOX) && ((f->node_box.type == NODEBOX_REGULAR) || (f->node_box.type == NODEBOX_FIXED)) && (!f->node_box.fixed.empty())) { //Convert regular nodebox nodes to meshnodes //Change the drawtype and apply scale f->drawtype = NDT_MESH; f->mesh_ptr[0] = convertNodeboxNodeToMesh(f); v3f scale = v3f(1.0, 1.0, 1.0) * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); } //Cache 6dfacedir and wallmounted rotated clones of meshes if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_FACEDIR)) { for (u16 j = 1; j < 24; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], j); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } } else if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_WALLMOUNTED)) { static const u8 wm_to_6d[6] = {20, 0, 16+1, 12+3, 8, 4+2}; for (u16 j = 1; j < 6; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], wm_to_6d[j]); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } rotateMeshBy6dFacedir(f->mesh_ptr[0], wm_to_6d[0]); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } } #endif } #ifndef SERVER void CNodeDefManager::fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type) { tile->shader_id = shader_id; tile->texture = tsrc->getTexture(tiledef->name, &tile->texture_id); tile->alpha = alpha; tile->material_type = material_type; // Normal texture if (use_normal_texture) tile->normal_texture = tsrc->getNormalTexture(tiledef->name); // Material flags tile->material_flags = 0; if (backface_culling) tile->material_flags |= MATERIAL_FLAG_BACKFACE_CULLING; if (tiledef->animation.type == TAT_VERTICAL_FRAMES) tile->material_flags |= MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; // Animation parameters int frame_count = 1; if (tile->material_flags & MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES) { // Get texture size to determine frame count by aspect ratio v2u32 size = tile->texture->getOriginalSize(); int frame_height = (float)size.X / (float)tiledef->animation.aspect_w * (float)tiledef->animation.aspect_h; frame_count = size.Y / frame_height; int frame_length_ms = 1000.0 * tiledef->animation.length / frame_count; tile->animation_frame_count = frame_count; tile->animation_frame_length_ms = frame_length_ms; } if (frame_count == 1) { tile->material_flags &= ~MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; } else { std::ostringstream os(std::ios::binary); for (int i = 0; i < frame_count; i++) { FrameSpec frame; os.str(""); os << tiledef->name << "^[verticalframe:" << frame_count << ":" << i; frame.texture = tsrc->getTexture(os.str(), &frame.texture_id); if (tile->normal_texture) frame.normal_texture = tsrc->getNormalTexture(os.str()); tile->frames[i] = frame; } } } #endif void CNodeDefManager::serialize(std::ostream &os, u16 protocol_version) { writeU8(os, 1); // version u16 count = 0; std::ostringstream os2(std::ios::binary); for (u32 i = 0; i < m_content_features.size(); i++) { if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) continue; ContentFeatures *f = &m_content_features[i]; if (f->name == "") continue; writeU16(os2, i); // Wrap it in a string to allow different lengths without // strict version incompatibilities std::ostringstream wrapper_os(std::ios::binary); f->serialize(wrapper_os, protocol_version); os2< count); // must not overflow count++; } writeU16(os, count); os << serializeLongString(os2.str()); } void CNodeDefManager::deSerialize(std::istream &is) { clear(); int version = readU8(is); if (version != 1) throw SerializationError("unsupported NodeDefinitionManager version"); u16 count = readU16(is); std::istringstream is2(deSerializeLongString(is), std::ios::binary); ContentFeatures f; for (u16 n = 0; n < count; n++) { u16 i = readU16(is2); // Read it from the string wrapper std::string wrapper = deSerializeString(is2); std::istringstream wrapper_is(wrapper, std::ios::binary); f.deSerialize(wrapper_is); // Check error conditions if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) { infostream << "NodeDefManager::deSerialize(): WARNING: " "not changing builtin node " << i << std::endl; continue; } if (f.name == "") { infostream << "NodeDefManager::deSerialize(): WARNING: " "received empty name" << std::endl; continue; } // Ignore aliases u16 existing_id; if (m_name_id_mapping.getId(f.name, existing_id) && i != existing_id) { infostream << "NodeDefManager::deSerialize(): WARNING: " "already defined with different ID: " << f.name << std::endl; continue; } // All is ok, add node definition with the requested ID if (i >= m_content_features.size()) m_content_features.resize((u32)(i) + 1); m_content_features[i] = f; addNameIdMapping(i, f.name); verbosestream << "deserialized " << f.name << std::endl; } } void CNodeDefManager::addNameIdMapping(content_t i, std::string name) { m_name_id_mapping.set(i, name); m_name_id_mapping_with_aliases.insert(std::make_pair(name, i)); } NodeResolver *CNodeDefManager::getResolver() { return &m_resolver; } IWritableNodeDefManager *createNodeDefManager() { return new CNodeDefManager(); } //// Serialization of old ContentFeatures formats void ContentFeatures::serializeOld(std::ostream &os, u16 protocol_version) { if (protocol_version == 13) { writeU8(os, 5); // version os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os< 13 && protocol_version < 24) { writeU8(os, 6); // version os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os<getId(n_wanted, *content)) return NR_STATUS_SUCCESS; if (n_alt == "" || !m_ndef->getId(n_alt, *content)) { *content = c_fallback; return NR_STATUS_FAILURE; } return NR_STATUS_SUCCESS; } else { NodeResolveInfo *nfi = new NodeResolveInfo; nfi->n_wanted = n_wanted; nfi->n_alt = n_alt; nfi->c_fallback = c_fallback; nfi->output = content; m_pending_contents.push_back(nfi); return NR_STATUS_PENDING; } } int NodeResolver::addNodeList(const char *nodename, std::vector *content_vec) { if (m_is_node_registration_complete) { std::set idset; std::set::iterator it; m_ndef->getIds(nodename, idset); for (it = idset.begin(); it != idset.end(); ++it) content_vec->push_back(*it); return idset.size() ? NR_STATUS_SUCCESS : NR_STATUS_FAILURE; } else { m_pending_content_vecs.push_back( std::make_pair(std::string(nodename), content_vec)); return NR_STATUS_PENDING; } } bool NodeResolver::cancelNode(content_t *content) { bool found = false; std::list::iterator it = m_pending_contents.begin(); while (it != m_pending_contents.end()) { NodeResolveInfo *nfi = *it; if (nfi->output == content) { it = m_pending_contents.erase(it); delete nfi; found = true; } } return found; } int NodeResolver::cancelNodeList(std::vector *content_vec) { int num_canceled = 0; std::list *> >::iterator it; it = m_pending_content_vecs.begin(); while (it != m_pending_content_vecs.end()) { if (it->second == content_vec) { it = m_pending_content_vecs.erase(it); num_canceled++; } } return num_canceled; } int NodeResolver::resolveNodes() { int num_failed = 0; //// Resolve pending single node name -> content ID mappings while (!m_pending_contents.empty()) { NodeResolveInfo *nri = m_pending_contents.front(); m_pending_contents.pop_front(); bool success = true; if (!m_ndef->getId(nri->n_wanted, *nri->output)) { success = (nri->n_alt != "") ? m_ndef->getId(nri->n_alt, *nri->output) : false; } if (!success) { *nri->output = nri->c_fallback; num_failed++; errorstream << "NodeResolver::resolveNodes(): Failed to " "resolve '" << nri->n_wanted; if (nri->n_alt != "") errorstream << "' and '" << nri->n_alt; errorstream << "'" << std::endl; } delete nri; } //// Resolve pending node names and add to content_t vector while (!m_pending_content_vecs.empty()) { std::pair *> item = m_pending_content_vecs.front(); m_pending_content_vecs.pop_front(); std::string &name = item.first; std::vector *output = item.second; std::set idset; std::set::iterator it; m_ndef->getIds(name, idset); for (it = idset.begin(); it != idset.end(); ++it) output->push_back(*it); if (idset.size() == 0) { num_failed++; errorstream << "NodeResolver::resolveNodes(): Failed to " "resolve '" << name << "'" << std::endl; } } //// Mark node registration as complete so future resolve //// requests are satisfied immediately m_is_node_registration_complete = true; return num_failed; }